xref: /freebsd/sys/vm/vnode_pager.c (revision 8df8b2d3e51d1b816201d8a1fe8bc29fe192e562)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  * Copyright (c) 1993, 1994 John S. Dyson
8  * Copyright (c) 1995, David Greenman
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
43  */
44 
45 /*
46  * Page to/from files (vnodes).
47  */
48 
49 /*
50  * TODO:
51  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52  *	greatly re-simplify the vnode_pager.
53  */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include "opt_vm.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/systm.h>
63 #include <sys/sysctl.h>
64 #include <sys/proc.h>
65 #include <sys/vnode.h>
66 #include <sys/mount.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/vmmeter.h>
70 #include <sys/limits.h>
71 #include <sys/conf.h>
72 #include <sys/rwlock.h>
73 #include <sys/sf_buf.h>
74 #include <sys/domainset.h>
75 
76 #include <machine/atomic.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_map.h>
84 #include <vm/vnode_pager.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
89     daddr_t *rtaddress, int *run);
90 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
91 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
92 static void vnode_pager_dealloc(vm_object_t);
93 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
94 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
95     int *, vop_getpages_iodone_t, void *);
96 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
97 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
98 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
99     vm_ooffset_t, struct ucred *cred);
100 static int vnode_pager_generic_getpages_done(struct buf *);
101 static void vnode_pager_generic_getpages_done_async(struct buf *);
102 
103 struct pagerops vnodepagerops = {
104 	.pgo_alloc =	vnode_pager_alloc,
105 	.pgo_dealloc =	vnode_pager_dealloc,
106 	.pgo_getpages =	vnode_pager_getpages,
107 	.pgo_getpages_async = vnode_pager_getpages_async,
108 	.pgo_putpages =	vnode_pager_putpages,
109 	.pgo_haspage =	vnode_pager_haspage,
110 };
111 
112 static struct domainset *vnode_domainset = NULL;
113 
114 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_RW,
115     &vnode_domainset, 0, sysctl_handle_domainset, "A",
116     "Default vnode NUMA policy");
117 
118 static int nvnpbufs;
119 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
120     &nvnpbufs, 0, "number of physical buffers allocated for vnode pager");
121 
122 static uma_zone_t vnode_pbuf_zone;
123 
124 static void
125 vnode_pager_init(void *dummy)
126 {
127 
128 #ifdef __LP64__
129 	nvnpbufs = nswbuf * 2;
130 #else
131 	nvnpbufs = nswbuf / 2;
132 #endif
133 	TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs);
134 	vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs);
135 }
136 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL);
137 
138 /* Create the VM system backing object for this vnode */
139 int
140 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
141 {
142 	vm_object_t object;
143 	vm_ooffset_t size = isize;
144 	struct vattr va;
145 
146 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
147 		return (0);
148 
149 	while ((object = vp->v_object) != NULL) {
150 		VM_OBJECT_WLOCK(object);
151 		if (!(object->flags & OBJ_DEAD)) {
152 			VM_OBJECT_WUNLOCK(object);
153 			return (0);
154 		}
155 		VOP_UNLOCK(vp, 0);
156 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
157 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
158 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
159 	}
160 
161 	if (size == 0) {
162 		if (vn_isdisk(vp, NULL)) {
163 			size = IDX_TO_OFF(INT_MAX);
164 		} else {
165 			if (VOP_GETATTR(vp, &va, td->td_ucred))
166 				return (0);
167 			size = va.va_size;
168 		}
169 	}
170 
171 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
172 	/*
173 	 * Dereference the reference we just created.  This assumes
174 	 * that the object is associated with the vp.
175 	 */
176 	VM_OBJECT_WLOCK(object);
177 	object->ref_count--;
178 	VM_OBJECT_WUNLOCK(object);
179 	vrele(vp);
180 
181 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
182 
183 	return (0);
184 }
185 
186 void
187 vnode_destroy_vobject(struct vnode *vp)
188 {
189 	struct vm_object *obj;
190 
191 	obj = vp->v_object;
192 	if (obj == NULL)
193 		return;
194 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
195 	VM_OBJECT_WLOCK(obj);
196 	umtx_shm_object_terminated(obj);
197 	if (obj->ref_count == 0) {
198 		/*
199 		 * don't double-terminate the object
200 		 */
201 		if ((obj->flags & OBJ_DEAD) == 0) {
202 			vm_object_terminate(obj);
203 		} else {
204 			/*
205 			 * Waiters were already handled during object
206 			 * termination.  The exclusive vnode lock hopefully
207 			 * prevented new waiters from referencing the dying
208 			 * object.
209 			 */
210 			KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0,
211 			    ("OBJ_DISCONNECTWNT set obj %p flags %x",
212 			    obj, obj->flags));
213 			vp->v_object = NULL;
214 			VM_OBJECT_WUNLOCK(obj);
215 		}
216 	} else {
217 		/*
218 		 * Woe to the process that tries to page now :-).
219 		 */
220 		vm_pager_deallocate(obj);
221 		VM_OBJECT_WUNLOCK(obj);
222 	}
223 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
224 }
225 
226 
227 /*
228  * Allocate (or lookup) pager for a vnode.
229  * Handle is a vnode pointer.
230  *
231  * MPSAFE
232  */
233 vm_object_t
234 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
235     vm_ooffset_t offset, struct ucred *cred)
236 {
237 	vm_object_t object;
238 	struct vnode *vp;
239 
240 	/*
241 	 * Pageout to vnode, no can do yet.
242 	 */
243 	if (handle == NULL)
244 		return (NULL);
245 
246 	vp = (struct vnode *) handle;
247 
248 	/*
249 	 * If the object is being terminated, wait for it to
250 	 * go away.
