xref: /freebsd/sys/vm/vnode_pager.c (revision 9268022b74279434ed6300244e3f977e56a8ceb5)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/limits.h>
65 #include <sys/conf.h>
66 #include <sys/rwlock.h>
67 #include <sys/sf_buf.h>
68 
69 #include <machine/atomic.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_page.h>
75 #include <vm/vm_pager.h>
76 #include <vm/vm_map.h>
77 #include <vm/vnode_pager.h>
78 #include <vm/vm_extern.h>
79 
80 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
81     daddr_t *rtaddress, int *run);
82 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
83 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
84 static void vnode_pager_dealloc(vm_object_t);
85 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
86 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
87 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
88 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
89     vm_ooffset_t, struct ucred *cred);
90 
91 struct pagerops vnodepagerops = {
92 	.pgo_alloc =	vnode_pager_alloc,
93 	.pgo_dealloc =	vnode_pager_dealloc,
94 	.pgo_getpages =	vnode_pager_getpages,
95 	.pgo_putpages =	vnode_pager_putpages,
96 	.pgo_haspage =	vnode_pager_haspage,
97 };
98 
99 int vnode_pbuf_freecnt;
100 
101 /* Create the VM system backing object for this vnode */
102 int
103 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
104 {
105 	vm_object_t object;
106 	vm_ooffset_t size = isize;
107 	struct vattr va;
108 
109 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
110 		return (0);
111 
112 	while ((object = vp->v_object) != NULL) {
113 		VM_OBJECT_WLOCK(object);
114 		if (!(object->flags & OBJ_DEAD)) {
115 			VM_OBJECT_WUNLOCK(object);
116 			return (0);
117 		}
118 		VOP_UNLOCK(vp, 0);
119 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
120 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
121 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
122 	}
123 
124 	if (size == 0) {
125 		if (vn_isdisk(vp, NULL)) {
126 			size = IDX_TO_OFF(INT_MAX);
127 		} else {
128 			if (VOP_GETATTR(vp, &va, td->td_ucred))
129 				return (0);
130 			size = va.va_size;
131 		}
132 	}
133 
134 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
135 	/*
136 	 * Dereference the reference we just created.  This assumes
137 	 * that the object is associated with the vp.
138 	 */
139 	VM_OBJECT_WLOCK(object);
140 	object->ref_count--;
141 	VM_OBJECT_WUNLOCK(object);
142 	vrele(vp);
143 
144 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
145 
146 	return (0);
147 }
148 
149 void
150 vnode_destroy_vobject(struct vnode *vp)
151 {
152 	struct vm_object *obj;
153 
154 	obj = vp->v_object;
155 	if (obj == NULL)
156 		return;
157 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
158 	VM_OBJECT_WLOCK(obj);
159 	if (obj->ref_count == 0) {
160 		/*
161 		 * don't double-terminate the object
162 		 */
163 		if ((obj->flags & OBJ_DEAD) == 0)
164 			vm_object_terminate(obj);
165 		else
166 			VM_OBJECT_WUNLOCK(obj);
167 	} else {
168 		/*
169 		 * Woe to the process that tries to page now :-).
170 		 */
171 		vm_pager_deallocate(obj);
172 		VM_OBJECT_WUNLOCK(obj);
173 	}
174 	vp->v_object = NULL;
175 }
176 
177 
178 /*
179  * Allocate (or lookup) pager for a vnode.
180  * Handle is a vnode pointer.
181  *
182  * MPSAFE
183  */
184 vm_object_t
185 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
186     vm_ooffset_t offset, struct ucred *cred)
187 {
188 	vm_object_t object;
189 	struct vnode *vp;
190 
191 	/*
192 	 * Pageout to vnode, no can do yet.
193 	 */
194 	if (handle == NULL)
195 		return (NULL);
196 
197 	vp = (struct vnode *) handle;
198 
199 	/*
200 	 * If the object is being terminated, wait for it to
201 	 * go away.
202 	 */
203 retry:
204 	while ((object = vp->v_object) != NULL) {
205 		VM_OBJECT_WLOCK(object);
206 		if ((object->flags & OBJ_DEAD) == 0)
207 			break;
208 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
209 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
210 	}
211 
212 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
213 
214 	if (object == NULL) {
215 		/*
216 		 * Add an object of the appropriate size
217 		 */
218 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
219 
220 		object->un_pager.vnp.vnp_size = size;
221 		object->un_pager.vnp.writemappings = 0;
222 
223 		object->handle = handle;
224 		VI_LOCK(vp);
225 		if (vp->v_object != NULL) {
226 			/*
227 			 * Object has been created while we were sleeping
228 			 */
229 			VI_UNLOCK(vp);
230 			vm_object_destroy(object);
231 			goto retry;
232 		}
233 		vp->v_object = object;
234 		VI_UNLOCK(vp);
235 	} else {
236 		object->ref_count++;
237 		VM_OBJECT_WUNLOCK(object);
238 	}
239 	vref(vp);
240 	return (object);
241 }
242 
243 /*
244  *	The object must be locked.
