1 /* 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 * $FreeBSD$ 42 */ 43 44 /* 45 * Page to/from files (vnodes). 46 */ 47 48 /* 49 * TODO: 50 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 51 * greatly re-simplify the vnode_pager. 52 */ 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/proc.h> 57 #include <sys/vnode.h> 58 #include <sys/mount.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/vmmeter.h> 62 #include <sys/conf.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_object.h> 66 #include <vm/vm_page.h> 67 #include <vm/vm_pager.h> 68 #include <vm/vm_map.h> 69 #include <vm/vnode_pager.h> 70 #include <vm/vm_extern.h> 71 72 static void vnode_pager_init __P((void)); 73 static vm_offset_t vnode_pager_addr __P((struct vnode *vp, vm_ooffset_t address, 74 int *run)); 75 static void vnode_pager_iodone __P((struct buf *bp)); 76 static int vnode_pager_input_smlfs __P((vm_object_t object, vm_page_t m)); 77 static int vnode_pager_input_old __P((vm_object_t object, vm_page_t m)); 78 static void vnode_pager_dealloc __P((vm_object_t)); 79 static int vnode_pager_getpages __P((vm_object_t, vm_page_t *, int, int)); 80 static void vnode_pager_putpages __P((vm_object_t, vm_page_t *, int, boolean_t, int *)); 81 static boolean_t vnode_pager_haspage __P((vm_object_t, vm_pindex_t, int *, int *)); 82 83 struct pagerops vnodepagerops = { 84 vnode_pager_init, 85 vnode_pager_alloc, 86 vnode_pager_dealloc, 87 vnode_pager_getpages, 88 vnode_pager_putpages, 89 vnode_pager_haspage, 90 NULL 91 }; 92 93 int vnode_pbuf_freecnt; 94 95 void 96 vnode_pager_init(void) 97 { 98 99 vnode_pbuf_freecnt = nswbuf / 2 + 1; 100 } 101 102 /* 103 * Allocate (or lookup) pager for a vnode. 104 * Handle is a vnode pointer. 105 */ 106 vm_object_t 107 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 108 vm_ooffset_t offset) 109 { 110 vm_object_t object; 111 struct vnode *vp; 112 113 GIANT_REQUIRED; 114 115 /* 116 * Pageout to vnode, no can do yet. 117 */ 118 if (handle == NULL) 119 return (NULL); 120 121 vp = (struct vnode *) handle; 122 123 /* 124 * Prevent race condition when allocating the object. This 125 * can happen with NFS vnodes since the nfsnode isn't locked. 126 */ 127 while (vp->v_flag & VOLOCK) { 128 vp->v_flag |= VOWANT; 129 tsleep(vp, PVM, "vnpobj", 0); 130 } 131 vp->v_flag |= VOLOCK; 132 133 /* 134 * If the object is being terminated, wait for it to 135 * go away. 136 */ 137 while (((object = vp->v_object) != NULL) && 138 (object->flags & OBJ_DEAD)) { 139 tsleep(object, PVM, "vadead", 0); 140 } 141 142 if (vp->v_usecount == 0) 143 panic("vnode_pager_alloc: no vnode reference"); 144 145 if (object == NULL) { 146 /* 147 * And an object of the appropriate size 148 */ 149 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 150 object->flags = 0; 151 152 object->un_pager.vnp.vnp_size = size; 153 154 object->handle = handle; 155 vp->v_object = object; 156 vp->v_usecount++; 157 } else { 158 object->ref_count++; 159 vp->v_usecount++; 160 } 161 162 vp->v_flag &= ~VOLOCK; 163 if (vp->v_flag & VOWANT) { 164 vp->v_flag &= ~VOWANT; 165 wakeup(vp); 166 } 167 return (object); 168 } 169 170 static void 171 vnode_pager_dealloc(object) 172 vm_object_t object; 173 { 174 struct vnode *vp = object->handle; 175 176 GIANT_REQUIRED; 177 if (vp == NULL) 178 panic("vnode_pager_dealloc: pager already dealloced"); 179 180 vm_object_pip_wait(object, "vnpdea"); 181 182 object->handle = NULL; 183 object->type = OBJT_DEAD; 184 vp->v_object = NULL; 185 vp->v_flag &= ~(VTEXT | VOBJBUF); 186 } 187 188 static boolean_t 189 vnode_pager_haspage(object, pindex, before, after) 190 vm_object_t object; 191 vm_pindex_t pindex; 192 int *before; 193 int *after; 194 { 195 