1 /*- 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/limits.h> 65 #include <sys/conf.h> 66 #include <sys/sf_buf.h> 67 68 #include <machine/atomic.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_object.h> 72 #include <vm/vm_page.h> 73 #include <vm/vm_pager.h> 74 #include <vm/vm_map.h> 75 #include <vm/vnode_pager.h> 76 #include <vm/vm_extern.h> 77 78 static daddr_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 79 int *run); 80 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 81 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 82 static void vnode_pager_dealloc(vm_object_t); 83 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 84 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 85 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 86 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t); 87 88 struct pagerops vnodepagerops = { 89 .pgo_alloc = vnode_pager_alloc, 90 .pgo_dealloc = vnode_pager_dealloc, 91 .pgo_getpages = vnode_pager_getpages, 92 .pgo_putpages = vnode_pager_putpages, 93 .pgo_haspage = vnode_pager_haspage, 94 }; 95 96 int vnode_pbuf_freecnt; 97 98 /* Create the VM system backing object for this vnode */ 99 int 100 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 101 { 102 vm_object_t object; 103 vm_ooffset_t size = isize; 104 struct vattr va; 105 106 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 107 return (0); 108 109 while ((object = vp->v_object) != NULL) { 110 VM_OBJECT_LOCK(object); 111 if (!(object->flags & OBJ_DEAD)) { 112 VM_OBJECT_UNLOCK(object); 113 return (0); 114 } 115 VOP_UNLOCK(vp, 0, td); 116 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 117 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0); 118 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 119 } 120 121 if (size == 0) { 122 if (vn_isdisk(vp, NULL)) { 123 size = IDX_TO_OFF(INT_MAX); 124 } else { 125 if (VOP_GETATTR(vp, &va, td->td_ucred, td) != 0) 126 return (0); 127 size = va.va_size; 128 } 129 } 130 131 object = vnode_pager_alloc(vp, size, 0, 0); 132 /* 133 * Dereference the reference we just created. This assumes 134 * that the object is associated with the vp. 135 */ 136 VM_OBJECT_LOCK(object); 137 object->ref_count--; 138 VM_OBJECT_UNLOCK(object); 139 vrele(vp); 140 141 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 142 143 return (0); 144 } 145 146 void 147 vnode_destroy_vobject(struct vnode *vp) 148 { 149 struct vm_object *obj; 150 151 obj = vp->v_object; 152 if (obj == NULL) 153 return; 154 ASSERT_VOP_LOCKED(vp, "vnode_destroy_vobject"); 155 VM_OBJECT_LOCK(obj); 156 if (obj->ref_count == 0) { 157 /* 158 * vclean() may be called twice. The first time 159 * removes the primary reference to the object, 160 * the second time goes one further and is a 161 * special-case to terminate the object. 162 * 163 * don't double-terminate the object 164 */ 165 if ((obj->flags & OBJ_DEAD) == 0) 166 vm_object_terminate(obj); 167 else 168 VM_OBJECT_UNLOCK(obj); 169 } else { 170 /* 171 * Woe to the process that tries to page now :-). 172 */ 173 vm_pager_deallocate(obj); 174 VM_OBJECT_UNLOCK(obj); 175 } 176 vp->v_object = NULL; 177 } 178 179 180 /* 181 * Allocate (or lookup) pager for a vnode. 182 * Handle is a vnode pointer. 183 * 184 * MPSAFE 185 */ 186 vm_object_t 187 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 188 vm_ooffset_t offset) 189 { 190 vm_object_t object; 191 struct vnode *vp; 192 193 /* 194 * Pageout to vnode, no can do yet. 195 */ 196 if (handle == NULL) 197 return (NULL); 198 199 vp = (struct vnode *) handle; 200 201 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 202 203 /* 204 * If the object is being terminated, wait for it to 205 * go away. 206 */ 207 while ((object = vp->v_object) != NULL) { 208 VM_OBJECT_LOCK(object); 209 if ((object->flags & OBJ_DEAD) == 0) 210 break; 211 