245  */
246 static void
247 vnode_pager_dealloc(vm_object_t object)
248 {
249 	struct vnode *vp;
250 	int refs;
251 
252 	vp = object->handle;
253 	if (vp == NULL)
254 		panic("vnode_pager_dealloc: pager already dealloced");
255 
256 	VM_OBJECT_ASSERT_WLOCKED(object);
257 	vm_object_pip_wait(object, "vnpdea");
258 	refs = object->ref_count;
259 
260 	object->handle = NULL;
261 	object->type = OBJT_DEAD;
262 	if (object->flags & OBJ_DISCONNECTWNT) {
263 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
264 		wakeup(object);
265 	}
266 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
267 	if (object->un_pager.vnp.writemappings > 0) {
268 		object->un_pager.vnp.writemappings = 0;
269 		VOP_ADD_WRITECOUNT(vp, -1);
270 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
271 		    __func__, vp, vp->v_writecount);
272 	}
273 	vp->v_object = NULL;
274 	VOP_UNSET_TEXT(vp);
275 	VM_OBJECT_WUNLOCK(object);
276 	while (refs-- > 0)
277 		vunref(vp);
278 	VM_OBJECT_WLOCK(object);
279 }
280 
281 static boolean_t
282 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
283     int *after)
284 {
285 	struct vnode *vp = object->handle;
286 	daddr_t bn;
287 	int err;
288 	daddr_t reqblock;
289 	int poff;
290 	int bsize;
291 	int pagesperblock, blocksperpage;
292 
293 	VM_OBJECT_ASSERT_WLOCKED(object);
294 	/*
295 	 * If no vp or vp is doomed or marked transparent to VM, we do not
296 	 * have the page.
297 	 */
298 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
299 		return FALSE;
300 	/*
301 	 * If the offset is beyond end of file we do
302 	 * not have the page.
303 	 */
304 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
305 		return FALSE;
306 
307 	bsize = vp->v_mount->mnt_stat.f_iosize;
308 	pagesperblock = bsize / PAGE_SIZE;
309 	blocksperpage = 0;
310 	if (pagesperblock > 0) {
311 		reqblock = pindex / pagesperblock;
312 	} else {
313 		blocksperpage = (PAGE_SIZE / bsize);
314 		reqblock = pindex * blocksperpage;
315 	}
316 	VM_OBJECT_WUNLOCK(object);
317 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
318 	VM_OBJECT_WLOCK(object);
319 	if (err)
320 		return TRUE;
321 	if (bn == -1)
322 		return FALSE;
323 	if (pagesperblock > 0) {
324 		poff = pindex - (reqblock * pagesperblock);
325 		if (before) {
326 			*before *= pagesperblock;
327 			*before += poff;
328 		}
329 		if (after) {
330 			int numafter;
331 			*after *= pagesperblock;
332 			numafter = pagesperblock - (poff + 1);
333 			if (IDX_TO_OFF(pindex + numafter) >
334 			    object->un_pager.vnp.vnp_size) {
335 				numafter =
336 		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
337 				    pindex;
338 			}
339 			*after += numafter;
340 		}
341 	} else {
342 		if (before) {
343 			*before /= blocksperpage;
344 		}
345 
346 		if (after) {
347 			*after /= blocksperpage;
348 		}
349 	}
350 	return TRUE;
351 }
352 
353 /*
354  * Lets the VM system know about a change in size for a file.
355  * We adjust our own internal size and flush any cached pages in
356  * the associated object that are affected by the size change.
357  *
358  * Note: this routine may be invoked as a result of a pager put
359  * operation (possibly at object termination time), so we must be careful.
360  */
361 void
362 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
363 {
364 	vm_object_t object;
365 	vm_page_t m;
366 	vm_pindex_t nobjsize;
367 
368 	if ((object = vp->v_object) == NULL)
369 		return;
370 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
371 	VM_OBJECT_WLOCK(object);
372 	if (object->type == OBJT_DEAD) {
373 		VM_OBJECT_WUNLOCK(object);
374 		return;
375 	}
376 	KASSERT(object->type == OBJT_VNODE,
377 	    ("not vnode-backed object %p", object));
378 	if (nsize == object->un_pager.vnp.vnp_size) {
379 		/*
380 		 * Hasn't changed size
381 		 */
382 		VM_OBJECT_WUNLOCK(object);
383 		return;
384 	}
385 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
386 	if (nsize < object->un_pager.vnp.vnp_size) {
387 		/*
388 		 * File has shrunk. Toss any cached pages beyond the new EOF.
389 		 */
390 		if (nobjsize < object->size)
391 			vm_object_page_remove(object, nobjsize, object->size,
392 			    0);
393 		/*
394 		 * this gets rid of garbage at the end of a page that is now
395 		 * only partially backed by the vnode.
396 		 *
397 		 * XXX for some reason (I don't know yet), if we take a
398 		 * completely invalid page and mark it partially valid
399 		 * it can screw up NFS reads, so we don't allow the case.