251 	 */
252 retry:
253 	while ((object = vp->v_object) != NULL) {
254 		VM_OBJECT_WLOCK(object);
255 		if ((object->flags & OBJ_DEAD) == 0)
256 			break;
257 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
258 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
259 	}
260 
261 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
262 
263 	if (object == NULL) {
264 		/*
265 		 * Add an object of the appropriate size
266 		 */
267 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
268 
269 		object->un_pager.vnp.vnp_size = size;
270 		object->un_pager.vnp.writemappings = 0;
271 		object->domain.dr_policy = vnode_domainset;
272 
273 		object->handle = handle;
274 		VI_LOCK(vp);
275 		if (vp->v_object != NULL) {
276 			/*
277 			 * Object has been created while we were sleeping
278 			 */
279 			VI_UNLOCK(vp);
280 			VM_OBJECT_WLOCK(object);
281 			KASSERT(object->ref_count == 1,
282 			    ("leaked ref %p %d", object, object->ref_count));
283 			object->type = OBJT_DEAD;
284 			object->ref_count = 0;
285 			VM_OBJECT_WUNLOCK(object);
286 			vm_object_destroy(object);
287 			goto retry;
288 		}
289 		vp->v_object = object;
290 		VI_UNLOCK(vp);
291 	} else {
292 		object->ref_count++;
293 #if VM_NRESERVLEVEL > 0
294 		vm_object_color(object, 0);
295 #endif
296 		VM_OBJECT_WUNLOCK(object);
297 	}
298 	vrefact(vp);
299 	return (object);
300 }
301 
302 /*
303  *	The object must be locked.
304  */
305 static void
306 vnode_pager_dealloc(vm_object_t object)
307 {
308 	struct vnode *vp;
309 	int refs;
310 
311 	vp = object->handle;
312 	if (vp == NULL)
313 		panic("vnode_pager_dealloc: pager already dealloced");
314 
315 	VM_OBJECT_ASSERT_WLOCKED(object);
316 	vm_object_pip_wait(object, "vnpdea");
317 	refs = object->ref_count;
318 
319 	object->handle = NULL;
320 	object->type = OBJT_DEAD;
321 	if (object->flags & OBJ_DISCONNECTWNT) {
322 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
323 		wakeup(object);
324 	}
325 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
326 	if (object->un_pager.vnp.writemappings > 0) {
327 		object->un_pager.vnp.writemappings = 0;
328 		VOP_ADD_WRITECOUNT(vp, -1);
329 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
330 		    __func__, vp, vp->v_writecount);
331 	}
332 	vp->v_object = NULL;
333 	VOP_UNSET_TEXT(vp);
334 	VM_OBJECT_WUNLOCK(object);
335 	while (refs-- > 0)
336 		vunref(vp);
337 	VM_OBJECT_WLOCK(object);
338 }
339 
340 static boolean_t
341 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
342     int *after)
343 {
344 	struct vnode *vp = object->handle;
345 	daddr_t bn;
346 	int err;
347 	daddr_t reqblock;
348 	int poff;
349 	int bsize;
350 	int pagesperblock, blocksperpage;
351 
352 	VM_OBJECT_ASSERT_WLOCKED(object);
353 	/*
354 	 * If no vp or vp is doomed or marked transparent to VM, we do not
355 	 * have the page.
356 	 */
357 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
358 		return FALSE;
359 	/*
360 	 * If the offset is beyond end of file we do
361 	 * not have the page.
362 	 */
363 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
364 		return FALSE;
365 
366 	bsize = vp->v_mount->mnt_stat.f_iosize;
367 	pagesperblock = bsize / PAGE_SIZE;
368 	blocksperpage = 0;
369 	if (pagesperblock > 0) {
370 		reqblock = pindex / pagesperblock;
371 	} else {
372 		blocksperpage = (PAGE_SIZE / bsize);
373 		reqblock = pindex * blocksperpage;
374 	}
375 	VM_OBJECT_WUNLOCK(object);
376 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
377 	VM_OBJECT_WLOCK(object);
378 	if (err)
379 		return TRUE;
380 	if (bn == -1)
381 		return FALSE;
382 	if (pagesperblock > 0) {
383 		poff = pindex - (reqblock * pagesperblock);
384 		if (before) {
385 			*before *= pagesperblock;
386 			*before += poff;
387 		}
388 		if (after) {
389 			/*
390 			 * The BMAP vop can report a partial block in the
391 			 * 'after', but must not report blocks after EOF.
392 			 * Assert the latter, and truncate 'after' in case
393 			 * of the former.
394 			 */
395 			KASSERT((reqblock + *after) * pagesperblock <
396 			    roundup2(object->size, pagesperblock),
397 			    ("%s: reqblock %jd after %d size %ju", __func__,
398 			    (intmax_t )reqblock, *after,
399 			    (uintmax_t )object->size));
400 			*after *= pagesperblock;
401 			*after += pagesperblock - (poff + 1);
402 			if (pindex + *after >= object->size)
403 				*after = object->size - 1 - pindex;
404 		}
405 	} else {
406 		if (before) {
407 			*before /= blocksperpage;
408 		}
409 
410 		if (after) {
411 			*after /= blocksperpage;
412 		}
413 	}
414 	return TRUE;
415 }
416 
417 /*
418  * Lets the VM system know about a change in size for a file.
419  * We adjust our own internal size and flush any cached pages in
420  * the associated object that are affected by the size change.
421  *
422  * Note: this routine may be invoked as a result of a pager put
423  * operation (possibly at object termination time), so we must be careful.
424  */
425 void
426 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
427 {
428 	vm_object_t object;
429 	vm_page_t m;
430 	vm_pindex_t nobjsize;
431 
432 	if ((object = vp->v_object) == NULL)
433 		return;
434 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
435 	VM_OBJECT_WLOCK(object);
436 	if (object->type == OBJT_DEAD) {
437 		VM_OBJECT_WUNLOCK(object);
438 		return;
439 	}
440 	KASSERT(object->type == OBJT_VNODE,
441 	    ("not vnode-backed object %p", object));
442 	if (nsize == object->un_pager.vnp.vnp_size) {
443 		/*
444 		 * Hasn't changed size
445 		 */
446 		VM_OBJECT_WUNLOCK(object);
447 		return;
448 	}
449 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
450 	if (nsize < object->un_pager.vnp.vnp_size) {
451 		/*
452 		 * File has shrunk. Toss any cached pages beyond the new EOF.
453 		 */
454 		if (nobjsize < object->size)
455 			vm_object_page_remove(object, nobjsize, object->size,
456 			    0);
457 		/*
458 		 * this gets rid of garbage at the end of a page that is now
459 		 * only partially backed by the vnode.
