xref: /freebsd/sys/vm/vnode_pager.c (revision 840aca288042eaf625a23908e807abdfde0bc21d)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  * Copyright (c) 1993, 1994 John S. Dyson
8  * Copyright (c) 1995, David Greenman
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
43  */
44 
45 /*
46  * Page to/from files (vnodes).
47  */
48 
49 /*
50  * TODO:
51  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52  *	greatly re-simplify the vnode_pager.
53  */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include "opt_vm.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/systm.h>
63 #include <sys/sysctl.h>
64 #include <sys/proc.h>
65 #include <sys/vnode.h>
66 #include <sys/mount.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/vmmeter.h>
70 #include <sys/ktr.h>
71 #include <sys/limits.h>
72 #include <sys/conf.h>
73 #include <sys/rwlock.h>
74 #include <sys/sf_buf.h>
75 #include <sys/domainset.h>
76 
77 #include <machine/atomic.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pager.h>
84 #include <vm/vm_map.h>
85 #include <vm/vnode_pager.h>
86 #include <vm/vm_extern.h>
87 #include <vm/uma.h>
88 
89 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
90     daddr_t *rtaddress, int *run);
91 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
92 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
93 static void vnode_pager_dealloc(vm_object_t);
94 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
95 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
96     int *, vop_getpages_iodone_t, void *);
97 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
98 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
99 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
100     vm_ooffset_t, struct ucred *cred);
101 static int vnode_pager_generic_getpages_done(struct buf *);
102 static void vnode_pager_generic_getpages_done_async(struct buf *);
103 
104 struct pagerops vnodepagerops = {
105 	.pgo_alloc =	vnode_pager_alloc,
106 	.pgo_dealloc =	vnode_pager_dealloc,
107 	.pgo_getpages =	vnode_pager_getpages,
108 	.pgo_getpages_async = vnode_pager_getpages_async,
109 	.pgo_putpages =	vnode_pager_putpages,
110 	.pgo_haspage =	vnode_pager_haspage,
111 };
112 
113 static struct domainset *vnode_domainset = NULL;
114 
115 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_RW,
116     &vnode_domainset, 0, sysctl_handle_domainset, "A",
117     "Default vnode NUMA policy");
118 
119 static int nvnpbufs;
120 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
121     &nvnpbufs, 0, "number of physical buffers allocated for vnode pager");
122 
123 static uma_zone_t vnode_pbuf_zone;
124 
125 static void
126 vnode_pager_init(void *dummy)
127 {
128 
129 #ifdef __LP64__
130 	nvnpbufs = nswbuf * 2;
131 #else
132 	nvnpbufs = nswbuf / 2;
133 #endif
134 	TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs);
135 	vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs);
136 }
137 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL);
138 
139 /* Create the VM system backing object for this vnode */
140 int
141 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
142 {
143 	vm_object_t object;
144 	vm_ooffset_t size = isize;
145 	struct vattr va;
146 
147 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
148 		return (0);
149 
150 	object = vp->v_object;
151 	if (object != NULL)
152 		return (0);
153 
154 	if (size == 0) {
155 		if (vn_isdisk(vp, NULL)) {
156 			size = IDX_TO_OFF(INT_MAX);
157 		} else {
158 			if (VOP_GETATTR(vp, &va, td->td_ucred))
159 				return (0);
160 			size = va.va_size;
161 		}
162 	}
163 
164 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
165 	/*
166 	 * Dereference the reference we just created.  This assumes
167 	 * that the object is associated with the vp.
168 	 */
169 	VM_OBJECT_WLOCK(object);
170 	object->ref_count--;
171 	VM_OBJECT_WUNLOCK(object);
172 	vrele(vp);
173 
174 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
175 
176 	return (0);
177 }
178 
179 void
180 vnode_destroy_vobject(struct vnode *vp)
181 {
182 	struct vm_object *obj;
183 
184 	obj = vp->v_object;
185 	if (obj == NULL || obj->handle != vp)
186 		return;
187 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
188 	VM_OBJECT_WLOCK(obj);
189 	MPASS(obj->type == OBJT_VNODE);
190 	umtx_shm_object_terminated(obj);
191 	if (obj->ref_count == 0) {
192 		/*
193 		 * don't double-terminate the object
194 		 */
195 		if ((obj->flags & OBJ_DEAD) == 0) {
196 			vm_object_set_flag(obj, OBJ_DEAD);
197 
198 			/*
199 			 * Clean pages and flush buffers.