400 		 */
401 		if ((nsize & PAGE_MASK) &&
402 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
403 		    m->valid != 0) {
404 			int base = (int)nsize & PAGE_MASK;
405 			int size = PAGE_SIZE - base;
406 
407 			/*
408 			 * Clear out partial-page garbage in case
409 			 * the page has been mapped.
410 			 */
411 			pmap_zero_page_area(m, base, size);
412 
413 			/*
414 			 * Update the valid bits to reflect the blocks that
415 			 * have been zeroed.  Some of these valid bits may
416 			 * have already been set.
417 			 */
418 			vm_page_set_valid_range(m, base, size);
419 
420 			/*
421 			 * Round "base" to the next block boundary so that the
422 			 * dirty bit for a partially zeroed block is not
423 			 * cleared.
424 			 */
425 			base = roundup2(base, DEV_BSIZE);
426 
427 			/*
428 			 * Clear out partial-page dirty bits.
429 			 *
430 			 * note that we do not clear out the valid
431 			 * bits.  This would prevent bogus_page
432 			 * replacement from working properly.
433 			 */
434 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
435 		} else if ((nsize & PAGE_MASK) &&
436 		    vm_page_is_cached(object, OFF_TO_IDX(nsize))) {
437 			vm_page_cache_free(object, OFF_TO_IDX(nsize),
438 			    nobjsize);
439 		}
440 	}
441 	object->un_pager.vnp.vnp_size = nsize;
442 	object->size = nobjsize;
443 	VM_OBJECT_WUNLOCK(object);
444 }
445 
446 /*
447  * calculate the linear (byte) disk address of specified virtual
448  * file address
449  */
450 static int
451 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
452     int *run)
453 {
454 	int bsize;
455 	int err;
456 	daddr_t vblock;
457 	daddr_t voffset;
458 
459 	if (address < 0)
460 		return -1;
461 
462 	if (vp->v_iflag & VI_DOOMED)
463 		return -1;
464 
465 	bsize = vp->v_mount->mnt_stat.f_iosize;
466 	vblock = address / bsize;
467 	voffset = address % bsize;
468 
469 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
470 	if (err == 0) {
471 		if (*rtaddress != -1)
472 			*rtaddress += voffset / DEV_BSIZE;
473 		if (run) {
474 			*run += 1;
475 			*run *= bsize/PAGE_SIZE;
476 			*run -= voffset/PAGE_SIZE;
477 		}
478 	}
479 
480 	return (err);
481 }
482 
483 /*
484  * small block filesystem vnode pager input
485  */
486 static int
487 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
488 {
489 	struct vnode *vp;
490 	struct bufobj *bo;
491 	struct buf *bp;
492 	struct sf_buf *sf;
493 	daddr_t fileaddr;
494 	vm_offset_t bsize;
495 	vm_page_bits_t bits;
496 	int error, i;
497 
498 	error = 0;
499 	vp = object->handle;
500 	if (vp->v_iflag & VI_DOOMED)
501 		return VM_PAGER_BAD;
502 
503 	bsize = vp->v_mount->mnt_stat.f_iosize;
504 
505 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
506 
507 	sf = sf_buf_alloc(m, 0);
508 
509 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
510 		vm_ooffset_t address;
511 
512 		bits = vm_page_bits(i * bsize, bsize);
513 		if (m->valid & bits)
514 			continue;
515 
516 		address = IDX_TO_OFF(m->pindex) + i * bsize;
517 		if (address >= object->un_pager.vnp.vnp_size) {
518 			fileaddr = -1;
519 		} else {
520 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
521 			if (error)
522 				break;
523 		}
524 		if (fileaddr != -1) {
525 			bp = getpbuf(&vnode_pbuf_freecnt);
526 
527 			/* build a minimal buffer header */
528 			bp->b_iocmd = BIO_READ;
529 			bp->b_iodone = bdone;
530 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
531 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
532 			bp->b_rcred = crhold(curthread->td_ucred);
533 			bp->b_wcred = crhold(curthread->td_ucred);
534 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
535 			bp->b_blkno = fileaddr;
536 			pbgetbo(bo, bp);
537 			bp->b_vp = vp;
538 			bp->b_bcount = bsize;
539 			bp->b_bufsize = bsize;
540 			bp->b_runningbufspace = bp->b_bufsize;
541 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
542 
543 			/* do the input */
544 			bp->b_iooffset = dbtob(bp->b_blkno);
545 			bstrategy(bp);
546 
547 			bwait(bp, PVM, "vnsrd");
548 
549 			if ((bp->b_ioflags & BIO_ERROR) != 0)
550 				error = EIO;
551 
552 			/*
553 			 * free the buffer header back to the swap buffer pool
554 			 */
555 			bp->b_vp = NULL;
556 			pbrelbo(bp);
557 			relpbuf(bp, &vnode_pbuf_freecnt);
558 			if (error)
559 				break;
560 		} else
561 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
562 		KASSERT((m->dirty & bits) == 0,
563 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
564 		VM_OBJECT_WLOCK(object);
565 		m->valid |= bits;
566 		VM_OBJECT_WUNLOCK(object);
567 	}
568 	sf_buf_free(sf);
569 	if (error) {
570 		return VM_PAGER_ERROR;
571 	}
572 	return VM_PAGER_OK;
573 }
574 
575 /*
576  * old style vnode pager input routine
577  */
578 static int
579 vnode_pager_input_old(vm_object_t object, vm_page_t m)
580 {
581 	struct uio auio;
582 	struct iovec aiov;
583 	int error;
584 	int size;
585 	struct sf_buf *sf;
586 	struct vnode *vp;
587 
588 	VM_OBJECT_ASSERT_WLOCKED(object);
589 	error = 0;
590 
591 	/*
592 	 * Return failure if beyond current EOF
593 	 */
594 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
595 		return VM_PAGER_BAD;
596 	} else {
597 		size = PAGE_SIZE;
598 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
599 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
600 		vp = object->handle;
601 		VM_OBJECT_WUNLOCK(object);
602 
603 		/*
604 		 * Allocate a kernel virtual address and initialize so that
605 		 * we can use VOP_READ/WRITE routines.