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 212 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 213 } 214 215 if (vp->v_usecount == 0) 216 panic("vnode_pager_alloc: no vnode reference"); 217 218 if (object == NULL) { 219 /* 220 * And an object of the appropriate size 221 */ 222 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 223 224 object->un_pager.vnp.vnp_size = size; 225 226 object->handle = handle; 227 if (VFS_NEEDSGIANT(vp->v_mount)) 228 vm_object_set_flag(object, OBJ_NEEDGIANT); 229 vp->v_object = object; 230 } else { 231 object->ref_count++; 232 VM_OBJECT_UNLOCK(object); 233 } 234 vref(vp); 235 return (object); 236 } 237 238 /* 239 * The object must be locked. 240 */ 241 static void 242 vnode_pager_dealloc(object) 243 vm_object_t object; 244 { 245 struct vnode *vp = object->handle; 246 247 if (vp == NULL) 248 panic("vnode_pager_dealloc: pager already dealloced"); 249 250 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 251 vm_object_pip_wait(object, "vnpdea"); 252 253 object->handle = NULL; 254 object->type = OBJT_DEAD; 255 if (object->flags & OBJ_DISCONNECTWNT) { 256 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 257 wakeup(object); 258 } 259 ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc"); 260 vp->v_object = NULL; 261 vp->v_vflag &= ~VV_TEXT; 262 } 263 264 static boolean_t 265 vnode_pager_haspage(object, pindex, before, after) 266 vm_object_t object; 267 vm_pindex_t pindex; 268 int *before; 269 int *after; 270 { 271 struct vnode *vp = object->handle; 272 daddr_t bn; 273 int err; 274 daddr_t reqblock; 275 int poff; 276 int bsize; 277 int pagesperblock, blocksperpage; 278 int vfslocked; 279 280 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 281 /* 282 * If no vp or vp is doomed or marked transparent to VM, we do not 283 * have the page. 284 */ 285 if (vp == NULL || vp->v_iflag & VI_DOOMED) 286 return FALSE; 287 /* 288 * If the offset is beyond end of file we do 289 * not have the page. 290 */ 291 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 292 return FALSE; 293 294 bsize = vp->v_mount->mnt_stat.f_iosize; 295 pagesperblock = bsize / PAGE_SIZE; 296 blocksperpage = 0; 297 if (pagesperblock > 0) { 298 reqblock = pindex / pagesperblock; 299 } else { 300 blocksperpage = (PAGE_SIZE / bsize); 301 reqblock = pindex * blocksperpage; 302 } 303 VM_OBJECT_UNLOCK(object); 304 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 305 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 306 VFS_UNLOCK_GIANT(vfslocked); 307 VM_OBJECT_LOCK(object); 308 if (err) 309 return TRUE; 310 if (bn == -1) 311 return FALSE; 312 if (pagesperblock > 0) { 313 poff = pindex - (reqblock * pagesperblock); 314 if (before) { 315 *before *= pagesperblock; 316 *before += poff; 317 } 318 if (after) { 319 int numafter; 320 *after *= pagesperblock; 321 numafter = pagesperblock - (poff + 1); 322 if (IDX_TO_OFF(pindex + numafter) > 323 object->un_pager.vnp.vnp_size) { 324 numafter = 325 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 326 pindex; 327 } 328 *after += numafter; 329 } 330 } else { 331 if (before) { 332 *before /= blocksperpage; 333 } 334 335 if (after) { 336 *after /= blocksperpage; 337 } 338 } 339 return TRUE; 340 } 341 342 /* 343 * Lets the VM system know about a change in size for a file. 344 * We adjust our own internal size and flush any cached pages in 345 * the associated object that are affected by the size change. 346 * 347 * Note: this routine may be invoked as a result of a pager put 348 * operation (possibly at object termination time), so we must be careful. 