460 		 *
461 		 * XXX for some reason (I don't know yet), if we take a
462 		 * completely invalid page and mark it partially valid
463 		 * it can screw up NFS reads, so we don't allow the case.
464 		 */
465 		if ((nsize & PAGE_MASK) &&
466 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
467 		    m->valid != 0) {
468 			int base = (int)nsize & PAGE_MASK;
469 			int size = PAGE_SIZE - base;
470 
471 			/*
472 			 * Clear out partial-page garbage in case
473 			 * the page has been mapped.
474 			 */
475 			pmap_zero_page_area(m, base, size);
476 
477 			/*
478 			 * Update the valid bits to reflect the blocks that
479 			 * have been zeroed.  Some of these valid bits may
480 			 * have already been set.
481 			 */
482 			vm_page_set_valid_range(m, base, size);
483 
484 			/*
485 			 * Round "base" to the next block boundary so that the
486 			 * dirty bit for a partially zeroed block is not
487 			 * cleared.
488 			 */
489 			base = roundup2(base, DEV_BSIZE);
490 
491 			/*
492 			 * Clear out partial-page dirty bits.
493 			 *
494 			 * note that we do not clear out the valid
495 			 * bits.  This would prevent bogus_page
496 			 * replacement from working properly.
497 			 */
498 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
499 		}
500 	}
501 	object->un_pager.vnp.vnp_size = nsize;
502 	object->size = nobjsize;
503 	VM_OBJECT_WUNLOCK(object);
504 }
505 
506 /*
507  * calculate the linear (byte) disk address of specified virtual
508  * file address
509  */
510 static int
511 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
512     int *run)
513 {
514 	int bsize;
515 	int err;
516 	daddr_t vblock;
517 	daddr_t voffset;
518 
519 	if (address < 0)
520 		return -1;
521 
522 	if (vp->v_iflag & VI_DOOMED)
523 		return -1;
524 
525 	bsize = vp->v_mount->mnt_stat.f_iosize;
526 	vblock = address / bsize;
527 	voffset = address % bsize;
528 
529 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
530 	if (err == 0) {
531 		if (*rtaddress != -1)
532 			*rtaddress += voffset / DEV_BSIZE;
533 		if (run) {
534 			*run += 1;
535 			*run *= bsize/PAGE_SIZE;
536 			*run -= voffset/PAGE_SIZE;
537 		}
538 	}
539 
540 	return (err);
541 }
542 
543 /*
544  * small block filesystem vnode pager input
545  */
546 static int
547 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
548 {
549 	struct vnode *vp;
550 	struct bufobj *bo;
551 	struct buf *bp;
552 	struct sf_buf *sf;
553 	daddr_t fileaddr;
554 	vm_offset_t bsize;
555 	vm_page_bits_t bits;
556 	int error, i;
557 
558 	error = 0;
559 	vp = object->handle;
560 	if (vp->v_iflag & VI_DOOMED)
561 		return VM_PAGER_BAD;
562 
563 	bsize = vp->v_mount->mnt_stat.f_iosize;
564 
565 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
566 
567 	sf = sf_buf_alloc(m, 0);
568 
569 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
570 		vm_ooffset_t address;
571 
572 		bits = vm_page_bits(i * bsize, bsize);
573 		if (m->valid & bits)
574 			continue;
575 
576 		address = IDX_TO_OFF(m->pindex) + i * bsize;
577 		if (address >= object->un_pager.vnp.vnp_size) {
578 			fileaddr = -1;
579 		} else {
580 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
581 			if (error)
582 				break;
583 		}
584 		if (fileaddr != -1) {
585 			bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
586 
587 			/* build a minimal buffer header */
588 			bp->b_iocmd = BIO_READ;
589 			bp->b_iodone = bdone;
590 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
591 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
592 			bp->b_rcred = crhold(curthread->td_ucred);
593 			bp->b_wcred = crhold(curthread->td_ucred);
594 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
595 			bp->b_blkno = fileaddr;
596 			pbgetbo(bo, bp);
597 			bp->b_vp = vp;
598 			bp->b_bcount = bsize;
599 			bp->b_bufsize = bsize;
600 			bp->b_runningbufspace = bp->b_bufsize;
601 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
602 
603 			/* do the input */
604 			bp->b_iooffset = dbtob(bp->b_blkno);
605 			bstrategy(bp);
606 
607 			bwait(bp, PVM, "vnsrd");
608 
609 			if ((bp->b_ioflags & BIO_ERROR) != 0)
610 				error = EIO;
611 
612 			/*
613 			 * free the buffer header back to the swap buffer pool
614 			 */
615 			bp->b_vp = NULL;
616 			pbrelbo(bp);
617 			uma_zfree(vnode_pbuf_zone, bp);
618 			if (error)
619 				break;
620 		} else
621 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
622 		KASSERT((m->dirty & bits) == 0,
623 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
624 		VM_OBJECT_WLOCK(object);
625 		m->valid |= bits;
626 		VM_OBJECT_WUNLOCK(object);
627 	}
628 	sf_buf_free(sf);
629 	if (error) {
630 		return VM_PAGER_ERROR;
631 	}
632 	return VM_PAGER_OK;
633 }
634 
635 /*
636  * old style vnode pager input routine
637  */
638 static int
639 vnode_pager_input_old(vm_object_t object, vm_page_t m)
640 {
641 	struct uio auio;
642 	struct iovec aiov;
643 	int error;
644 	int size;
645 	struct sf_buf *sf;
646 	struct vnode *vp;
647 
648 	VM_OBJECT_ASSERT_WLOCKED(object);
649 	error = 0;
650 
651 	/*
652 	 * Return failure if beyond current EOF
653 	 */
654 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
655 		return VM_PAGER_BAD;
656 	} else {
657 		size = PAGE_SIZE;
658 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
659 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
660 		vp = object->handle;
661 		VM_OBJECT_WUNLOCK(object);
662 
663 		/*
664 		 * Allocate a kernel virtual address and initialize so that
665 		 * we can use VOP_READ/WRITE routines.