struct vnode *vp = object->handle; 196 daddr_t bn; 197 int err; 198 daddr_t reqblock; 199 int poff; 200 int bsize; 201 int pagesperblock, blocksperpage; 202 203 GIANT_REQUIRED; 204 /* 205 * If no vp or vp is doomed or marked transparent to VM, we do not 206 * have the page. 207 */ 208 if ((vp == NULL) || (vp->v_flag & VDOOMED)) 209 return FALSE; 210 211 /* 212 * If filesystem no longer mounted or offset beyond end of file we do 213 * not have the page. 214 */ 215 if ((vp->v_mount == NULL) || 216 (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)) 217 return FALSE; 218 219 bsize = vp->v_mount->mnt_stat.f_iosize; 220 pagesperblock = bsize / PAGE_SIZE; 221 blocksperpage = 0; 222 if (pagesperblock > 0) { 223 reqblock = pindex / pagesperblock; 224 } else { 225 blocksperpage = (PAGE_SIZE / bsize); 226 reqblock = pindex * blocksperpage; 227 } 228 err = VOP_BMAP(vp, reqblock, (struct vnode **) 0, &bn, 229 after, before); 230 if (err) 231 return TRUE; 232 if ( bn == -1) 233 return FALSE; 234 if (pagesperblock > 0) { 235 poff = pindex - (reqblock * pagesperblock); 236 if (before) { 237 *before *= pagesperblock; 238 *before += poff; 239 } 240 if (after) { 241 int numafter; 242 *after *= pagesperblock; 243 numafter = pagesperblock - (poff + 1); 244 if (IDX_TO_OFF(pindex + numafter) > object->un_pager.vnp.vnp_size) { 245 numafter = OFF_TO_IDX((object->un_pager.vnp.vnp_size - IDX_TO_OFF(pindex))); 246 } 247 *after += numafter; 248 } 249 } else { 250 if (before) { 251 *before /= blocksperpage; 252 } 253 254 if (after) { 255 *after /= blocksperpage; 256 } 257 } 258 return TRUE; 259 } 260 261 /* 262 * Lets the VM system know about a change in size for a file. 263 * We adjust our own internal size and flush any cached pages in 264 * the associated object that are affected by the size change. 265 * 266 * Note: this routine may be invoked as a result of a pager put 267 * operation (possibly at object termination time), so we must be careful. 268 */ 269 void 270 vnode_pager_setsize(vp, nsize) 271 struct vnode *vp; 272 vm_ooffset_t nsize; 273 { 274 vm_pindex_t nobjsize; 275 vm_object_t object = vp->v_object; 276 277 GIANT_REQUIRED; 278 279 if (object == NULL) 280 return; 281 282 /* 283 * Hasn't changed size 284 */ 285 if (nsize == object->un_pager.vnp.vnp_size) 286 return; 287 288 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 289 290 /* 291 * File has shrunk. Toss any cached pages beyond the new EOF. 292 */ 293 if (nsize < object->un_pager.vnp.vnp_size) { 294 vm_freeze_copyopts(object, OFF_TO_IDX(nsize), object->size); 295 if (nobjsize < object->size) { 296 vm_object_page_remove(object, nobjsize, object->size, 297 FALSE); 298 } 299 /* 300 * this gets rid of garbage at the end of a page that is now 301 * only partially backed by the vnode... 302 */ 303 if (nsize & PAGE_MASK) { 304 vm_offset_t kva; 305 vm_page_t m; 306 307 m = vm_page_lookup(object, OFF_TO_IDX(nsize)); 308 if (m) { 309 int base = (int)nsize & PAGE_MASK; 310 int size = PAGE_SIZE - base; 311 312 /* 313 * Clear out partial-page garbage in case 314 * the page has been mapped. 315 */ 316 kva = vm_pager_map_page(m); 317 bzero((caddr_t)kva + base, size); 318 vm_pager_unmap_page(kva); 319 320 /* 321 * Clear out partial-page dirty bits. This 322 * has the side effect of setting the valid 323 * bits, but that is ok. There are a bunch 324 * of places in the VM system where we expected 325 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 326 * case is one of them. If the page is still 327 * partially dirty, make it fully dirty. 