200 			 */
201 			vm_object_page_clean(obj, 0, 0, OBJPC_SYNC);
202 			VM_OBJECT_WUNLOCK(obj);
203 
204 			vinvalbuf(vp, V_SAVE, 0, 0);
205 
206 			BO_LOCK(&vp->v_bufobj);
207 			vp->v_bufobj.bo_flag |= BO_DEAD;
208 			BO_UNLOCK(&vp->v_bufobj);
209 
210 			VM_OBJECT_WLOCK(obj);
211 			vm_object_terminate(obj);
212 		} else {
213 			/*
214 			 * Waiters were already handled during object
215 			 * termination.  The exclusive vnode lock hopefully
216 			 * prevented new waiters from referencing the dying
217 			 * object.
218 			 */
219 			vp->v_object = NULL;
220 			VM_OBJECT_WUNLOCK(obj);
221 		}
222 	} else {
223 		/*
224 		 * Woe to the process that tries to page now :-).
225 		 */
226 		vm_pager_deallocate(obj);
227 		VM_OBJECT_WUNLOCK(obj);
228 	}
229 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
230 }
231 
232 
233 /*
234  * Allocate (or lookup) pager for a vnode.
235  * Handle is a vnode pointer.
236  */
237 vm_object_t
238 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
239     vm_ooffset_t offset, struct ucred *cred)
240 {
241 	vm_object_t object;
242 	struct vnode *vp;
243 
244 	/*
245 	 * Pageout to vnode, no can do yet.
246 	 */
247 	if (handle == NULL)
248 		return (NULL);
249 
250 	vp = (struct vnode *)handle;
251 	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
252 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
253 retry:
254 	object = vp->v_object;
255 
256 	if (object == NULL) {
257 		/*
258 		 * Add an object of the appropriate size
259 		 */
260 		object = vm_object_allocate(OBJT_VNODE,
261 		    OFF_TO_IDX(round_page(size)));
262 
263 		object->un_pager.vnp.vnp_size = size;
264 		object->un_pager.vnp.writemappings = 0;
265 		object->domain.dr_policy = vnode_domainset;
266 
267 		object->handle = handle;
268 		VI_LOCK(vp);
269 		if (vp->v_object != NULL) {
270 			/*
271 			 * Object has been created while we were allocating.
272 			 */
273 			VI_UNLOCK(vp);
274 			VM_OBJECT_WLOCK(object);
275 			KASSERT(object->ref_count == 1,
276 			    ("leaked ref %p %d", object, object->ref_count));
277 			object->type = OBJT_DEAD;
278 			object->ref_count = 0;
279 			VM_OBJECT_WUNLOCK(object);
280 			vm_object_destroy(object);
281 			goto retry;
282 		}
283 		vp->v_object = object;
284 		VI_UNLOCK(vp);
285 	} else {
286 		VM_OBJECT_WLOCK(object);
287 		object->ref_count++;
288 #if VM_NRESERVLEVEL > 0
289 		vm_object_color(object, 0);
290 #endif
291 		VM_OBJECT_WUNLOCK(object);
292 	}
293 	vrefact(vp);
294 	return (object);
295 }
296 
297 /*
298  *	The object must be locked.
299  */
300 static void
301 vnode_pager_dealloc(vm_object_t object)
302 {
303 	struct vnode *vp;
304 	int refs;
305 
306 	vp = object->handle;
307 	if (vp == NULL)
308 		panic("vnode_pager_dealloc: pager already dealloced");
309 
310 	VM_OBJECT_ASSERT_WLOCKED(object);
311 	vm_object_pip_wait(object, "vnpdea");
312 	refs = object->ref_count;
313 
314 	object->handle = NULL;
315 	object->type = OBJT_DEAD;
316 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
317 	if (object->un_pager.vnp.writemappings > 0) {
318 		object->un_pager.vnp.writemappings = 0;
319 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
320 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
321 		    __func__, vp, vp->v_writecount);
322 	}
323 	vp->v_object = NULL;
324 	VI_LOCK(vp);
325 
326 	/*
327 	 * vm_map_entry_set_vnode_text() cannot reach this vnode by
328 	 * following object->handle.  Clear all text references now.