606 		 */
607 		sf = sf_buf_alloc(m, 0);
608 
609 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
610 		aiov.iov_len = size;
611 		auio.uio_iov = &aiov;
612 		auio.uio_iovcnt = 1;
613 		auio.uio_offset = IDX_TO_OFF(m->pindex);
614 		auio.uio_segflg = UIO_SYSSPACE;
615 		auio.uio_rw = UIO_READ;
616 		auio.uio_resid = size;
617 		auio.uio_td = curthread;
618 
619 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
620 		if (!error) {
621 			int count = size - auio.uio_resid;
622 
623 			if (count == 0)
624 				error = EINVAL;
625 			else if (count != PAGE_SIZE)
626 				bzero((caddr_t)sf_buf_kva(sf) + count,
627 				    PAGE_SIZE - count);
628 		}
629 		sf_buf_free(sf);
630 
631 		VM_OBJECT_WLOCK(object);
632 	}
633 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
634 	if (!error)
635 		m->valid = VM_PAGE_BITS_ALL;
636 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
637 }
638 
639 /*
640  * generic vnode pager input routine
641  */
642 
643 /*
644  * Local media VFS's that do not implement their own VOP_GETPAGES
645  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
646  * to implement the previous behaviour.
647  *
648  * All other FS's should use the bypass to get to the local media
649  * backing vp's VOP_GETPAGES.
650  */
651 static int
652 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
653 {
654 	int rtval;
655 	struct vnode *vp;
656 	int bytes = count * PAGE_SIZE;
657 
658 	vp = object->handle;
659 	VM_OBJECT_WUNLOCK(object);
660 	rtval = VOP_GETPAGES(vp, m, bytes, reqpage);
661 	KASSERT(rtval != EOPNOTSUPP,
662 	    ("vnode_pager: FS getpages not implemented\n"));
663 	VM_OBJECT_WLOCK(object);
664 	return rtval;
665 }
666 
667 /*
668  * The implementation of VOP_GETPAGES() for local filesystems, where
669  * partially valid pages can only occur at the end of file.
670  */
671 int
672 vnode_pager_local_getpages(struct vop_getpages_args *ap)
673 {
674 	vm_page_t mreq;
675 
676 	mreq = ap->a_m[ap->a_reqpage];
677 
678 	/*
679 	 * Since the caller has busied the requested page, that page's valid
680 	 * field will not be changed by other threads.
681 	 */
682 	vm_page_assert_xbusied(mreq);
683 
684 	/*
685 	 * The requested page has valid blocks.  Invalid part can only
686 	 * exist at the end of file, and the page is made fully valid
687 	 * by zeroing in vm_pager_getpages().  Free non-requested
688 	 * pages, since no i/o is done to read its content.
689 	 */
690 	if (mreq->valid != 0) {
691 		vm_pager_free_nonreq(mreq->object, ap->a_m, ap->a_reqpage,
692 		    round_page(ap->a_count) / PAGE_SIZE);
693 		return (VM_PAGER_OK);
694 	}
695 
696 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m,
697 	    ap->a_count, ap->a_reqpage));
698 }
699 
700 /*
701  * This is now called from local media FS's to operate against their
702  * own vnodes if they fail to implement VOP_GETPAGES.
703  */
704 int
705 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int bytecount,
706     int reqpage)
707 {
708 	vm_object_t object;
709 	vm_offset_t kva;
710 	off_t foff, tfoff, nextoff;
711 	int i, j, size, bsize, first;
712 	daddr_t firstaddr, reqblock;
713 	struct bufobj *bo;
714 	int runpg;
715 	int runend;
716 	struct buf *bp;
717 	struct mount *mp;
718 	int count;
719 	int error;
720 
721 	object = vp->v_object;
722 	count = bytecount / PAGE_SIZE;
723 
724 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
725 	    ("vnode_pager_generic_getpages does not support devices"));
726 	if (vp->v_iflag & VI_DOOMED)
727 		return VM_PAGER_BAD;
728 
729 	bsize = vp->v_mount->mnt_stat.f_iosize;
730 	foff = IDX_TO_OFF(m[reqpage]->pindex);
731 
732 	/*
733 	 * Get the underlying device blocks for the file with VOP_BMAP().