666 		 */
667 		sf = sf_buf_alloc(m, 0);
668 
669 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
670 		aiov.iov_len = size;
671 		auio.uio_iov = &aiov;
672 		auio.uio_iovcnt = 1;
673 		auio.uio_offset = IDX_TO_OFF(m->pindex);
674 		auio.uio_segflg = UIO_SYSSPACE;
675 		auio.uio_rw = UIO_READ;
676 		auio.uio_resid = size;
677 		auio.uio_td = curthread;
678 
679 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
680 		if (!error) {
681 			int count = size - auio.uio_resid;
682 
683 			if (count == 0)
684 				error = EINVAL;
685 			else if (count != PAGE_SIZE)
686 				bzero((caddr_t)sf_buf_kva(sf) + count,
687 				    PAGE_SIZE - count);
688 		}
689 		sf_buf_free(sf);
690 
691 		VM_OBJECT_WLOCK(object);
692 	}
693 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
694 	if (!error)
695 		m->valid = VM_PAGE_BITS_ALL;
696 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
697 }
698 
699 /*
700  * generic vnode pager input routine
701  */
702 
703 /*
704  * Local media VFS's that do not implement their own VOP_GETPAGES
705  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
706  * to implement the previous behaviour.
707  *
708  * All other FS's should use the bypass to get to the local media
709  * backing vp's VOP_GETPAGES.
710  */
711 static int
712 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
713     int *rahead)
714 {
715 	struct vnode *vp;
716 	int rtval;
717 
718 	vp = object->handle;
719 	VM_OBJECT_WUNLOCK(object);
720 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
721 	KASSERT(rtval != EOPNOTSUPP,
722 	    ("vnode_pager: FS getpages not implemented\n"));
723 	VM_OBJECT_WLOCK(object);
724 	return rtval;
725 }
726 
727 static int
728 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
729     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
730 {
731 	struct vnode *vp;
732 	int rtval;
733 
734 	vp = object->handle;
735 	VM_OBJECT_WUNLOCK(object);
736 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
737 	KASSERT(rtval != EOPNOTSUPP,
738 	    ("vnode_pager: FS getpages_async not implemented\n"));
739 	VM_OBJECT_WLOCK(object);
740 	return (rtval);
741 }
742 
743 /*
744  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
745  * local filesystems, where partially valid pages can only occur at
746  * the end of file.
747  */
748 int
749 vnode_pager_local_getpages(struct vop_getpages_args *ap)
750 {
751 
752 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
753 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
754 }
755 
756 int
757 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
758 {
759 
760 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
761 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
762 }
763 
764 /*
765  * This is now called from local media FS's to operate against their
766  * own vnodes if they fail to implement VOP_GETPAGES.
767  */
768 int
769 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
770     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
771 {
772 	vm_object_t object;
773 	struct bufobj *bo;
774 	struct buf *bp;
775 	off_t foff;
776 #ifdef INVARIANTS
777 	off_t blkno0;
778 #endif
779 	int bsize, pagesperblock;
780 	int error, before, after, rbehind, rahead, poff, i;
781 	int bytecount, secmask;
782 
783 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
784 	    ("%s does not support devices", __func__));
785 
786 	if (vp->v_iflag & VI_DOOMED)
787 		return (VM_PAGER_BAD);
788 
789 	object = vp->v_object;
790 	foff = IDX_TO_OFF(m[0]->pindex);
791 	bsize = vp->v_mount->mnt_stat.f_iosize;
792 	pagesperblock = bsize / PAGE_SIZE;
793 
794 	KASSERT(foff < object->un_pager.vnp.vnp_size,
795 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
796 	KASSERT(count <= nitems(bp->b_pages),
797 	    ("%s: requested %d pages", __func__, count));
798 
799 	/*
800 	 * The last page has valid blocks.  Invalid part can only
801 	 * exist at the end of file, and the page is made fully valid
802 	 * by zeroing in vm_pager_get_pages().
803 	 */
804 	if (m[count - 1]->valid != 0 && --count == 0) {
805 		if (iodone != NULL)
806 			iodone(arg, m, 1, 0);
807 		return (VM_PAGER_OK);
808 	}
809 
810 	bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
811 
812 	/*
813 	 * Get the underlying device blocks for the file with VOP_BMAP().
814 	 * If the file system doesn't support VOP_BMAP, use old way of
815 	 * getting pages via VOP_READ.
816 	 */
817 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
818 	if (error == EOPNOTSUPP) {
819 		uma_zfree(vnode_pbuf_zone, bp);
820 		VM_OBJECT_WLOCK(object);
821 		for (i = 0; i < count; i++) {
822 			VM_CNT_INC(v_vnodein);
823 			VM_CNT_INC(v_vnodepgsin);
824 			error = vnode_pager_input_old(object, m[i]);
825 			if (error)
826 				break;
827 		}
828 		VM_OBJECT_WUNLOCK(object);
829 		return (error);
830 	} else if (error != 0) {
831 		uma_zfree(vnode_pbuf_zone, bp);
832 		return (VM_PAGER_ERROR);
833 	}
834 
835 	/*
836 	 * If the file system supports BMAP, but blocksize is smaller
837 	 * than a page size, then use special small filesystem code.
838 	 */
839 	if (pagesperblock == 0) {
840 		uma_zfree(vnode_pbuf_zone, bp);
841 		for (i = 0; i < count; i++) {
842 			VM_CNT_INC(v_vnodein);
843 			VM_CNT_INC(v_vnodepgsin);
844 			error = vnode_pager_input_smlfs(object, m[i]);
845 			if (error)
846 				break;
847 		}
848 		return (error);
849 	}
850 
851 	/*
852 	 * A sparse file can be encountered only for a single page request,
853 	 * which may not be preceded by call to vm_pager_haspage().