329 	 * This also clears the transient references from
330 	 * kern_execve(), which is fine because dead_vnodeops uses nop
331 	 * for VOP_UNSET_TEXT().
332 	 */
333 	if (vp->v_writecount < 0)
334 		vp->v_writecount = 0;
335 	VI_UNLOCK(vp);
336 	VM_OBJECT_WUNLOCK(object);
337 	while (refs-- > 0)
338 		vunref(vp);
339 	VM_OBJECT_WLOCK(object);
340 }
341 
342 static boolean_t
343 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
344     int *after)
345 {
346 	struct vnode *vp = object->handle;
347 	daddr_t bn;
348 	uintptr_t lockstate;
349 	int err;
350 	daddr_t reqblock;
351 	int poff;
352 	int bsize;
353 	int pagesperblock, blocksperpage;
354 
355 	VM_OBJECT_ASSERT_LOCKED(object);
356 	/*
357 	 * If no vp or vp is doomed or marked transparent to VM, we do not
358 	 * have the page.
359 	 */
360 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
361 		return FALSE;
362 	/*
363 	 * If the offset is beyond end of file we do
364 	 * not have the page.
365 	 */
366 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
367 		return FALSE;
368 
369 	bsize = vp->v_mount->mnt_stat.f_iosize;
370 	pagesperblock = bsize / PAGE_SIZE;
371 	blocksperpage = 0;
372 	if (pagesperblock > 0) {
373 		reqblock = pindex / pagesperblock;
374 	} else {
375 		blocksperpage = (PAGE_SIZE / bsize);
376 		reqblock = pindex * blocksperpage;
377 	}
378 	lockstate = VM_OBJECT_DROP(object);
379 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
380 	VM_OBJECT_PICKUP(object, lockstate);
381 	if (err)
382 		return TRUE;
383 	if (bn == -1)
384 		return FALSE;
385 	if (pagesperblock > 0) {
386 		poff = pindex - (reqblock * pagesperblock);
387 		if (before) {
388 			*before *= pagesperblock;
389 			*before += poff;
390 		}
391 		if (after) {
392 			/*
393 			 * The BMAP vop can report a partial block in the
394 			 * 'after', but must not report blocks after EOF.
395 			 * Assert the latter, and truncate 'after' in case
396 			 * of the former.
397 			 */
398 			KASSERT((reqblock + *after) * pagesperblock <
399 			    roundup2(object->size, pagesperblock),
400 			    ("%s: reqblock %jd after %d size %ju", __func__,
401 			    (intmax_t )reqblock, *after,
402 			    (uintmax_t )object->size));
403 			*after *= pagesperblock;
404 			*after += pagesperblock - (poff + 1);
405 			if (pindex + *after >= object->size)
406 				*after = object->size - 1 - pindex;
407 		}
408 	} else {
409 		if (before) {
410 			*before /= blocksperpage;
411 		}
412 
413 		if (after) {
414 			*after /= blocksperpage;
415 		}
416 	}
417 	return TRUE;
418 }
419 
420 /*
421  * Lets the VM system know about a change in size for a file.
422  * We adjust our own internal size and flush any cached pages in
423  * the associated object that are affected by the size change.
424  *
425  * Note: this routine may be invoked as a result of a pager put
426  * operation (possibly at object termination time), so we must be careful.
427  */
428 void
429 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
430 {
431 	vm_object_t object;
432 	vm_page_t m;
433 	vm_pindex_t nobjsize;
434 
435 	if ((object = vp->v_object) == NULL)
436 		return;
437 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
438 	VM_OBJECT_WLOCK(object);
439 	if (object->type == OBJT_DEAD) {
440 		VM_OBJECT_WUNLOCK(object);
441 		return;
442 	}
443 	KASSERT(object->type == OBJT_VNODE,
444 	    ("not vnode-backed object %p", object));
445 	if (nsize == object->un_pager.vnp.vnp_size) {
446 		/*
447 		 * Hasn't changed size
448 		 */
449 		VM_OBJECT_WUNLOCK(object);
450 		return;
451 	}
452 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
453 	if (nsize < object->un_pager.vnp.vnp_size) {
454 		/*
455 		 * File has shrunk. Toss any cached pages beyond the new EOF.