349 */ 350 void 351 vnode_pager_setsize(vp, nsize) 352 struct vnode *vp; 353 vm_ooffset_t nsize; 354 { 355 vm_object_t object; 356 vm_page_t m; 357 vm_pindex_t nobjsize; 358 359 if ((object = vp->v_object) == NULL) 360 return; 361 VM_OBJECT_LOCK(object); 362 if (nsize == object->un_pager.vnp.vnp_size) { 363 /* 364 * Hasn't changed size 365 */ 366 VM_OBJECT_UNLOCK(object); 367 return; 368 } 369 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 370 if (nsize < object->un_pager.vnp.vnp_size) { 371 /* 372 * File has shrunk. Toss any cached pages beyond the new EOF. 373 */ 374 if (nobjsize < object->size) 375 vm_object_page_remove(object, nobjsize, object->size, 376 FALSE); 377 /* 378 * this gets rid of garbage at the end of a page that is now 379 * only partially backed by the vnode. 380 * 381 * XXX for some reason (I don't know yet), if we take a 382 * completely invalid page and mark it partially valid 383 * it can screw up NFS reads, so we don't allow the case. 384 */ 385 if ((nsize & PAGE_MASK) && 386 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 387 m->valid != 0) { 388 int base = (int)nsize & PAGE_MASK; 389 int size = PAGE_SIZE - base; 390 391 /* 392 * Clear out partial-page garbage in case 393 * the page has been mapped. 394 */ 395 pmap_zero_page_area(m, base, size); 396 397 /* 398 * XXX work around SMP data integrity race 399 * by unmapping the page from user processes. 400 * The garbage we just cleared may be mapped 401 * to a user process running on another cpu 402 * and this code is not running through normal 403 * I/O channels which handle SMP issues for 404 * us, so unmap page to synchronize all cpus. 405 * 406 * XXX should vm_pager_unmap_page() have 407 * dealt with this? 408 */ 409 vm_page_lock_queues(); 410 pmap_remove_all(m); 411 412 /* 413 * Clear out partial-page dirty bits. This 414 * has the side effect of setting the valid 415 * bits, but that is ok. There are a bunch 416 * of places in the VM system where we expected 417 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 418 * case is one of them. If the page is still 419 * partially dirty, make it fully dirty. 420 * 421 * note that we do not clear out the valid 422 * bits. This would prevent bogus_page 423 * replacement from working properly. 424 */ 425 vm_page_set_validclean(m, base, size); 426 if (m->dirty != 0) 427 m->dirty = VM_PAGE_BITS_ALL; 428 vm_page_unlock_queues(); 429 } 430 } 431 object->un_pager.vnp.vnp_size = nsize; 432 object->size = nobjsize; 433 VM_OBJECT_UNLOCK(object); 434 } 435 436 /* 437 * calculate the linear (byte) disk address of specified virtual 438 * file address 439 */ 440 static daddr_t 441 vnode_pager_addr(vp, address, run) 442 struct vnode *vp; 443 vm_ooffset_t address; 444 int *run; 445 { 446 daddr_t rtaddress; 447 int bsize; 448 daddr_t block; 449 int err; 450 daddr_t vblock; 451 daddr_t voffset; 452 453 if (address < 0) 454 return -1; 455 456 if (vp->v_iflag & VI_DOOMED) 457 return -1; 458 459 bsize = vp->v_mount->mnt_stat.f_iosize; 460 vblock = address / bsize; 461 voffset = address % bsize; 462 463 err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL); 464 465 if (err || (block == -1)) 466 rtaddress = -1; 467 else { 468 rtaddress = block + voffset / DEV_BSIZE; 469 if (run) { 470 *run += 1; 471 *run *= bsize/PAGE_SIZE; 472 *run -= voffset/PAGE_SIZE; 473 } 474 } 475 476 return rtaddress; 477 } 478 479 /* 480 * small block filesystem vnode pager input 481 */ 482 static int 483 vnode_pager_input_smlfs(object, m) 484 vm_object_t object; 485 vm_page_t m; 486 { 487 int i; 488 struct vnode *vp; 489 struct bufobj *bo; 490 struct buf *bp; 491 struct sf_buf *sf; 492 daddr_t fileaddr; 493 vm_offset_t bsize; 494 int error = 0; 495 496 vp = object->handle; 497 if (vp->v_iflag & VI_DOOMED) 498 return VM_PAGER_BAD; 499 500 bsize = vp->v_mount->mnt_stat.f_iosize; 501 502 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 503 504 sf = sf_buf_alloc(m, 0); 505 506 for (i = 0; i < PAGE_SIZE / bsize; i++) { 507 vm_ooffset_t address; 508 509 if (vm_page_bits(i * bsize, bsize) & m->valid) 510 continue; 