328 */ 329 vm_page_set_validclean(m, base, size); 330 if (m->dirty != 0) 331 m->dirty = VM_PAGE_BITS_ALL; 332 } 333 } 334 } 335 object->un_pager.vnp.vnp_size = nsize; 336 object->size = nobjsize; 337 } 338 339 /* 340 * calculate the linear (byte) disk address of specified virtual 341 * file address 342 */ 343 static vm_offset_t 344 vnode_pager_addr(vp, address, run) 345 struct vnode *vp; 346 vm_ooffset_t address; 347 int *run; 348 { 349 int rtaddress; 350 int bsize; 351 daddr_t block; 352 struct vnode *rtvp; 353 int err; 354 daddr_t vblock; 355 int voffset; 356 357 GIANT_REQUIRED; 358 if ((int) address < 0) 359 return -1; 360 361 if (vp->v_mount == NULL) 362 return -1; 363 364 bsize = vp->v_mount->mnt_stat.f_iosize; 365 vblock = address / bsize; 366 voffset = address % bsize; 367 368 err = VOP_BMAP(vp, vblock, &rtvp, &block, run, NULL); 369 370 if (err || (block == -1)) 371 rtaddress = -1; 372 else { 373 rtaddress = block + voffset / DEV_BSIZE; 374 if( run) { 375 *run += 1; 376 *run *= bsize/PAGE_SIZE; 377 *run -= voffset/PAGE_SIZE; 378 } 379 } 380 381 return rtaddress; 382 } 383 384 /* 385 * interrupt routine for I/O completion 386 */ 387 static void 388 vnode_pager_iodone(bp) 389 struct buf *bp; 390 { 391 bp->b_flags |= B_DONE; 392 wakeup(bp); 393 } 394 395 /* 396 * small block file system vnode pager input 397 */ 398 static int 399 vnode_pager_input_smlfs(object, m) 400 vm_object_t object; 401 vm_page_t m; 402 { 403 int i; 404 int s; 405 struct vnode *dp, *vp; 406 struct buf *bp; 407 vm_offset_t kva; 408 int fileaddr; 409 vm_offset_t bsize; 410 int error = 0; 411 412 GIANT_REQUIRED; 413 414 vp = object->handle; 415 if (vp->v_mount == NULL) 416 return VM_PAGER_BAD; 417 418 bsize = vp->v_mount->mnt_stat.f_iosize; 419 420 VOP_BMAP(vp, 0, &dp, 0, NULL, NULL); 421 422 kva = vm_pager_map_page(m); 423 424 for (i = 0; i < PAGE_SIZE / bsize; i++) { 425 vm_ooffset_t address; 426 427 if (vm_page_bits(i * bsize, bsize) & m->valid) 428 continue; 429 430 address = IDX_TO_OFF(m->pindex) + i * bsize; 431 if (address >= object->un_pager.vnp.vnp_size) { 432 fileaddr = -1; 433 } else { 434 fileaddr = vnode_pager_addr(vp, address, NULL); 435 } 436 if (fileaddr != -1) { 437 bp = getpbuf(&vnode_pbuf_freecnt); 438 439 /* build a minimal buffer header */ 440 bp->b_iocmd = BIO_READ; 441 bp->b_iodone = vnode_pager_iodone; 442 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 443 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 444 bp->b_rcred = crhold(curthread->td_proc->p_ucred); 445 bp->b_wcred = crhold(curthread->td_proc->p_ucred); 446 bp->b_data = (caddr_t) kva + i * bsize; 447 bp->b_blkno = fileaddr; 448 pbgetvp(dp, bp); 449 bp->b_bcount = bsize; 450 bp->b_bufsize = bsize; 451 bp->b_runningbufspace = bp->b_bufsize; 452 runningbufspace += bp->b_runningbufspace; 453 454 /* do the input */ 455 BUF_STRATEGY(bp); 456 457 /* we definitely need to be at splvm here */ 458 459 s = splvm(); 460 while ((bp->b_flags & B_DONE) == 0) { 461 tsleep(bp, PVM, "vnsrd", 0); 462 } 463 splx(s); 464 if ((bp->b_ioflags & BIO_ERROR) != 0) 465 error = EIO; 466 467 /* 468 * free the buffer header back to the swap buffer pool 469 */ 470 relpbuf(bp, &vnode_pbuf_freecnt); 471 if (error) 472 break; 473 474 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 475 } else { 476 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 477 bzero((caddr_t) kva + i * bsize, bsize); 478 } 479 } 480 vm_pager_unmap_page(kva); 481 pmap_clear_modify(m); 482 vm_page_flag_clear(m, PG_ZERO); 483 if (error) { 484 return VM_PAGER_ERROR; 485 } 486 return VM_PAGER_OK; 487 488 } 489 490 491 /* 492 * old style vnode pager output routine 493 */ 494 static int 495 vnode_pager_input_old(object, m) 496 vm_object_t object; 497 vm_page_t m; 498 { 499 struct uio auio; 500 struct iovec aiov; 501 int error; 502 int size; 503 vm_offset_t kva; 504 struct vnode *vp; 505 506 GIANT_REQUIRED; 507 error = 0; 508 509 /* 510 * Return failure if beyond current EOF 511 */ 512 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 513 return VM_PAGER_BAD; 514 } else { 515 size = PAGE_SIZE; 516 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 517 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 518 519 /* 520 * Allocate a kernel virtual address and initialize so that 521 * we can use VOP_READ/WRITE routines. 