456 		 */
457 		if (nobjsize < object->size)
458 			vm_object_page_remove(object, nobjsize, object->size,
459 			    0);
460 		/*
461 		 * this gets rid of garbage at the end of a page that is now
462 		 * only partially backed by the vnode.
463 		 *
464 		 * XXX for some reason (I don't know yet), if we take a
465 		 * completely invalid page and mark it partially valid
466 		 * it can screw up NFS reads, so we don't allow the case.
467 		 */
468 		if ((nsize & PAGE_MASK) &&
469 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
470 		    m->valid != 0) {
471 			int base = (int)nsize & PAGE_MASK;
472 			int size = PAGE_SIZE - base;
473 
474 			/*
475 			 * Clear out partial-page garbage in case
476 			 * the page has been mapped.
477 			 */
478 			pmap_zero_page_area(m, base, size);
479 
480 			/*
481 			 * Update the valid bits to reflect the blocks that
482 			 * have been zeroed.  Some of these valid bits may
483 			 * have already been set.
484 			 */
485 			vm_page_set_valid_range(m, base, size);
486 
487 			/*
488 			 * Round "base" to the next block boundary so that the
489 			 * dirty bit for a partially zeroed block is not
490 			 * cleared.
491 			 */
492 			base = roundup2(base, DEV_BSIZE);
493 
494 			/*
495 			 * Clear out partial-page dirty bits.
496 			 *
497 			 * note that we do not clear out the valid
498 			 * bits.  This would prevent bogus_page
499 			 * replacement from working properly.
500 			 */
501 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
502 		}
503 	}
504 	object->un_pager.vnp.vnp_size = nsize;
505 	object->size = nobjsize;
506 	VM_OBJECT_WUNLOCK(object);
507 }
508 
509 /*
510  * calculate the linear (byte) disk address of specified virtual
511  * file address
512  */
513 static int
514 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
515     int *run)
516 {
517 	int bsize;
518 	int err;
519 	daddr_t vblock;
520 	daddr_t voffset;
521 
522 	if (address < 0)
523 		return -1;
524 
525 	if (vp->v_iflag & VI_DOOMED)
526 		return -1;
527 
528 	bsize = vp->v_mount->mnt_stat.f_iosize;
529 	vblock = address / bsize;
530 	voffset = address % bsize;
531 
532 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
533 	if (err == 0) {
534 		if (*rtaddress != -1)
535 			*rtaddress += voffset / DEV_BSIZE;
536 		if (run) {
537 			*run += 1;
538 			*run *= bsize / PAGE_SIZE;
539 			*run -= voffset / PAGE_SIZE;
540 		}
541 	}
542 
543 	return (err);
544 }
545 
546 /*
547  * small block filesystem vnode pager input
548  */
549 static int
550 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
551 {
552 	struct vnode *vp;
553 	struct bufobj *bo;
554 	struct buf *bp;
555 	struct sf_buf *sf;
556 	daddr_t fileaddr;
557 	vm_offset_t bsize;
558 	vm_page_bits_t bits;
559 	int error, i;
560 
561 	error = 0;
562 	vp = object->handle;
563 	if (vp->v_iflag & VI_DOOMED)
564 		return VM_PAGER_BAD;
565 
566 	bsize = vp->v_mount->mnt_stat.f_iosize;
567 
568 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
569 
570 	sf = sf_buf_alloc(m, 0);
571 
572 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
573 		vm_ooffset_t address;
574 
575 		bits = vm_page_bits(i * bsize, bsize);
576 		if (m->valid & bits)
577 			continue;
578 
579 		address = IDX_TO_OFF(m->pindex) + i * bsize;
580 		if (address >= object->un_pager.vnp.vnp_size) {
581 			fileaddr = -1;
582 		} else {
583 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
584 			if (error)
585 				break;
586 		}
587 		if (fileaddr != -1) {
588 			bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
589 
590 			/* build a minimal buffer header */
591 			bp->b_iocmd = BIO_READ;
592 			bp->b_iodone = bdone;
593 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
594 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
595 			bp->b_rcred = crhold(curthread->td_ucred);
596 			bp->b_wcred = crhold(curthread->td_ucred);
597 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
598 			bp->b_blkno = fileaddr;
599 			pbgetbo(bo, bp);
600 			bp->b_vp = vp;
601 			bp->b_bcount = bsize;