511 512 address = IDX_TO_OFF(m->pindex) + i * bsize; 513 if (address >= object->un_pager.vnp.vnp_size) { 514 fileaddr = -1; 515 } else { 516 fileaddr = vnode_pager_addr(vp, address, NULL); 517 } 518 if (fileaddr != -1) { 519 bp = getpbuf(&vnode_pbuf_freecnt); 520 521 /* build a minimal buffer header */ 522 bp->b_iocmd = BIO_READ; 523 bp->b_iodone = bdone; 524 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 525 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 526 bp->b_rcred = crhold(curthread->td_ucred); 527 bp->b_wcred = crhold(curthread->td_ucred); 528 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 529 bp->b_blkno = fileaddr; 530 pbgetbo(bo, bp); 531 bp->b_bcount = bsize; 532 bp->b_bufsize = bsize; 533 bp->b_runningbufspace = bp->b_bufsize; 534 atomic_add_int(&runningbufspace, bp->b_runningbufspace); 535 536 /* do the input */ 537 bp->b_iooffset = dbtob(bp->b_blkno); 538 bstrategy(bp); 539 540 bwait(bp, PVM, "vnsrd"); 541 542 if ((bp->b_ioflags & BIO_ERROR) != 0) 543 error = EIO; 544 545 /* 546 * free the buffer header back to the swap buffer pool 547 */ 548 pbrelbo(bp); 549 relpbuf(bp, &vnode_pbuf_freecnt); 550 if (error) 551 break; 552 553 VM_OBJECT_LOCK(object); 554 vm_page_lock_queues(); 555 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 556 vm_page_unlock_queues(); 557 VM_OBJECT_UNLOCK(object); 558 } else { 559 VM_OBJECT_LOCK(object); 560 vm_page_lock_queues(); 561 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 562 vm_page_unlock_queues(); 563 VM_OBJECT_UNLOCK(object); 564 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 565 } 566 } 567 sf_buf_free(sf); 568 vm_page_lock_queues(); 569 pmap_clear_modify(m); 570 vm_page_unlock_queues(); 571 if (error) { 572 return VM_PAGER_ERROR; 573 } 574 return VM_PAGER_OK; 575 576 } 577 578 579 /* 580 * old style vnode pager input routine 581 */ 582 static int 583 vnode_pager_input_old(object, m) 584 vm_object_t object; 585 vm_page_t m; 586 { 587 struct uio auio; 588 struct iovec aiov; 589 int error; 590 int size; 591 struct sf_buf *sf; 592 struct vnode *vp; 593 594 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 595 error = 0; 596 597 /* 598 * Return failure if beyond current EOF 599 */ 600 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 601 return VM_PAGER_BAD; 602 } else { 603 size = PAGE_SIZE; 604 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 605 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 606 vp = object->handle; 607 VM_OBJECT_UNLOCK(object); 608 609 /* 610 * Allocate a kernel virtual address and initialize so that 611 * we can use VOP_READ/WRITE routines. 612 */ 613 sf = sf_buf_alloc(m, 0); 614 615 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 616 aiov.iov_len = size; 617 auio.uio_iov = &aiov; 618 auio.uio_iovcnt = 1; 619 auio.uio_offset = IDX_TO_OFF(m->pindex); 620 auio.uio_segflg = UIO_SYSSPACE; 621 auio.uio_rw = UIO_READ; 622 auio.uio_resid = size; 623 auio.uio_td = curthread; 624 625 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 626 if (!error) { 627 int count = size - auio.uio_resid; 628 629 if (count == 0) 630 error = EINVAL; 631 else if (count != PAGE_SIZE) 632 bzero((caddr_t)sf_buf_kva(sf) + count, 633 PAGE_SIZE - count); 634 } 635 sf_buf_free(sf); 636 637 VM_OBJECT_LOCK(object); 638 } 639 vm_page_lock_queues(); 640 pmap_clear_modify(m); 641 vm_page_undirty(m); 642 vm_page_unlock_queues(); 643 if (!error) 644 m->valid = VM_PAGE_BITS_ALL; 645 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 646 } 647 648 /* 649 * generic vnode pager input routine 650 */ 651 652 /* 653 * Local media VFS's that do not implement their own VOP_GETPAGES 654 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 655 * to implement the previous behaviour. 656 * 657 * All other FS's should use the bypass to get to the local media 658 * backing vp's VOP_GETPAGES. 