522 */ 523 kva = vm_pager_map_page(m); 524 525 vp = object->handle; 526 aiov.iov_base = (caddr_t) kva; 527 aiov.iov_len = size; 528 auio.uio_iov = &aiov; 529 auio.uio_iovcnt = 1; 530 auio.uio_offset = IDX_TO_OFF(m->pindex); 531 auio.uio_segflg = UIO_SYSSPACE; 532 auio.uio_rw = UIO_READ; 533 auio.uio_resid = size; 534 auio.uio_td = curthread; 535 536 error = VOP_READ(vp, &auio, 0, curthread->td_proc->p_ucred); 537 if (!error) { 538 int count = size - auio.uio_resid; 539 540 if (count == 0) 541 error = EINVAL; 542 else if (count != PAGE_SIZE) 543 bzero((caddr_t) kva + count, PAGE_SIZE - count); 544 } 545 vm_pager_unmap_page(kva); 546 } 547 pmap_clear_modify(m); 548 vm_page_undirty(m); 549 vm_page_flag_clear(m, PG_ZERO); 550 if (!error) 551 m->valid = VM_PAGE_BITS_ALL; 552 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 553 } 554 555 /* 556 * generic vnode pager input routine 557 */ 558 559 /* 560 * Local media VFS's that do not implement their own VOP_GETPAGES 561 * should have their VOP_GETPAGES should call to 562 * vnode_pager_generic_getpages() to implement the previous behaviour. 563 * 564 * All other FS's should use the bypass to get to the local media 565 * backing vp's VOP_GETPAGES. 566 */ 567 static int 568 vnode_pager_getpages(object, m, count, reqpage) 569 vm_object_t object; 570 vm_page_t *m; 571 int count; 572 int reqpage; 573 { 574 int rtval; 575 struct vnode *vp; 576 int bytes = count * PAGE_SIZE; 577 578 GIANT_REQUIRED; 579 vp = object->handle; 580 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 581 KASSERT(rtval != EOPNOTSUPP, 582 ("vnode_pager: FS getpages not implemented\n")); 583 return rtval; 584 } 585 586 587 /* 588 * This is now called from local media FS's to operate against their 589 * own vnodes if they fail to implement VOP_GETPAGES. 590 */ 591 int 592 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 593 struct vnode *vp; 594 vm_page_t *m; 595 int bytecount; 596 int reqpage; 597 { 598 vm_object_t object; 599 vm_offset_t kva; 600 off_t foff, tfoff, nextoff; 601 int i, size, bsize, first, firstaddr; 602 struct vnode *dp; 603 int runpg; 604 int runend; 605 struct buf *bp; 606 int s; 607 int count; 608 int error = 0; 609 610 GIANT_REQUIRED; 611 object = vp->v_object; 612 count = bytecount / PAGE_SIZE; 613 614 if (vp->v_mount == NULL) 615 return VM_PAGER_BAD; 616 617 bsize = vp->v_mount->mnt_stat.f_iosize; 618 619 /* get the UNDERLYING device for the file with VOP_BMAP() */ 620 621 /* 622 * originally, we did not check for an error return value -- assuming 623 * an fs always has a bmap entry point -- that assumption is wrong!!! 624 */ 625 foff = IDX_TO_OFF(m[reqpage]->pindex); 626 627 /* 628 * if we can't bmap, use old VOP code 629 */ 630 if (VOP_BMAP(vp, 0, &dp, 0, NULL, NULL)) { 631 for (i = 0; i < count; i++) { 632 if (i != reqpage) { 633 vm_page_free(m[i]); 634 } 635 } 636 cnt.v_vnodein++; 637 cnt.v_vnodepgsin++; 638 return vnode_pager_input_old(object, m[reqpage]); 639 640 /* 641 * if the blocksize is smaller than a page size, then use 642 * special small filesystem code. NFS sometimes has a small 643 * blocksize, but it can handle large reads itself. 