734 	 * If the file system doesn't support VOP_BMAP, use old way of
735 	 * getting pages via VOP_READ.
736 	 */
737 	error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL);
738 	if (error == EOPNOTSUPP) {
739 		VM_OBJECT_WLOCK(object);
740 
741 		for (i = 0; i < count; i++)
742 			if (i != reqpage) {
743 				vm_page_lock(m[i]);
744 				vm_page_free(m[i]);
745 				vm_page_unlock(m[i]);
746 			}
747 		PCPU_INC(cnt.v_vnodein);
748 		PCPU_INC(cnt.v_vnodepgsin);
749 		error = vnode_pager_input_old(object, m[reqpage]);
750 		VM_OBJECT_WUNLOCK(object);
751 		return (error);
752 	} else if (error != 0) {
753 		vm_pager_free_nonreq(object, m, reqpage, count);
754 		return (VM_PAGER_ERROR);
755 
756 		/*
757 		 * if the blocksize is smaller than a page size, then use
758 		 * special small filesystem code.  NFS sometimes has a small
759 		 * blocksize, but it can handle large reads itself.
760 		 */
761 	} else if ((PAGE_SIZE / bsize) > 1 &&
762 	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
763 		vm_pager_free_nonreq(object, m, reqpage, count);
764 		PCPU_INC(cnt.v_vnodein);
765 		PCPU_INC(cnt.v_vnodepgsin);
766 		return vnode_pager_input_smlfs(object, m[reqpage]);
767 	}
768 
769 	/*
770 	 * Since the caller has busied the requested page, that page's valid
771 	 * field will not be changed by other threads.
772 	 */
773 	vm_page_assert_xbusied(m[reqpage]);
774 
775 	/*
776 	 * If we have a completely valid page available to us, we can
777 	 * clean up and return.  Otherwise we have to re-read the
778 	 * media.
779 	 */
780 	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
781 		vm_pager_free_nonreq(object, m, reqpage, count);
782 		return (VM_PAGER_OK);
783 	} else if (reqblock == -1) {
784 		pmap_zero_page(m[reqpage]);
785 		KASSERT(m[reqpage]->dirty == 0,
786 		    ("vnode_pager_generic_getpages: page %p is dirty", m));
787 		VM_OBJECT_WLOCK(object);
788 		m[reqpage]->valid = VM_PAGE_BITS_ALL;
789 		for (i = 0; i < count; i++)
790 			if (i != reqpage) {
791 				vm_page_lock(m[i]);
792 				vm_page_free(m[i]);
793 				vm_page_unlock(m[i]);
794 			}
795 		VM_OBJECT_WUNLOCK(object);
796 		return (VM_PAGER_OK);
797 	} else if (m[reqpage]->valid != 0) {
798 		VM_OBJECT_WLOCK(object);
799 		m[reqpage]->valid = 0;
800 		VM_OBJECT_WUNLOCK(object);
801 	}
802 
803 	/*
804 	 * here on direct device I/O
805 	 */
806 	firstaddr = -1;
807 
808 	/*
809 	 * calculate the run that includes the required page
810 	 */
811 	for (first = 0, i = 0; i < count; i = runend) {
812 		if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr,
813 		    &runpg) != 0) {
814 			VM_OBJECT_WLOCK(object);
815 			for (; i < count; i++)
816 				if (i != reqpage) {
817 					vm_page_lock(m[i]);
818 					vm_page_free(m[i]);
819 					vm_page_unlock(m[i]);
820 				}
821 			VM_OBJECT_WUNLOCK(object);
822 			return (VM_PAGER_ERROR);
823 		}
824 		if (firstaddr == -1) {
825 			VM_OBJECT_WLOCK(object);
826 			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
827 				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
828 				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
829 				    (uintmax_t)foff,
830 				    (uintmax_t)
831 				    (object->un_pager.vnp.vnp_size >> 32),
832 				    (uintmax_t)object->un_pager.vnp.vnp_size);
833 			}
834 			vm_page_lock(m[i]);
835 			vm_page_free(m[i]);
836 			vm_page_unlock(m[i]);
837 			VM_OBJECT_WUNLOCK(object);
838 			runend = i + 1;
839 			first = runend;
840 			continue;
841 		}
842 		runend = i + runpg;
843 		if (runend <= reqpage) {
844 			VM_OBJECT_WLOCK(object);
845 			for (j = i; j < runend; j++) {
846 				vm_page_lock(m[j]);
847 				vm_page_free(m[j]);
848 				vm_page_unlock(m[j]);
849 			}
850 			VM_OBJECT_WUNLOCK(object);
851 		} else {
852 			if (runpg < (count - first)) {
853 				VM_OBJECT_WLOCK(object);
854 				for (i = first + runpg; i < count; i++) {
855 					vm_page_lock(m[i]);
856 					vm_page_free(m[i]);
857 					vm_page_unlock(m[i]);
858 				}
859 				VM_OBJECT_WUNLOCK(object);
860 				count = first + runpg;
861 			}
862 			break;
863 		}
864 		first = runend;
865 	}
866 
867 	/*
868 	 * the first and last page have been calculated now, move input pages
869 	 * to be zero based...