659 */ 660 static int 661 vnode_pager_getpages(object, m, count, reqpage) 662 vm_object_t object; 663 vm_page_t *m; 664 int count; 665 int reqpage; 666 { 667 int rtval; 668 struct vnode *vp; 669 int bytes = count * PAGE_SIZE; 670 int vfslocked; 671 672 vp = object->handle; 673 VM_OBJECT_UNLOCK(object); 674 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 675 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 676 KASSERT(rtval != EOPNOTSUPP, 677 ("vnode_pager: FS getpages not implemented\n")); 678 VFS_UNLOCK_GIANT(vfslocked); 679 VM_OBJECT_LOCK(object); 680 return rtval; 681 } 682 683 /* 684 * This is now called from local media FS's to operate against their 685 * own vnodes if they fail to implement VOP_GETPAGES. 686 */ 687 int 688 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 689 struct vnode *vp; 690 vm_page_t *m; 691 int bytecount; 692 int reqpage; 693 { 694 vm_object_t object; 695 vm_offset_t kva; 696 off_t foff, tfoff, nextoff; 697 int i, j, size, bsize, first; 698 daddr_t firstaddr; 699 struct bufobj *bo; 700 int runpg; 701 int runend; 702 struct buf *bp; 703 int count; 704 int error = 0; 705 706 object = vp->v_object; 707 count = bytecount / PAGE_SIZE; 708 709 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 710 ("vnode_pager_generic_getpages does not support devices")); 711 if (vp->v_iflag & VI_DOOMED) 712 return VM_PAGER_BAD; 713 714 bsize = vp->v_mount->mnt_stat.f_iosize; 715 716 /* get the UNDERLYING device for the file with VOP_BMAP() */ 717 718 /* 719 * originally, we did not check for an error return value -- assuming 720 * an fs always has a bmap entry point -- that assumption is wrong!!! 721 */ 722 foff = IDX_TO_OFF(m[reqpage]->pindex); 723 724 /* 725 * if we can't bmap, use old VOP code 726 */ 727 if (VOP_BMAP(vp, 0, &bo, 0, NULL, NULL)) { 728 VM_OBJECT_LOCK(object); 729 vm_page_lock_queues(); 730 for (i = 0; i < count; i++) 731 if (i != reqpage) 732 vm_page_free(m[i]); 733 vm_page_unlock_queues(); 734 cnt.v_vnodein++; 735 cnt.v_vnodepgsin++; 736 error = vnode_pager_input_old(object, m[reqpage]); 737 VM_OBJECT_UNLOCK(object); 738 return (error); 739 740 /* 741 * if the blocksize is smaller than a page size, then use 742 * special small filesystem code. NFS sometimes has a small 743 * blocksize, but it can handle large reads itself. 744 */ 745 } else if ((PAGE_SIZE / bsize) > 1 && 746 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 747 VM_OBJECT_LOCK(object); 748 vm_page_lock_queues(); 749 for (i = 0; i < count; i++) 750 if (i != reqpage) 751 vm_page_free(m[i]); 752 vm_page_unlock_queues(); 753 VM_OBJECT_UNLOCK(object); 754 cnt.v_vnodein++; 755 cnt.v_vnodepgsin++; 756 return vnode_pager_input_smlfs(object, m[reqpage]); 757 } 758 759 /* 760 * If we have a completely valid page available to us, we can 761 * clean up and return. Otherwise we have to re-read the 762 * media. 763 */ 764 VM_OBJECT_LOCK(object); 765 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 766 vm_page_lock_queues(); 767 for (i = 0; i < count; i++) 768 if (i != reqpage) 769 vm_page_free(m[i]); 770 vm_page_unlock_queues(); 771 VM_OBJECT_UNLOCK(object); 772 return VM_PAGER_OK; 773 } 774 m[reqpage]->valid = 0; 775 VM_OBJECT_UNLOCK(object); 776 777 /* 778 * here on direct device I/O 779 */ 780 firstaddr = -1; 781 782 /* 783 * calculate the run that includes the required page 784 */ 785 for (first = 0, i = 0; i < count; i = runend) { 786 firstaddr = vnode_pager_addr(vp, 787 IDX_TO_OFF(m[i]->pindex), &runpg); 788 if (firstaddr == -1) { 789 VM_OBJECT_LOCK(object); 790 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 791 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 792 (intmax_t)firstaddr, (uintmax_t)(foff >> 32), 793 (uintmax_t)foff, 794 (uintmax_t) 795 (object->un_pager.vnp.vnp_size >> 32), 796 (uintmax_t)object->un_pager.vnp.vnp_size); 797 } 798 vm_page_lock_queues(); 799 vm_page_free(m[i]); 800 vm_page_unlock_queues(); 801 VM_OBJECT_UNLOCK(object); 802 runend = i + 1; 803 first = runend; 804 continue; 805 } 806 runend = i + runpg; 807 if (runend <= reqpage) { 808 VM_OBJECT_LOCK(object); 809 vm_page_lock_queues(); 810 for (j = i; j < runend; j++) 811 vm_page_free(m[j]); 812 vm_page_unlock_queues(); 813 VM_OBJECT_UNLOCK(object); 814 } else { 815 if (runpg < (count - first)) { 816 VM_OBJECT_LOCK(object); 817 vm_page_lock_queues(); 818 for (i = first + runpg; i < count; i++) 819 vm_page_free(m[i]); 820 vm_page_unlock_queues(); 821 VM_OBJECT_UNLOCK(object); 822 count = first + runpg; 823 } 824 break; 825 } 826 first = runend; 827 } 828 829 /* 830 * the first and last page have been calculated now, move input pages 831 * to be zero based... 832 */ 833 if (first != 0) { 834 for (i = first; i < count; i++) { 835 m[i - first] = m[i]; 836 } 837 count -= first; 838 reqpage -= first; 839 } 840 841 /* 842 * calculate the file virtual address for the transfer 843 */ 844 foff = IDX_TO_OFF(m[0]->pindex); 845 846 /* 847 * calculate the size of the transfer 848 */ 849 size = count * PAGE_SIZE; 850 KASSERT(count > 0, ("zero count")); 851 if ((foff + size) > object->un_pager.vnp.vnp_size) 852 size = object->un_pager.vnp.vnp_size - foff; 853 KASSERT(size > 0, ("zero size")); 854 855 /* 856 * round up physical size for real devices. 857 */ 858 if (1) { 859 int secmask = bo->bo_bsize - 1; 860 KASSERT(secmask < PAGE_SIZE && secmask > 0, 861 ("vnode_pager_generic_getpages: sector size %d too large", 862 secmask + 1)); 863 size = (size + secmask) & ~secmask; 864 } 865 866 bp = getpbuf(&vnode_pbuf_freecnt); 867 kva = (vm_offset_t) bp->b_data; 868 869 /* 870 * and map the pages to be read into the kva 871 */ 872 pmap_qenter(kva, m, count); 873 874 /* build a minimal buffer header */ 875 bp->b_iocmd = BIO_READ; 876 bp->b_iodone = bdone; 877 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 878 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 879 bp->b_rcred = crhold(curthread->td_ucred); 880 bp->b_wcred = crhold(curthread->td_ucred); 881 bp->b_blkno = firstaddr; 882 pbgetbo(bo, bp); 883 bp->b_bcount = size; 884 bp->b_bufsize = size; 885 bp->b_runningbufspace = bp->b_bufsize; 886 atomic_add_int(&runningbufspace, bp->b_runningbufspace); 887 888 cnt.v_vnodein++; 889 cnt.v_vnodepgsin += count; 890 891 /* do the input */ 892 bp->b_iooffset = dbtob(bp->b_blkno); 893 bstrategy(bp); 894 895 bwait(bp, PVM, "vnread"); 896 897 if ((bp->b_ioflags & BIO_ERROR) != 0) 898 error = EIO; 899 900 if (!error) { 901 if (size != count * PAGE_SIZE) 902 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 903 } 904 pmap_qremove(kva, count); 905 906 /* 907 * free the buffer header back to the swap buffer pool 908 */ 909 pbrelbo(bp); 910 relpbuf(bp, &vnode_pbuf_freecnt); 911 912 VM_OBJECT_LOCK(object); 913 vm_page_lock_queues(); 914 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 915 vm_page_t mt; 916 917 nextoff = tfoff + PAGE_SIZE; 918 mt = m[i]; 919 920 if (nextoff <= object->un_pager.vnp.vnp_size) { 921 /* 922 * Read filled up entire page. 923 */ 924 mt->valid = VM_PAGE_BITS_ALL; 925 vm_page_undirty(mt); /* should be an assert? XXX */ 926 pmap_clear_modify(mt); 927 } else { 928 /* 929 * Read did not fill up entire page. Since this 930 * is getpages, the page may be mapped, so we have 931 * to zero the invalid portions of the page even 932 * though we aren't setting them valid. 