644 */ 645 } else if ((PAGE_SIZE / bsize) > 1 && 646 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 647 for (i = 0; i < count; i++) { 648 if (i != reqpage) { 649 vm_page_free(m[i]); 650 } 651 } 652 cnt.v_vnodein++; 653 cnt.v_vnodepgsin++; 654 return vnode_pager_input_smlfs(object, m[reqpage]); 655 } 656 657 /* 658 * If we have a completely valid page available to us, we can 659 * clean up and return. Otherwise we have to re-read the 660 * media. 661 */ 662 663 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 664 for (i = 0; i < count; i++) { 665 if (i != reqpage) 666 vm_page_free(m[i]); 667 } 668 return VM_PAGER_OK; 669 } 670 m[reqpage]->valid = 0; 671 672 /* 673 * here on direct device I/O 674 */ 675 676 firstaddr = -1; 677 /* 678 * calculate the run that includes the required page 679 */ 680 for(first = 0, i = 0; i < count; i = runend) { 681 firstaddr = vnode_pager_addr(vp, 682 IDX_TO_OFF(m[i]->pindex), &runpg); 683 if (firstaddr == -1) { 684 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 685 /* XXX no %qd in kernel. */ 686 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%lx%08lx, vnp_size: 0x%lx%08lx", 687 firstaddr, (u_long)(foff >> 32), 688 (u_long)(u_int32_t)foff, 689 (u_long)(u_int32_t) 690 (object->un_pager.vnp.vnp_size >> 32), 691 (u_long)(u_int32_t) 692 object->un_pager.vnp.vnp_size); 693 } 694 vm_page_free(m[i]); 695 runend = i + 1; 696 first = runend; 697 continue; 698 } 699 runend = i + runpg; 700 if (runend <= reqpage) { 701 int j; 702 for (j = i; j < runend; j++) { 703 vm_page_free(m[j]); 704 } 705 } else { 706 if (runpg < (count - first)) { 707 for (i = first + runpg; i < count; i++) 708 vm_page_free(m[i]); 709 count = first + runpg; 710 } 711 break; 712 } 713 first = runend; 714 } 715 716 /* 717 * the first and last page have been calculated now, move input pages 718 * to be zero based... 719 */ 720 if (first != 0) { 721 for (i = first; i < count; i++) { 722 m[i - first] = m[i]; 723 } 724 count -= first; 725 reqpage -= first; 726 } 727 728 /* 729 * calculate the file virtual address for the transfer 730 */ 731 foff = IDX_TO_OFF(m[0]->pindex); 732 733 /* 734 * calculate the size of the transfer 735 */ 736 size = count * PAGE_SIZE; 737 if ((foff + size) > object->un_pager.vnp.vnp_size) 738 size = object->un_pager.vnp.vnp_size - foff; 739 740 /* 741 * round up physical size for real devices. 742 */ 743 if (dp->v_type == VBLK || dp->v_type == VCHR) { 744 int secmask = dp->v_rdev->si_bsize_phys - 1; 745 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1)); 746 size = (size + secmask) & ~secmask; 747 } 748 749 bp = getpbuf(&vnode_pbuf_freecnt); 750 kva = (vm_offset_t) bp->b_data; 751 752 /* 753 * and map the pages to be read into the kva 754 */ 755 pmap_qenter(kva, m, count); 756 757 /* build a minimal buffer header */ 758 bp->b_iocmd = BIO_READ; 759 bp->b_iodone = vnode_pager_iodone; 760 /* B_PHYS is not set, but it is nice to fill this in */ 761 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 762 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 763 bp->b_rcred = crhold(curthread->td_proc->p_ucred); 764 bp->b_wcred = crhold(curthread->td_proc->p_ucred); 765 bp->b_blkno = firstaddr; 766 pbgetvp(dp, bp); 767 bp->b_bcount = size; 768 bp->b_bufsize = size; 769 bp->b_runningbufspace = bp->b_bufsize; 770 runningbufspace += bp->b_runningbufspace; 771 772 cnt.v_vnodein++; 773 cnt.v_vnodepgsin += count; 774 775 /* do the input */ 776 BUF_STRATEGY(bp); 777 778 s = splvm(); 779 /* we definitely need to be at splvm here */ 780 781 while ((bp->b_flags & B_DONE) == 0) { 782 tsleep(bp, PVM, "vnread", 0); 783 } 784 splx(s); 785 if ((bp->b_ioflags & BIO_ERROR) != 0) 786 error = EIO; 787 788 if (!error) { 789 if (size != count * PAGE_SIZE) 790 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 