854 	 */
855 	if (bp->b_blkno == -1) {
856 		KASSERT(count == 1,
857 		    ("%s: array[%d] request to a sparse file %p", __func__,
858 		    count, vp));
859 		uma_zfree(vnode_pbuf_zone, bp);
860 		pmap_zero_page(m[0]);
861 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
862 		    __func__, m[0]));
863 		VM_OBJECT_WLOCK(object);
864 		m[0]->valid = VM_PAGE_BITS_ALL;
865 		VM_OBJECT_WUNLOCK(object);
866 		return (VM_PAGER_OK);
867 	}
868 
869 #ifdef INVARIANTS
870 	blkno0 = bp->b_blkno;
871 #endif
872 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
873 
874 	/* Recalculate blocks available after/before to pages. */
875 	poff = (foff % bsize) / PAGE_SIZE;
876 	before *= pagesperblock;
877 	before += poff;
878 	after *= pagesperblock;
879 	after += pagesperblock - (poff + 1);
880 	if (m[0]->pindex + after >= object->size)
881 		after = object->size - 1 - m[0]->pindex;
882 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
883 	    __func__, count, after + 1));
884 	after -= count - 1;
885 
886 	/* Trim requested rbehind/rahead to possible values. */
887 	rbehind = a_rbehind ? *a_rbehind : 0;
888 	rahead = a_rahead ? *a_rahead : 0;
889 	rbehind = min(rbehind, before);
890 	rbehind = min(rbehind, m[0]->pindex);
891 	rahead = min(rahead, after);
892 	rahead = min(rahead, object->size - m[count - 1]->pindex);
893 	/*
894 	 * Check that total amount of pages fit into buf.  Trim rbehind and
895 	 * rahead evenly if not.
896 	 */
897 	if (rbehind + rahead + count > nitems(bp->b_pages)) {
898 		int trim, sum;
899 
900 		trim = rbehind + rahead + count - nitems(bp->b_pages) + 1;
901 		sum = rbehind + rahead;
902 		if (rbehind == before) {
903 			/* Roundup rbehind trim to block size. */
904 			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
905 			if (rbehind < 0)
906 				rbehind = 0;
907 		} else
908 			rbehind -= trim * rbehind / sum;
909 		rahead -= trim * rahead / sum;
910 	}
911 	KASSERT(rbehind + rahead + count <= nitems(bp->b_pages),
912 	    ("%s: behind %d ahead %d count %d", __func__,
913 	    rbehind, rahead, count));
914 
915 	/*
916 	 * Fill in the bp->b_pages[] array with requested and optional
917 	 * read behind or read ahead pages.  Read behind pages are looked
918 	 * up in a backward direction, down to a first cached page.  Same
919 	 * for read ahead pages, but there is no need to shift the array
920 	 * in case of encountering a cached page.
921 	 */
922 	i = bp->b_npages = 0;
923 	if (rbehind) {
924 		vm_pindex_t startpindex, tpindex;
925 		vm_page_t p;
926 
927 		VM_OBJECT_WLOCK(object);
928 		startpindex = m[0]->pindex - rbehind;
929 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
930 		    p->pindex >= startpindex)
931 			startpindex = p->pindex + 1;
932 
933 		/* tpindex is unsigned; beware of numeric underflow. */
934 		for (tpindex = m[0]->pindex - 1;
935 		    tpindex >= startpindex && tpindex < m[0]->pindex;
936 		    tpindex--, i++) {
937 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
938 			if (p == NULL) {
939 				/* Shift the array. */
940 				for (int j = 0; j < i; j++)
941 					bp->b_pages[j] = bp->b_pages[j +
942 					    tpindex + 1 - startpindex];
943 				break;
944 			}
945 			bp->b_pages[tpindex - startpindex] = p;
946 		}
947 
948 		bp->b_pgbefore = i;
949 		bp->b_npages += i;
950 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
951 	} else
952 		bp->b_pgbefore = 0;
953 
954 	/* Requested pages. */
955 	for (int j = 0; j < count; j++, i++)
956 		bp->b_pages[i] = m[j];
957 	bp->b_npages += count;
958 
959 	if (rahead) {
960 		vm_pindex_t endpindex, tpindex;
961 		vm_page_t p;
962 
963 		if (!VM_OBJECT_WOWNED(object))
964 			VM_OBJECT_WLOCK(object);
965 		endpindex = m[count - 1]->pindex + rahead + 1;
966 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
967 		    p->pindex < endpindex)
968 			endpindex = p->pindex;
969 		if (endpindex > object->size)
970 			endpindex = object->size;
971 
972 		for (tpindex = m[count - 1]->pindex + 1;
973 		    tpindex < endpindex; i++, tpindex++) {
974 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
975 			if (p == NULL)
976 				break;
977 			bp->b_pages[i] = p;
978 		}
979 
980 		bp->b_pgafter = i - bp->b_npages;
981 		bp->b_npages = i;
982 	} else
983 		bp->b_pgafter = 0;
984 
985 	if (VM_OBJECT_WOWNED(object))
986 		VM_OBJECT_WUNLOCK(object);
987 
988 	/* Report back actual behind/ahead read. */
989 	if (a_rbehind)
990 		*a_rbehind = bp->b_pgbefore;
991 	if (a_rahead)
992 		*a_rahead = bp->b_pgafter;
993 
994 #ifdef INVARIANTS
995 	KASSERT(bp->b_npages <= nitems(bp->b_pages),
996 	    ("%s: buf %p overflowed", __func__, bp));
997 	for (int j = 1, prev = 0; j < bp->b_npages; j++) {
998 		if (bp->b_pages[j] == bogus_page)
999 			continue;
1000 		KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
1001 		    j - prev, ("%s: pages array not consecutive, bp %p",
1002 		     __func__, bp));
1003 		prev = j;
1004 	}
1005 #endif
1006 
1007 	/*
1008 	 * Recalculate first offset and bytecount with regards to read behind.
1009 	 * Truncate bytecount to vnode real size and round up physical size
1010 	 * for real devices.
1011 	 */
1012 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1013 	bytecount = bp->b_npages << PAGE_SHIFT;
1014 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
1015 		bytecount = object->un_pager.vnp.vnp_size - foff;
1016 	secmask = bo->bo_bsize - 1;
1017 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
1018 	    ("%s: sector size %d too large", __func__, secmask + 1));
1019 	bytecount = (bytecount + secmask) & ~secmask;
1020 
1021 	/*
1022 	 * And map the pages to be read into the kva, if the filesystem
1023 	 * requires mapped buffers.