870 	 */
871 	if (first != 0) {
872 		m += first;
873 		count -= first;
874 		reqpage -= first;
875 	}
876 
877 	/*
878 	 * calculate the file virtual address for the transfer
879 	 */
880 	foff = IDX_TO_OFF(m[0]->pindex);
881 
882 	/*
883 	 * calculate the size of the transfer
884 	 */
885 	size = count * PAGE_SIZE;
886 	KASSERT(count > 0, ("zero count"));
887 	if ((foff + size) > object->un_pager.vnp.vnp_size)
888 		size = object->un_pager.vnp.vnp_size - foff;
889 	KASSERT(size > 0, ("zero size"));
890 
891 	/*
892 	 * round up physical size for real devices.
893 	 */
894 	if (1) {
895 		int secmask = bo->bo_bsize - 1;
896 		KASSERT(secmask < PAGE_SIZE && secmask > 0,
897 		    ("vnode_pager_generic_getpages: sector size %d too large",
898 		    secmask + 1));
899 		size = (size + secmask) & ~secmask;
900 	}
901 
902 	bp = getpbuf(&vnode_pbuf_freecnt);
903 	kva = (vm_offset_t)bp->b_data;
904 
905 	/*
906 	 * and map the pages to be read into the kva, if the filesystem
907 	 * requires mapped buffers.
908 	 */
909 	mp = vp->v_mount;
910 	if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
911 	    unmapped_buf_allowed) {
912 		bp->b_data = unmapped_buf;
913 		bp->b_kvabase = unmapped_buf;
914 		bp->b_offset = 0;
915 		bp->b_flags |= B_UNMAPPED;
916 		bp->b_npages = count;
917 		for (i = 0; i < count; i++)
918 			bp->b_pages[i] = m[i];
919 	} else
920 		pmap_qenter(kva, m, count);
921 
922 	/* build a minimal buffer header */
923 	bp->b_iocmd = BIO_READ;
924 	bp->b_iodone = bdone;
925 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
926 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
927 	bp->b_rcred = crhold(curthread->td_ucred);
928 	bp->b_wcred = crhold(curthread->td_ucred);
929 	bp->b_blkno = firstaddr;
930 	pbgetbo(bo, bp);
931 	bp->b_vp = vp;
932 	bp->b_bcount = size;
933 	bp->b_bufsize = size;
934 	bp->b_runningbufspace = bp->b_bufsize;
935 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
936 
937 	PCPU_INC(cnt.v_vnodein);
938 	PCPU_ADD(cnt.v_vnodepgsin, count);
939 
940 	/* do the input */
941 	bp->b_iooffset = dbtob(bp->b_blkno);
942 	bstrategy(bp);
943 
944 	bwait(bp, PVM, "vnread");
945 
946 	if ((bp->b_ioflags & BIO_ERROR) != 0)
947 		error = EIO;
948 
949 	if (error == 0 && size != count * PAGE_SIZE) {
950 		if ((bp->b_flags & B_UNMAPPED) != 0) {
951 			bp->b_flags &= ~B_UNMAPPED;
952 			pmap_qenter(kva, m, count);
953 		}
954 		bzero((caddr_t)kva + size, PAGE_SIZE * count - size);
955 	}
956 	if ((bp->b_flags & B_UNMAPPED) == 0)
957 		pmap_qremove(kva, count);
958 	if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0) {
959 		bp->b_data = (caddr_t)kva;
960 		bp->b_kvabase = (caddr_t)kva;
961 		bp->b_flags &= ~B_UNMAPPED;
962 		for (i = 0; i < count; i++)
963 			bp->b_pages[i] = NULL;
964 	}
965 
966 	/*
967 	 * free the buffer header back to the swap buffer pool
968 	 */
969 	bp->b_vp = NULL;
970 	pbrelbo(bp);
971 	relpbuf(bp, &vnode_pbuf_freecnt);
972 
973 	VM_OBJECT_WLOCK(object);
974 	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
975 		vm_page_t mt;
976 
977 		nextoff = tfoff + PAGE_SIZE;
978 		mt = m[i];
979 
980 		if (nextoff <= object->un_pager.vnp.vnp_size) {
981 			/*
982 			 * Read filled up entire page.
983 			 */
984 			mt->valid = VM_PAGE_BITS_ALL;
985 			KASSERT(mt->dirty == 0,
986 			    ("vnode_pager_generic_getpages: page %p is dirty",
987 			    mt));
988 			KASSERT(!pmap_page_is_mapped(mt),
989 			    ("vnode_pager_generic_getpages: page %p is mapped",
990 			    mt));
991 		} else {
992 			/*
993 			 * Read did not fill up entire page.