791 } 792 pmap_qremove(kva, count); 793 794 /* 795 * free the buffer header back to the swap buffer pool 796 */ 797 relpbuf(bp, &vnode_pbuf_freecnt); 798 799 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 800 vm_page_t mt; 801 802 nextoff = tfoff + PAGE_SIZE; 803 mt = m[i]; 804 805 if (nextoff <= object->un_pager.vnp.vnp_size) { 806 /* 807 * Read filled up entire page. 808 */ 809 mt->valid = VM_PAGE_BITS_ALL; 810 vm_page_undirty(mt); /* should be an assert? XXX */ 811 pmap_clear_modify(mt); 812 } else { 813 /* 814 * Read did not fill up entire page. Since this 815 * is getpages, the page may be mapped, so we have 816 * to zero the invalid portions of the page even 817 * though we aren't setting them valid. 818 * 819 * Currently we do not set the entire page valid, 820 * we just try to clear the piece that we couldn't 821 * read. 822 */ 823 vm_page_set_validclean(mt, 0, 824 object->un_pager.vnp.vnp_size - tfoff); 825 /* handled by vm_fault now */ 826 /* vm_page_zero_invalid(mt, FALSE); */ 827 } 828 829 vm_page_flag_clear(mt, PG_ZERO); 830 if (i != reqpage) { 831 832 /* 833 * whether or not to leave the page activated is up in 834 * the air, but we should put the page on a page queue 835 * somewhere. (it already is in the object). Result: 836 * It appears that empirical results show that 837 * deactivating pages is best. 838 */ 839 840 /* 841 * just in case someone was asking for this page we 842 * now tell them that it is ok to use 843 */ 844 if (!error) { 845 if (mt->flags & PG_WANTED) 846 vm_page_activate(mt); 847 else 848 vm_page_deactivate(mt); 849 vm_page_wakeup(mt); 850 } else { 851 vm_page_free(mt); 852 } 853 } 854 } 855 if (error) { 856 printf("vnode_pager_getpages: I/O read error\n"); 857 } 858 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 859 } 860 861 /* 862 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 863 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 864 * vnode_pager_generic_putpages() to implement the previous behaviour. 865 * 866 * All other FS's should use the bypass to get to the local media 867 * backing vp's VOP_PUTPAGES. 868 */ 869 static void 870 vnode_pager_putpages(object, m, count, sync, rtvals) 871 vm_object_t object; 872 vm_page_t *m; 873 int count; 874 boolean_t sync; 875 int *rtvals; 876 { 877 int rtval; 878 struct vnode *vp; 879 struct mount *mp; 880 int bytes = count * PAGE_SIZE; 881 882 GIANT_REQUIRED; 883 /* 884 * Force synchronous operation if we are extremely low on memory 885 * to prevent a low-memory deadlock. VOP operations often need to 886 * allocate more memory to initiate the I/O ( i.e. do a BMAP 887 * operation ). The swapper handles the case by limiting the amount 888 * of asynchronous I/O, but that sort of solution doesn't scale well 889 * for the vnode pager without a lot of work. 890 * 891 * Also, the backing vnode's iodone routine may not wake the pageout 892 * daemon up. This should be probably be addressed XXX. 893 */ 894 895 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 896 sync |= OBJPC_SYNC; 897 898 /* 899 * Call device-specific putpages function 900 */ 901 902 vp = object->handle; 903 if (vp->v_type != VREG) 904 mp = NULL; 905 (void)vn_start_write(vp, &mp, V_WAIT); 906 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 907 KASSERT(rtval != EOPNOTSUPP, 908 ("vnode_pager: stale FS putpages\n")); 909 vn_finished_write(mp); 910 } 911 912 913 /* 914 * This is now called from local media FS's to operate against their 915 * own vnodes if they fail to implement VOP_PUTPAGES. 916 * 917 * This is typically called indirectly via the pageout daemon and 918 * clustering has already typically occured, so in general we ask the 919 * underlying filesystem to write the data out asynchronously rather 920 * then delayed. 