1024 	 */
1025 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1026 	    unmapped_buf_allowed) {
1027 		bp->b_data = unmapped_buf;
1028 		bp->b_offset = 0;
1029 	} else {
1030 		bp->b_data = bp->b_kvabase;
1031 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1032 	}
1033 
1034 	/* Build a minimal buffer header. */
1035 	bp->b_iocmd = BIO_READ;
1036 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1037 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1038 	bp->b_rcred = crhold(curthread->td_ucred);
1039 	bp->b_wcred = crhold(curthread->td_ucred);
1040 	pbgetbo(bo, bp);
1041 	bp->b_vp = vp;
1042 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1043 	bp->b_iooffset = dbtob(bp->b_blkno);
1044 	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1045 	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1046 	    IDX_TO_OFF(m[0]->pindex) % bsize,
1047 	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1048 	    "blkno0 %ju b_blkno %ju", bsize,
1049 	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1050 	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1051 
1052 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1053 	VM_CNT_INC(v_vnodein);
1054 	VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1055 
1056 	if (iodone != NULL) { /* async */
1057 		bp->b_pgiodone = iodone;
1058 		bp->b_caller1 = arg;
1059 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1060 		bp->b_flags |= B_ASYNC;
1061 		BUF_KERNPROC(bp);
1062 		bstrategy(bp);
1063 		return (VM_PAGER_OK);
1064 	} else {
1065 		bp->b_iodone = bdone;
1066 		bstrategy(bp);
1067 		bwait(bp, PVM, "vnread");
1068 		error = vnode_pager_generic_getpages_done(bp);
1069 		for (i = 0; i < bp->b_npages; i++)
1070 			bp->b_pages[i] = NULL;
1071 		bp->b_vp = NULL;
1072 		pbrelbo(bp);
1073 		uma_zfree(vnode_pbuf_zone, bp);
1074 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1075 	}
1076 }
1077 
1078 static void
1079 vnode_pager_generic_getpages_done_async(struct buf *bp)
1080 {
1081 	int error;
1082 
1083 	error = vnode_pager_generic_getpages_done(bp);
1084 	/* Run the iodone upon the requested range. */
1085 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1086 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1087 	for (int i = 0; i < bp->b_npages; i++)
1088 		bp->b_pages[i] = NULL;
1089 	bp->b_vp = NULL;
1090 	pbrelbo(bp);
1091 	uma_zfree(vnode_pbuf_zone, bp);
1092 }
1093 
1094 static int
1095 vnode_pager_generic_getpages_done(struct buf *bp)
1096 {
1097 	vm_object_t object;
1098 	off_t tfoff, nextoff;
1099 	int i, error;
1100 
1101 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1102 	object = bp->b_vp->v_object;
1103 
1104 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1105 		if (!buf_mapped(bp)) {
1106 			bp->b_data = bp->b_kvabase;
1107 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1108 			    bp->b_npages);
1109 		}
1110 		bzero(bp->b_data + bp->b_bcount,
1111 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1112 	}
1113 	if (buf_mapped(bp)) {
1114 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1115 		bp->b_data = unmapped_buf;
1116 	}
1117 
1118 	VM_OBJECT_WLOCK(object);
1119 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1120 	    i < bp->b_npages; i++, tfoff = nextoff) {
1121 		vm_page_t mt;
1122 
1123 		nextoff = tfoff + PAGE_SIZE;
1124 		mt = bp->b_pages[i];
1125 
1126 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1127 			/*
1128 			 * Read filled up entire page.
1129 			 */
1130 			mt->valid = VM_PAGE_BITS_ALL;
1131 			KASSERT(mt->dirty == 0,
1132 			    ("%s: page %p is dirty", __func__, mt));
1133 			KASSERT(!pmap_page_is_mapped(mt),
1134 			    ("%s: page %p is mapped", __func__, mt));
1135 		} else {
1136 			/*
1137 			 * Read did not fill up entire page.
1138 			 *
1139 			 * Currently we do not set the entire page valid,
1140 			 * we just try to clear the piece that we couldn't
1141 			 * read.
1142 			 */
1143 			vm_page_set_valid_range(mt, 0,
1144 			    object->un_pager.vnp.vnp_size - tfoff);
1145 			KASSERT((mt->dirty & vm_page_bits(0,
1146 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1147 			    ("%s: page %p is dirty", __func__, mt));
1148 		}
1149 
1150 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1151 			vm_page_readahead_finish(mt);
1152 	}
1153 	VM_OBJECT_WUNLOCK(object);
1154 	if (error != 0)
1155 		printf("%s: I/O read error %d\n", __func__, error);
1156 
1157 	return (error);
1158 }
1159 
1160 /*
1161  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1162  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1163  * vnode_pager_generic_putpages() to implement the previous behaviour.
1164  *
1165  * All other FS's should use the bypass to get to the local media
1166  * backing vp's VOP_PUTPAGES.
1167  */
1168 static void
1169 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1170     int flags, int *rtvals)
1171 {
1172 	int rtval;
1173 	struct vnode *vp;
1174 	int bytes = count * PAGE_SIZE;
1175 
1176 	/*
1177 	 * Force synchronous operation if we are extremely low on memory
1178 	 * to prevent a low-memory deadlock.  VOP operations often need to
1179 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1180 	 * operation ).  The swapper handles the case by limiting the amount
1181 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1182 	 * for the vnode pager without a lot of work.
1183 	 *
1184 	 * Also, the backing vnode's iodone routine may not wake the pageout
1185 	 * daemon up.  This should be probably be addressed XXX.
1186 	 */
1187 
1188 	if (vm_page_count_min())
1189 		flags |= VM_PAGER_PUT_SYNC;
1190 
1191 	/*
1192 	 * Call device-specific putpages function
1193 	 */
1194 	vp = object->handle;
1195 	VM_OBJECT_WUNLOCK(object);
1196 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1197 	KASSERT(rtval != EOPNOTSUPP,
1198 	    ("vnode_pager: stale FS putpages\n"));
1199 	VM_OBJECT_WLOCK(object);
1200 }
1201 
1202 static int
1203 vn_off2bidx(vm_ooffset_t offset)
1204 {
1205 
1206 	return ((offset & PAGE_MASK) / DEV_BSIZE);
1207 }
1208 
1209 static bool
1210 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1211 {
1212 
1213 	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1214 	    offset < IDX_TO_OFF(m->pindex + 1),
1215 	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1216 	    (uintmax_t)offset));
1217 	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1218 }
1219 
1220 /*
1221  * This is now called from local media FS's to operate against their
1222  * own vnodes if they fail to implement VOP_PUTPAGES.