933 * 934 * Currently we do not set the entire page valid, 935 * we just try to clear the piece that we couldn't 936 * read. 937 */ 938 vm_page_set_validclean(mt, 0, 939 object->un_pager.vnp.vnp_size - tfoff); 940 /* handled by vm_fault now */ 941 /* vm_page_zero_invalid(mt, FALSE); */ 942 } 943 944 if (i != reqpage) { 945 946 /* 947 * whether or not to leave the page activated is up in 948 * the air, but we should put the page on a page queue 949 * somewhere. (it already is in the object). Result: 950 * It appears that empirical results show that 951 * deactivating pages is best. 952 */ 953 954 /* 955 * just in case someone was asking for this page we 956 * now tell them that it is ok to use 957 */ 958 if (!error) { 959 if (mt->flags & PG_WANTED) 960 vm_page_activate(mt); 961 else 962 vm_page_deactivate(mt); 963 vm_page_wakeup(mt); 964 } else { 965 vm_page_free(mt); 966 } 967 } 968 } 969 vm_page_unlock_queues(); 970 VM_OBJECT_UNLOCK(object); 971 if (error) { 972 printf("vnode_pager_getpages: I/O read error\n"); 973 } 974 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 975 } 976 977 /* 978 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 979 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 980 * vnode_pager_generic_putpages() to implement the previous behaviour. 981 * 982 * All other FS's should use the bypass to get to the local media 983 * backing vp's VOP_PUTPAGES. 984 */ 985 static void 986 vnode_pager_putpages(object, m, count, sync, rtvals) 987 vm_object_t object; 988 vm_page_t *m; 989 int count; 990 boolean_t sync; 991 int *rtvals; 992 { 993 int rtval; 994 struct vnode *vp; 995 struct mount *mp; 996 int bytes = count * PAGE_SIZE; 997 998 /* 999 * Force synchronous operation if we are extremely low on memory 1000 * to prevent a low-memory deadlock. VOP operations often need to 1001 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1002 * operation ). The swapper handles the case by limiting the amount 1003 * of asynchronous I/O, but that sort of solution doesn't scale well 1004 * for the vnode pager without a lot of work. 1005 * 1006 * Also, the backing vnode's iodone routine may not wake the pageout 1007 * daemon up. This should be probably be addressed XXX. 1008 */ 1009 1010 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 1011 sync |= OBJPC_SYNC; 1012 1013 /* 1014 * Call device-specific putpages function 1015 */ 1016 vp = object->handle; 1017 VM_OBJECT_UNLOCK(object); 1018 if (vp->v_type != VREG) 1019 mp = NULL; 1020 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 1021 KASSERT(rtval != EOPNOTSUPP, 1022 ("vnode_pager: stale FS putpages\n")); 1023 VM_OBJECT_LOCK(object); 1024 } 1025 1026 1027 /* 1028 * This is now called from local media FS's to operate against their 1029 * own vnodes if they fail to implement VOP_PUTPAGES. 1030 * 1031 * This is typically called indirectly via the pageout daemon and 1032 * clustering has already typically occured, so in general we ask the 1033 * underlying filesystem to write the data out asynchronously rather 1034 * then delayed. 1035 */ 1036 int 1037 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 1038 struct vnode *vp; 1039 vm_page_t *m; 1040 int bytecount; 1041 int flags; 1042 int *rtvals; 1043 { 1044 int i; 1045 vm_object_t object; 1046 int count; 1047 1048 int maxsize, ncount; 1049 vm_ooffset_t poffset; 1050 struct uio auio; 1051 struct iovec aiov; 1052 int error; 1053 int ioflags; 1054 int ppscheck = 0; 1055 static struct timeval lastfail; 1056 static int curfail; 1057 1058 object = vp->v_object; 1059 count = bytecount / PAGE_SIZE; 1060 1061 for (i = 0; i < count; i++) 1062 rtvals[i] = VM_PAGER_AGAIN; 1063 1064 if ((int64_t)m[0]->pindex < 0) { 1065 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", 1066 (long)m[0]->pindex, (u_long)m[0]->dirty); 1067 rtvals[0] = VM_PAGER_BAD; 1068 return VM_PAGER_BAD; 1069 } 1070 1071 maxsize = count * PAGE_SIZE; 1072 ncount = count; 1073 1074 poffset = IDX_TO_OFF(m[0]->pindex); 1075 1076 /* 1077 * If the page-aligned write is larger then the actual file we 1078 * have to invalidate pages occuring beyond the file EOF. However, 1079 * there is an edge case where a file may not be page-aligned where 1080 * the last page is partially invalid. In this case the filesystem 1081 * may not properly clear the dirty bits for the entire page (which 1082 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1083 * With the page locked we are free to fix-up the dirty bits here. 1084 * 1085 * We do not under any circumstances truncate the valid bits, as 1086 * this will screw up bogus page replacement. 