921 */ 922 int 923 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 924 struct vnode *vp; 925 vm_page_t *m; 926 int bytecount; 927 int flags; 928 int *rtvals; 929 { 930 int i; 931 vm_object_t object; 932 int count; 933 934 int maxsize, ncount; 935 vm_ooffset_t poffset; 936 struct uio auio; 937 struct iovec aiov; 938 int error; 939 int ioflags; 940 941 GIANT_REQUIRED; 942 object = vp->v_object; 943 count = bytecount / PAGE_SIZE; 944 945 for (i = 0; i < count; i++) 946 rtvals[i] = VM_PAGER_AGAIN; 947 948 if ((int) m[0]->pindex < 0) { 949 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n", 950 (long)m[0]->pindex, m[0]->dirty); 951 rtvals[0] = VM_PAGER_BAD; 952 return VM_PAGER_BAD; 953 } 954 955 maxsize = count * PAGE_SIZE; 956 ncount = count; 957 958 poffset = IDX_TO_OFF(m[0]->pindex); 959 960 /* 961 * If the page-aligned write is larger then the actual file we 962 * have to invalidate pages occuring beyond the file EOF. However, 963 * there is an edge case where a file may not be page-aligned where 964 * the last page is partially invalid. In this case the filesystem 965 * may not properly clear the dirty bits for the entire page (which 966 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 967 * With the page locked we are free to fix-up the dirty bits here. 968 */ 969 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 970 if (object->un_pager.vnp.vnp_size > poffset) { 971 int pgoff; 972 973 maxsize = object->un_pager.vnp.vnp_size - poffset; 974 ncount = btoc(maxsize); 975 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 976 vm_page_clear_dirty(m[ncount - 1], pgoff, 977 PAGE_SIZE - pgoff); 978 } 979 } else { 980 maxsize = 0; 981 ncount = 0; 982 } 983 if (ncount < count) { 984 for (i = ncount; i < count; i++) { 985 rtvals[i] = VM_PAGER_BAD; 986 } 987 } 988 } 989 990 /* 991 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 992 * rather then a bdwrite() to prevent paging I/O from saturating 993 * the buffer cache. 994 */ 995 ioflags = IO_VMIO; 996 ioflags |= (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) ? IO_SYNC: IO_ASYNC; 997 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 998 999 aiov.iov_base = (caddr_t) 0; 1000 aiov.iov_len = maxsize; 1001 auio.uio_iov = &aiov; 1002 auio.uio_iovcnt = 1; 1003 auio.uio_offset = poffset; 1004 auio.uio_segflg = UIO_NOCOPY; 1005 auio.uio_rw = UIO_WRITE; 1006 auio.uio_resid = maxsize; 1007 auio.uio_td = (struct thread *) 0; 1008 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_proc->p_ucred); 1009 cnt.v_vnodeout++; 1010 cnt.v_vnodepgsout += ncount; 1011 1012 if (error) { 1013 printf("vnode_pager_putpages: I/O error %d\n", error); 1014 } 1015 if (auio.uio_resid) { 1016 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1017 auio.uio_resid, (u_long)m[0]->pindex); 1018 } 1019 for (i = 0; i < ncount; i++) { 1020 rtvals[i] = VM_PAGER_OK; 1021 } 1022 return rtvals[0]; 1023 } 1024 1025 struct vnode * 1026 vnode_pager_lock(object) 1027 vm_object_t object; 1028 { 1029 struct thread *td = curthread; /* XXX */ 1030 1031 GIANT_REQUIRED; 1032 1033 for (; object != NULL; object = object->backing_object) { 1034 if (object->type != OBJT_VNODE) 1035 continue; 1036 if (object->flags & OBJ_DEAD) { 1037 return NULL; 1038 } 1039 1040 /* XXX; If object->handle can change, we need to cache it. */ 1041 while (vget(object->handle, 1042 LK_NOPAUSE | LK_SHARED | LK_RETRY | LK_CANRECURSE, td)){ 1043 if ((object->flags & OBJ_DEAD) || (object->type != OBJT_VNODE)) 1044 return NULL; 1045 printf("vnode_pager_lock: retrying\n"); 1046 } 1047 return object->handle; 1048 } 1049 return NULL; 1050 } 1051