1223  *
1224  * This is typically called indirectly via the pageout daemon and
1225  * clustering has already typically occurred, so in general we ask the
1226  * underlying filesystem to write the data out asynchronously rather
1227  * then delayed.
1228  */
1229 int
1230 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1231     int flags, int *rtvals)
1232 {
1233 	vm_object_t object;
1234 	vm_page_t m;
1235 	vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1236 	struct uio auio;
1237 	struct iovec aiov;
1238 	off_t prev_resid, wrsz;
1239 	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1240 	bool in_hole;
1241 	static struct timeval lastfail;
1242 	static int curfail;
1243 
1244 	object = vp->v_object;
1245 	count = bytecount / PAGE_SIZE;
1246 
1247 	for (i = 0; i < count; i++)
1248 		rtvals[i] = VM_PAGER_ERROR;
1249 
1250 	if ((int64_t)ma[0]->pindex < 0) {
1251 		printf("vnode_pager_generic_putpages: "
1252 		    "attempt to write meta-data 0x%jx(%lx)\n",
1253 		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1254 		rtvals[0] = VM_PAGER_BAD;
1255 		return (VM_PAGER_BAD);
1256 	}
1257 
1258 	maxsize = count * PAGE_SIZE;
1259 	ncount = count;
1260 
1261 	poffset = IDX_TO_OFF(ma[0]->pindex);
1262 
1263 	/*
1264 	 * If the page-aligned write is larger then the actual file we
1265 	 * have to invalidate pages occurring beyond the file EOF.  However,
1266 	 * there is an edge case where a file may not be page-aligned where
1267 	 * the last page is partially invalid.  In this case the filesystem
1268 	 * may not properly clear the dirty bits for the entire page (which
1269 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1270 	 * With the page locked we are free to fix-up the dirty bits here.
1271 	 *
1272 	 * We do not under any circumstances truncate the valid bits, as
1273 	 * this will screw up bogus page replacement.
1274 	 */
1275 	VM_OBJECT_RLOCK(object);
1276 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1277 		if (!VM_OBJECT_TRYUPGRADE(object)) {
1278 			VM_OBJECT_RUNLOCK(object);
1279 			VM_OBJECT_WLOCK(object);
1280 			if (maxsize + poffset <= object->un_pager.vnp.vnp_size)
1281 				goto downgrade;
1282 		}
1283 		if (object->un_pager.vnp.vnp_size > poffset) {
1284 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1285 			ncount = btoc(maxsize);
1286 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1287 				pgoff = roundup2(pgoff, DEV_BSIZE);
1288 
1289 				/*
1290 				 * If the object is locked and the following
1291 				 * conditions hold, then the page's dirty
1292 				 * field cannot be concurrently changed by a
1293 				 * pmap operation.
1294 				 */
1295 				m = ma[ncount - 1];
1296 				vm_page_assert_sbusied(m);
1297 				KASSERT(!pmap_page_is_write_mapped(m),
1298 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1299 				MPASS(m->dirty != 0);
1300 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1301 				    pgoff);
1302 			}
1303 		} else {
1304 			maxsize = 0;
1305 			ncount = 0;
1306 		}
1307 		for (i = ncount; i < count; i++)
1308 			rtvals[i] = VM_PAGER_BAD;
1309 downgrade:
1310 		VM_OBJECT_LOCK_DOWNGRADE(object);
1311 	}
1312 
1313 	auio.uio_iov = &aiov;
1314 	auio.uio_segflg = UIO_NOCOPY;
1315 	auio.uio_rw = UIO_WRITE;
1316 	auio.uio_td = NULL;
1317 	maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1318 
1319 	for (prev_offset = poffset; prev_offset < maxblksz;) {
1320 		/* Skip clean blocks. */
1321 		for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1322 			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1323 			for (i = vn_off2bidx(prev_offset);
1324 			    i < sizeof(vm_page_bits_t) * NBBY &&
1325 			    prev_offset < maxblksz; i++) {
1326 				if (vn_dirty_blk(m, prev_offset)) {
1327 					in_hole = false;
1328 					break;
1329 				}
1330 				prev_offset += DEV_BSIZE;
1331 			}
1332 		}
1333 		if (in_hole)
1334 			goto write_done;
1335 
1336 		/* Find longest run of dirty blocks. */
1337 		for (next_offset = prev_offset; next_offset < maxblksz;) {
1338 			m = ma[OFF_TO_IDX(next_offset - poffset)];
1339 			for (i = vn_off2bidx(next_offset);
1340 			    i < sizeof(vm_page_bits_t) * NBBY &&
1341 			    next_offset < maxblksz; i++) {
1342 				if (!vn_dirty_blk(m, next_offset))
1343 					goto start_write;
1344 				next_offset += DEV_BSIZE;
1345 			}
1346 		}
1347 start_write:
1348 		if (next_offset > poffset + maxsize)
1349 			next_offset = poffset + maxsize;
1350 
1351 		/*
1352 		 * Getting here requires finding a dirty block in the
1353 		 * 'skip clean blocks' loop.
1354 		 */
1355 		MPASS(prev_offset < next_offset);
1356 
1357 		VM_OBJECT_RUNLOCK(object);
1358 		aiov.iov_base = NULL;
1359 		auio.uio_iovcnt = 1;
1360 		auio.uio_offset = prev_offset;
1361 		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1362 		    prev_offset;
1363 		error = VOP_WRITE(vp, &auio,
1364 		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1365 
1366 		wrsz = prev_resid - auio.uio_resid;
1367 		if (wrsz == 0) {
1368 			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1369 				vn_printf(vp, "vnode_pager_putpages: "
1370 				    "zero-length write at %ju resid %zd\n",
1371 				    auio.uio_offset, auio.uio_resid);
1372 			}
1373 			VM_OBJECT_RLOCK(object);
1374 			break;
1375 		}
1376 
1377 		/* Adjust the starting offset for next iteration. */
1378 		prev_offset += wrsz;
1379 		MPASS(auio.uio_offset == prev_offset);
1380 
1381 		ppscheck = 0;
1382 		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1383 		    &curfail, 1)) != 0)
1384 			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1385 			    error);
1386 		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1387 		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1388 			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1389 			    "at %ju\n", auio.uio_resid,
1390 			    (uintmax_t)ma[0]->pindex);
1391 		VM_OBJECT_RLOCK(object);
1392 		if (error != 0 || auio.uio_resid != 0)
1393 			break;
1394 	}
1395 write_done:
1396 	/* Mark completely processed pages. */
1397 	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1398 		rtvals[i] = VM_PAGER_OK;
1399 	/* Mark partial EOF page. */
1400 	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1401 		rtvals[i++] = VM_PAGER_OK;
1402 	/* Unwritten pages in range, free bonus if the page is clean. */
1403 	for (; i < ncount; i++)
1404 		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1405 	VM_OBJECT_RUNLOCK(object);
1406 	VM_CNT_ADD(v_vnodepgsout, i);
1407 	VM_CNT_INC(v_vnodeout);
1408 	return (rtvals[0]);
1409 }
1410 
1411 int
1412 vnode_pager_putpages_ioflags(int pager_flags)
1413 {
1414 	int ioflags;
1415 
1416 	/*
1417 	 * Pageouts are already clustered, use IO_ASYNC to force a
1418 	 * bawrite() rather then a bdwrite() to prevent paging I/O
1419 	 * from saturating the buffer cache.  Dummy-up the sequential
1420 	 * heuristic to cause large ranges to cluster.  If neither
1421 	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1422 	 * cluster.