994 			 *
995 			 * Currently we do not set the entire page valid,
996 			 * we just try to clear the piece that we couldn't
997 			 * read.
998 			 */
999 			vm_page_set_valid_range(mt, 0,
1000 			    object->un_pager.vnp.vnp_size - tfoff);
1001 			KASSERT((mt->dirty & vm_page_bits(0,
1002 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1003 			    ("vnode_pager_generic_getpages: page %p is dirty",
1004 			    mt));
1005 		}
1006 
1007 		if (i != reqpage)
1008 			vm_page_readahead_finish(mt);
1009 	}
1010 	VM_OBJECT_WUNLOCK(object);
1011 	if (error) {
1012 		printf("vnode_pager_getpages: I/O read error\n");
1013 	}
1014 	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
1015 }
1016 
1017 /*
1018  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1019  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1020  * vnode_pager_generic_putpages() to implement the previous behaviour.
1021  *
1022  * All other FS's should use the bypass to get to the local media
1023  * backing vp's VOP_PUTPAGES.
1024  */
1025 static void
1026 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1027     int flags, int *rtvals)
1028 {
1029 	int rtval;
1030 	struct vnode *vp;
1031 	int bytes = count * PAGE_SIZE;
1032 
1033 	/*
1034 	 * Force synchronous operation if we are extremely low on memory
1035 	 * to prevent a low-memory deadlock.  VOP operations often need to
1036 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1037 	 * operation ).  The swapper handles the case by limiting the amount
1038 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1039 	 * for the vnode pager without a lot of work.
1040 	 *
1041 	 * Also, the backing vnode's iodone routine may not wake the pageout
1042 	 * daemon up.  This should be probably be addressed XXX.
1043 	 */
1044 
1045 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count <
1046 	    vm_cnt.v_pageout_free_min)
1047 		flags |= VM_PAGER_PUT_SYNC;
1048 
1049 	/*
1050 	 * Call device-specific putpages function
1051 	 */
1052 	vp = object->handle;
1053 	VM_OBJECT_WUNLOCK(object);
1054 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1055 	KASSERT(rtval != EOPNOTSUPP,
1056 	    ("vnode_pager: stale FS putpages\n"));
1057 	VM_OBJECT_WLOCK(object);
1058 }
1059 
1060 
1061 /*
1062  * This is now called from local media FS's to operate against their
1063  * own vnodes if they fail to implement VOP_PUTPAGES.
1064  *
1065  * This is typically called indirectly via the pageout daemon and
1066  * clustering has already typically occured, so in general we ask the
1067  * underlying filesystem to write the data out asynchronously rather
1068  * then delayed.
1069  */
1070 int
1071 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1072     int flags, int *rtvals)
1073 {
1074 	int i;
1075 	vm_object_t object;
1076 	vm_page_t m;
1077 	int count;
1078 
1079 	int maxsize, ncount;
1080 	vm_ooffset_t poffset;
1081 	struct uio auio;
1082 	struct iovec aiov;
1083 	int error;
1084 	int ioflags;
1085 	int ppscheck = 0;
1086 	static struct timeval lastfail;
1087 	static int curfail;
1088 
1089 	object = vp->v_object;
1090 	count = bytecount / PAGE_SIZE;
1091 
1092 	for (i = 0; i < count; i++)
1093 		rtvals[i] = VM_PAGER_ERROR;
1094 
1095 	if ((int64_t)ma[0]->pindex < 0) {
1096 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1097 		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1098 		rtvals[0] = VM_PAGER_BAD;
1099 		return VM_PAGER_BAD;
1100 	}
1101 
1102 	maxsize = count * PAGE_SIZE;
1103 	ncount = count;
1104 
1105 	poffset = IDX_TO_OFF(ma[0]->pindex);
1106 
1107 	/*
1108 	 * If the page-aligned write is larger then the actual file we
1109 	 * have to invalidate pages occuring beyond the file EOF.  However,
1110 	 * there is an edge case where a file may not be page-aligned where
1111 	 * the last page is partially invalid.  In this case the filesystem
1112 	 * may not properly clear the dirty bits for the entire page (which
1113 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1114 	 * With the page locked we are free to fix-up the dirty bits here.
1115 	 *
1116 	 * We do not under any circumstances truncate the valid bits, as
1117 	 * this will screw up bogus page replacement.
1118 	 */
1119 	VM_OBJECT_WLOCK(object);
1120 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1121 		if (object->un_pager.vnp.vnp_size > poffset) {
1122 			int pgoff;
1123 
1124 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1125 			ncount = btoc(maxsize);
1126 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1127 				/*
1128 				 * If the object is locked and the following
1129 				 * conditions hold, then the page's dirty
1130 				 * field cannot be concurrently changed by a
1131 				 * pmap operation.