1087 */ 1088 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1089 if (object->un_pager.vnp.vnp_size > poffset) { 1090 int pgoff; 1091 1092 maxsize = object->un_pager.vnp.vnp_size - poffset; 1093 ncount = btoc(maxsize); 1094 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1095 vm_page_lock_queues(); 1096 vm_page_clear_dirty(m[ncount - 1], pgoff, 1097 PAGE_SIZE - pgoff); 1098 vm_page_unlock_queues(); 1099 } 1100 } else { 1101 maxsize = 0; 1102 ncount = 0; 1103 } 1104 if (ncount < count) { 1105 for (i = ncount; i < count; i++) { 1106 rtvals[i] = VM_PAGER_BAD; 1107 } 1108 } 1109 } 1110 1111 /* 1112 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 1113 * rather then a bdwrite() to prevent paging I/O from saturating 1114 * the buffer cache. Dummy-up the sequential heuristic to cause 1115 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1116 * the system decides how to cluster. 1117 */ 1118 ioflags = IO_VMIO; 1119 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1120 ioflags |= IO_SYNC; 1121 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1122 ioflags |= IO_ASYNC; 1123 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1124 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1125 1126 aiov.iov_base = (caddr_t) 0; 1127 aiov.iov_len = maxsize; 1128 auio.uio_iov = &aiov; 1129 auio.uio_iovcnt = 1; 1130 auio.uio_offset = poffset; 1131 auio.uio_segflg = UIO_NOCOPY; 1132 auio.uio_rw = UIO_WRITE; 1133 auio.uio_resid = maxsize; 1134 auio.uio_td = (struct thread *) 0; 1135 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1136 cnt.v_vnodeout++; 1137 cnt.v_vnodepgsout += ncount; 1138 1139 if (error) { 1140 if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1))) 1141 printf("vnode_pager_putpages: I/O error %d\n", error); 1142 } 1143 if (auio.uio_resid) { 1144 if (ppscheck || ppsratecheck(&lastfail, &curfail, 1)) 1145 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1146 auio.uio_resid, (u_long)m[0]->pindex); 1147 } 1148 for (i = 0; i < ncount; i++) { 1149 rtvals[i] = VM_PAGER_OK; 1150 } 1151 return rtvals[0]; 1152 } 1153 1154 struct vnode * 1155 vnode_pager_lock(vm_object_t first_object) 1156 { 1157 struct vnode *vp; 1158 vm_object_t backing_object, object; 1159 1160 VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED); 1161 for (object = first_object; object != NULL; object = backing_object) { 1162 if (object->type != OBJT_VNODE) { 1163 if ((backing_object = object->backing_object) != NULL) 1164 VM_OBJECT_LOCK(backing_object); 1165 if (object != first_object) 1166 VM_OBJECT_UNLOCK(object); 1167 continue; 1168 } 1169 retry: 1170 if (object->flags & OBJ_DEAD) { 1171 if (object != first_object) 1172 VM_OBJECT_UNLOCK(object); 1173 return NULL; 1174 } 1175 vp = object->handle; 1176 VI_LOCK(vp); 1177 VM_OBJECT_UNLOCK(object); 1178 if (first_object != object) 1179 VM_OBJECT_UNLOCK(first_object); 1180 VFS_ASSERT_GIANT(vp->v_mount); 1181 if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | 1182 LK_RETRY | LK_SHARED, curthread)) { 1183 VM_OBJECT_LOCK(first_object); 1184 if (object != first_object) 1185 VM_OBJECT_LOCK(object); 1186 if (object->type != OBJT_VNODE) { 1187 if (object != first_object) 1188 VM_OBJECT_UNLOCK(object); 1189 return NULL; 1190 } 1191 printf("vnode_pager_lock: retrying\n"); 1192 goto retry; 1193 } 1194 VM_OBJECT_LOCK(first_object); 1195 return (vp); 1196 } 1197 return NULL; 1198 } 1199