1423 	 */
1424 	ioflags = IO_VMIO;
1425 	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1426 		ioflags |= IO_SYNC;
1427 	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1428 		ioflags |= IO_ASYNC;
1429 	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1430 	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1431 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1432 	return (ioflags);
1433 }
1434 
1435 /*
1436  * vnode_pager_undirty_pages().
1437  *
1438  * A helper to mark pages as clean after pageout that was possibly
1439  * done with a short write.  The lpos argument specifies the page run
1440  * length in bytes, and the written argument specifies how many bytes
1441  * were actually written.  eof is the offset past the last valid byte
1442  * in the vnode using the absolute file position of the first byte in
1443  * the run as the base from which it is computed.
1444  */
1445 void
1446 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1447     int lpos)
1448 {
1449 	vm_object_t obj;
1450 	int i, pos, pos_devb;
1451 
1452 	if (written == 0 && eof >= lpos)
1453 		return;
1454 	obj = ma[0]->object;
1455 	VM_OBJECT_WLOCK(obj);
1456 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1457 		if (pos < trunc_page(written)) {
1458 			rtvals[i] = VM_PAGER_OK;
1459 			vm_page_undirty(ma[i]);
1460 		} else {
1461 			/* Partially written page. */
1462 			rtvals[i] = VM_PAGER_AGAIN;
1463 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1464 		}
1465 	}
1466 	if (eof >= lpos) /* avoid truncation */
1467 		goto done;
1468 	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1469 		if (pos != trunc_page(pos)) {
1470 			/*
1471 			 * The page contains the last valid byte in
1472 			 * the vnode, mark the rest of the page as
1473 			 * clean, potentially making the whole page
1474 			 * clean.
1475 			 */
1476 			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1477 			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1478 			    pos_devb);
1479 
1480 			/*
1481 			 * If the page was cleaned, report the pageout
1482 			 * on it as successful.  msync() no longer
1483 			 * needs to write out the page, endlessly
1484 			 * creating write requests and dirty buffers.
1485 			 */
1486 			if (ma[i]->dirty == 0)
1487 				rtvals[i] = VM_PAGER_OK;
1488 
1489 			pos = round_page(pos);
1490 		} else {
1491 			/* vm_pageout_flush() clears dirty */
1492 			rtvals[i] = VM_PAGER_BAD;
1493 			pos += PAGE_SIZE;
1494 		}
1495 	}
1496 done:
1497 	VM_OBJECT_WUNLOCK(obj);
1498 }
1499 
1500 void
1501 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1502     vm_offset_t end)
1503 {
1504 	struct vnode *vp;
1505 	vm_ooffset_t old_wm;
1506 
1507 	VM_OBJECT_WLOCK(object);
1508 	if (object->type != OBJT_VNODE) {
1509 		VM_OBJECT_WUNLOCK(object);
1510 		return;
1511 	}
1512 	old_wm = object->un_pager.vnp.writemappings;
1513 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1514 	vp = object->handle;
1515 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1516 		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1517 		VOP_ADD_WRITECOUNT(vp, 1);
1518 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1519 		    __func__, vp, vp->v_writecount);
1520 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1521 		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1522 		VOP_ADD_WRITECOUNT(vp, -1);
1523 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1524 		    __func__, vp, vp->v_writecount);
1525 	}
1526 	VM_OBJECT_WUNLOCK(object);
1527 }
1528 
1529 void
1530 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1531     vm_offset_t end)
1532 {
1533 	struct vnode *vp;
1534 	struct mount *mp;
1535 	vm_offset_t inc;
1536 
1537 	VM_OBJECT_WLOCK(object);
1538 
1539 	/*
1540 	 * First, recheck the object type to account for the race when
1541 	 * the vnode is reclaimed.
1542 	 */
1543 	if (object->type != OBJT_VNODE) {
1544 		VM_OBJECT_WUNLOCK(object);
1545 		return;
1546 	}
1547 
1548 	/*
1549 	 * Optimize for the case when writemappings is not going to
1550 	 * zero.
1551 	 */
1552 	inc = end - start;
1553 	if (object->un_pager.vnp.writemappings != inc) {
1554 		object->un_pager.vnp.writemappings -= inc;
1555 		VM_OBJECT_WUNLOCK(object);
1556 		return;
1557 	}
1558 
1559 	vp = object->handle;
1560 	vhold(vp);
1561 	VM_OBJECT_WUNLOCK(object);
1562 	mp = NULL;
1563 	vn_start_write(vp, &mp, V_WAIT);
1564 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1565 
1566 	/*
1567 	 * Decrement the object's writemappings, by swapping the start
1568 	 * and end arguments for vnode_pager_update_writecount().  If
1569 	 * there was not a race with vnode reclaimation, then the
1570 	 * vnode's v_writecount is decremented.
1571 	 */
1572 	vnode_pager_update_writecount(object, end, start);
1573 	VOP_UNLOCK(vp, 0);
1574 	vdrop(vp);
1575 	if (mp != NULL)
1576 		vn_finished_write(mp);
1577 }
1578