1132 				 */
1133 				m = ma[ncount - 1];
1134 				vm_page_assert_sbusied(m);
1135 				KASSERT(!pmap_page_is_write_mapped(m),
1136 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1137 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1138 				    pgoff);
1139 			}
1140 		} else {
1141 			maxsize = 0;
1142 			ncount = 0;
1143 		}
1144 		if (ncount < count) {
1145 			for (i = ncount; i < count; i++) {
1146 				rtvals[i] = VM_PAGER_BAD;
1147 			}
1148 		}
1149 	}
1150 	VM_OBJECT_WUNLOCK(object);
1151 
1152 	/*
1153 	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1154 	 * rather then a bdwrite() to prevent paging I/O from saturating
1155 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1156 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1157 	 * the system decides how to cluster.
1158 	 */
1159 	ioflags = IO_VMIO;
1160 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1161 		ioflags |= IO_SYNC;
1162 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1163 		ioflags |= IO_ASYNC;
1164 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1165 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1166 
1167 	aiov.iov_base = (caddr_t) 0;
1168 	aiov.iov_len = maxsize;
1169 	auio.uio_iov = &aiov;
1170 	auio.uio_iovcnt = 1;
1171 	auio.uio_offset = poffset;
1172 	auio.uio_segflg = UIO_NOCOPY;
1173 	auio.uio_rw = UIO_WRITE;
1174 	auio.uio_resid = maxsize;
1175 	auio.uio_td = (struct thread *) 0;
1176 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1177 	PCPU_INC(cnt.v_vnodeout);
1178 	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1179 
1180 	if (error) {
1181 		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1182 			printf("vnode_pager_putpages: I/O error %d\n", error);
1183 	}
1184 	if (auio.uio_resid) {
1185 		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1186 			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1187 			    auio.uio_resid, (u_long)ma[0]->pindex);
1188 	}
1189 	for (i = 0; i < ncount; i++) {
1190 		rtvals[i] = VM_PAGER_OK;
1191 	}
1192 	return rtvals[0];
1193 }
1194 
1195 void
1196 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1197 {
1198 	vm_object_t obj;
1199 	int i, pos;
1200 
1201 	if (written == 0)
1202 		return;
1203 	obj = ma[0]->object;
1204 	VM_OBJECT_WLOCK(obj);
1205 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1206 		if (pos < trunc_page(written)) {
1207 			rtvals[i] = VM_PAGER_OK;
1208 			vm_page_undirty(ma[i]);
1209 		} else {
1210 			/* Partially written page. */
1211 			rtvals[i] = VM_PAGER_AGAIN;
1212 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1213 		}
1214 	}
1215 	VM_OBJECT_WUNLOCK(obj);
1216 }
1217 
1218 void
1219 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1220     vm_offset_t end)
1221 {
1222 	struct vnode *vp;
1223 	vm_ooffset_t old_wm;
1224 
1225 	VM_OBJECT_WLOCK(object);
1226 	if (object->type != OBJT_VNODE) {
1227 		VM_OBJECT_WUNLOCK(object);
1228 		return;
1229 	}
1230 	old_wm = object->un_pager.vnp.writemappings;
1231 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1232 	vp = object->handle;
1233 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1234 		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1235 		VOP_ADD_WRITECOUNT(vp, 1);
1236 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1237 		    __func__, vp, vp->v_writecount);
1238 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1239 		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1240 		VOP_ADD_WRITECOUNT(vp, -1);
1241 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1242 		    __func__, vp, vp->v_writecount);
1243 	}
1244 	VM_OBJECT_WUNLOCK(object);
1245 }
1246 
1247 void
1248 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1249     vm_offset_t end)
1250 {
1251 	struct vnode *vp;
1252 	struct mount *mp;
1253 	vm_offset_t inc;
1254 
1255 	VM_OBJECT_WLOCK(object);
1256 
1257 	/*
1258 	 * First, recheck the object type to account for the race when
1259 	 * the vnode is reclaimed.
1260 	 */
1261 	if (object->type != OBJT_VNODE) {
1262 		VM_OBJECT_WUNLOCK(object);
1263 		return;
1264 	}
1265 
1266 	/*
1267 	 * Optimize for the case when writemappings is not going to
1268 	 * zero.
1269 	 */
1270 	inc = end - start;
1271 	if (object->un_pager.vnp.writemappings != inc) {
1272 		object->un_pager.vnp.writemappings -= inc;
1273 		VM_OBJECT_WUNLOCK(object);
1274 		return;
1275 	}
1276 
1277 	vp = object->handle;
1278 	vhold(vp);
1279 	VM_OBJECT_WUNLOCK(object);
1280 	mp = NULL;
1281 	vn_start_write(vp, &mp, V_WAIT);
1282 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1283 
1284 	/*
1285 	 * Decrement the object's writemappings, by swapping the start
1286 	 * and end arguments for vnode_pager_update_writecount().  If
1287 	 * there was not a race with vnode reclaimation, then the
1288 	 * vnode's v_writecount is decremented.
1289 	 */
1290 	vnode_pager_update_writecount(object, end, start);
1291 	VOP_UNLOCK(vp, 0);
1292 	vdrop(vp);
1293 	if (mp != NULL)
1294 		vn_finished_write(mp);
1295 }
1296