602 			bp->b_bufsize = bsize;
603 			bp->b_runningbufspace = bp->b_bufsize;
604 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
605 
606 			/* do the input */
607 			bp->b_iooffset = dbtob(bp->b_blkno);
608 			bstrategy(bp);
609 
610 			bwait(bp, PVM, "vnsrd");
611 
612 			if ((bp->b_ioflags & BIO_ERROR) != 0)
613 				error = EIO;
614 
615 			/*
616 			 * free the buffer header back to the swap buffer pool
617 			 */
618 			bp->b_vp = NULL;
619 			pbrelbo(bp);
620 			uma_zfree(vnode_pbuf_zone, bp);
621 			if (error)
622 				break;
623 		} else
624 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
625 		KASSERT((m->dirty & bits) == 0,
626 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
627 		VM_OBJECT_WLOCK(object);
628 		m->valid |= bits;
629 		VM_OBJECT_WUNLOCK(object);
630 	}
631 	sf_buf_free(sf);
632 	if (error) {
633 		return VM_PAGER_ERROR;
634 	}
635 	return VM_PAGER_OK;
636 }
637 
638 /*
639  * old style vnode pager input routine
640  */
641 static int
642 vnode_pager_input_old(vm_object_t object, vm_page_t m)
643 {
644 	struct uio auio;
645 	struct iovec aiov;
646 	int error;
647 	int size;
648 	struct sf_buf *sf;
649 	struct vnode *vp;
650 
651 	VM_OBJECT_ASSERT_WLOCKED(object);
652 	error = 0;
653 
654 	/*
655 	 * Return failure if beyond current EOF
656 	 */
657 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
658 		return VM_PAGER_BAD;
659 	} else {
660 		size = PAGE_SIZE;
661 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
662 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
663 		vp = object->handle;
664 		VM_OBJECT_WUNLOCK(object);
665 
666 		/*
667 		 * Allocate a kernel virtual address and initialize so that
668 		 * we can use VOP_READ/WRITE routines.
669 		 */
670 		sf = sf_buf_alloc(m, 0);
671 
672 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
673 		aiov.iov_len = size;
674 		auio.uio_iov = &aiov;
675 		auio.uio_iovcnt = 1;
676 		auio.uio_offset = IDX_TO_OFF(m->pindex);
677 		auio.uio_segflg = UIO_SYSSPACE;
678 		auio.uio_rw = UIO_READ;
679 		auio.uio_resid = size;
680 		auio.uio_td = curthread;
681 
682 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
683 		if (!error) {
684 			int count = size - auio.uio_resid;
685 
686 			if (count == 0)
687 				error = EINVAL;
688 			else if (count != PAGE_SIZE)
689 				bzero((caddr_t)sf_buf_kva(sf) + count,
690 				    PAGE_SIZE - count);
691 		}
692 		sf_buf_free(sf);
693 
694 		VM_OBJECT_WLOCK(object);
695 	}
696 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
697 	if (!error)
698 		m->valid = VM_PAGE_BITS_ALL;
699 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
700 }
701 
702 /*
703  * generic vnode pager input routine
704  */
705 
706 /*
707  * Local media VFS's that do not implement their own VOP_GETPAGES
708  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
709  * to implement the previous behaviour.
710  *
711  * All other FS's should use the bypass to get to the local media
712  * backing vp's VOP_GETPAGES.
713  */
714 static int
715 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
716     int *rahead)
717 {
718 	struct vnode *vp;
719 	int rtval;
720 
721 	vp = object->handle;
722 	VM_OBJECT_WUNLOCK(object);
723 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
724 	KASSERT(rtval != EOPNOTSUPP,
725 	    ("vnode_pager: FS getpages not implemented\n"));
726 	VM_OBJECT_WLOCK(object);
727 	return rtval;
728 }
729 
730 static int
731 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
732     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
733 {
734 	struct vnode *vp;
735 	int rtval;
736 
737 	vp = object->handle;
738 	VM_OBJECT_WUNLOCK(object);
739 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
740 	KASSERT(rtval != EOPNOTSUPP,
741 	    ("vnode_pager: FS getpages_async not implemented\n"));
742 	VM_OBJECT_WLOCK(object);
743 	return (rtval);
744 }
745 
746 /*
747  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
748  * local filesystems, where partially valid pages can only occur at
749  * the end of file.
750  */
751 int
752 vnode_pager_local_getpages(struct vop_getpages_args *ap)
753 {
754 
755 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
756 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
757 }
758 
759 int
760 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
761 {
762 
763 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
764 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
765 }
766 
767 /*
768  * This is now called from local media FS's to operate against their
769  * own vnodes if they fail to implement VOP_GETPAGES.
770  */
771 int
772 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
773     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
774 {
775 	vm_object_t object;
776 	struct bufobj *bo;
777 	struct buf *bp;
778 	off_t foff;
779 #ifdef INVARIANTS
780 	off_t blkno0;
781 #endif
782 	int bsize, pagesperblock;
783 	int error, before, after, rbehind, rahead, poff, i;
784 	int bytecount, secmask;
785 
786 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
787 	    ("%s does not support devices", __func__));
788 
789 	if (vp->v_iflag & VI_DOOMED)
790 		return (VM_PAGER_BAD);
791 
792 	object = vp->v_object;
793 	foff = IDX_TO_OFF(m[0]->pindex);
794 	bsize = vp->v_mount->mnt_stat.f_iosize;
795 	pagesperblock = bsize / PAGE_SIZE;
796 
797 	KASSERT(foff < object->un_pager.vnp.vnp_size,
798 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
799 	KASSERT(count <= nitems(bp->b_pages),
800 	    ("%s: requested %d pages", __func__, count));
801 
802 	/*
803 	 * The last page has valid blocks.  Invalid part can only
804 	 * exist at the end of file, and the page is made fully valid
805 	 * by zeroing in vm_pager_get_pages().
806 	 */
807 	if (m[count - 1]->valid != 0 && --count == 0) {
808 		if (iodone != NULL)
809 			iodone(arg, m, 1, 0);
810 		return (VM_PAGER_OK);
811 	}
812 
813 	bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
814 
815 	/*
816 	 * Get the underlying device blocks for the file with VOP_BMAP().
817 	 * If the file system doesn't support VOP_BMAP, use old way of
818 	 * getting pages via VOP_READ.
819 	 */
820 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
821 	if (error == EOPNOTSUPP) {
822 		uma_zfree(vnode_pbuf_zone, bp);
823 		VM_OBJECT_WLOCK(object);
824 		for (i = 0; i < count; i++) {
825 			VM_CNT_INC(v_vnodein);
826 			VM_CNT_INC(v_vnodepgsin);
827 			error = vnode_pager_input_old(object, m[i]);
828 			if (error)
829 				break;
830 		}
831 		VM_OBJECT_WUNLOCK(object);
832 		return (error);
833 	} else if (error != 0) {
834 		uma_zfree(vnode_pbuf_zone, bp);
835 		return (VM_PAGER_ERROR);
836 	}
837 
838 	/*
839 	 * If the file system supports BMAP, but blocksize is smaller
840 	 * than a page size, then use special small filesystem code.
841 	 */
842 	if (pagesperblock == 0) {
843 		uma_zfree(vnode_pbuf_zone, bp);
844 		for (i = 0; i < count; i++) {
845 			VM_CNT_INC(v_vnodein);
846 			VM_CNT_INC(v_vnodepgsin);
847 			error = vnode_pager_input_smlfs(object, m[i]);
848 			if (error)
849 				break;
850 		}
851 		return (error);
852 	}
853 
854 	/*
855 	 * A sparse file can be encountered only for a single page request,
856 	 * which may not be preceded by call to vm_pager_haspage().
857 	 */
858 	if (bp->b_blkno == -1) {
859 		KASSERT(count == 1,
860 		    ("%s: array[%d] request to a sparse file %p", __func__,
861 		    count, vp));
862 		uma_zfree(vnode_pbuf_zone, bp);
863 		pmap_zero_page(m[0]);
864 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
865 		    __func__, m[0]));
866 		VM_OBJECT_WLOCK(object);
867 		m[0]->valid = VM_PAGE_BITS_ALL;
868 		VM_OBJECT_WUNLOCK(object);
869 		return (VM_PAGER_OK);
870 	}
871 
872 #ifdef INVARIANTS
873 	blkno0 = bp->b_blkno;
874 #endif
875 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
876 
877 	/* Recalculate blocks available after/before to pages. */
878 	poff = (foff % bsize) / PAGE_SIZE;
879 	before *= pagesperblock;
880 	before += poff;
881 	after *= pagesperblock;
882 	after += pagesperblock - (poff + 1);
883 	if (m[0]->pindex + after >= object->size)
884 		after = object->size - 1 - m[0]->pindex;
885 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
886 	    __func__, count, after + 1));
887 	after -= count - 1;
888 
889 	/* Trim requested rbehind/rahead to possible values. */
890 	rbehind = a_rbehind ? *a_rbehind : 0;
891 	rahead = a_rahead ? *a_rahead : 0;
892 	rbehind = min(rbehind, before);
893 	rbehind = min(rbehind, m[0]->pindex);
894 	rahead = min(rahead, after);
895 	rahead = min(rahead, object->size - m[count - 1]->pindex);
896 	/*
897 	 * Check that total amount of pages fit into buf.  Trim rbehind and
898 	 * rahead evenly if not.
899 	 */
900 	if (rbehind + rahead + count > nitems(bp->b_pages)) {
901 		int trim, sum;
902 
903 		trim = rbehind + rahead + count - nitems(bp->b_pages) + 1;
904 		sum = rbehind + rahead;
905 		if (rbehind == before) {
906 			/* Roundup rbehind trim to block size. */
907 			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
908 			if (rbehind < 0)
909 				rbehind = 0;
910 		} else
911 			rbehind -= trim * rbehind / sum;
912 		rahead -= trim * rahead / sum;
913 	}
914 	KASSERT(rbehind + rahead + count <= nitems(bp->b_pages),
915 	    ("%s: behind %d ahead %d count %d", __func__,
916 	    rbehind, rahead, count));
917 
918 	/*
919 	 * Fill in the bp->b_pages[] array with requested and optional
920 	 * read behind or read ahead pages.  Read behind pages are looked
921 	 * up in a backward direction, down to a first cached page.  Same
922 	 * for read ahead pages, but there is no need to shift the array
923 	 * in case of encountering a cached page.
924 	 */
925 	i = bp->b_npages = 0;
926 	if (rbehind) {
927 		vm_pindex_t startpindex, tpindex;
928 		vm_page_t p;
929 
930 		VM_OBJECT_WLOCK(object);
931 		startpindex = m[0]->pindex - rbehind;
932 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
933 		    p->pindex >= startpindex)
934 			startpindex = p->pindex + 1;
935 
936 		/* tpindex is unsigned; beware of numeric underflow. */
937 		for (tpindex = m[0]->pindex - 1;
938 		    tpindex >= startpindex && tpindex < m[0]->pindex;
939 		    tpindex--, i++) {
940 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
941 			if (p == NULL) {
942 				/* Shift the array. */
943 				for (int j = 0; j < i; j++)
944 					bp->b_pages[j] = bp->b_pages[j +
945 					    tpindex + 1 - startpindex];
946 				break;
947 			}
948 			bp->b_pages[tpindex - startpindex] = p;
949 		}
950 
951 		bp->b_pgbefore = i;
952 		bp->b_npages += i;
953 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
954 	} else
955 		bp->b_pgbefore = 0;
956 
957 	/* Requested pages. */
958 	for (int j = 0; j < count; j++, i++)
959 		bp->b_pages[i] = m[j];
960 	bp->b_npages += count;
961 
962 	if (rahead) {
963 		vm_pindex_t endpindex, tpindex;
964 		vm_page_t p;
965 
966 		if (!VM_OBJECT_WOWNED(object))
967 			VM_OBJECT_WLOCK(object);
968 		endpindex = m[count - 1]->pindex + rahead + 1;
969 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
970 		    p->pindex < endpindex)
971 			endpindex = p->pindex;
972 		if (endpindex > object->size)
973 			endpindex = object->size;
974 
975 		for (tpindex = m[count - 1]->pindex + 1;
976 		    tpindex < endpindex; i++, tpindex++) {
977 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
978 			if (p == NULL)
979 				break;
980 			bp->b_pages[i] = p;
981 		}
982 
983 		bp->b_pgafter = i - bp->b_npages;
984 		bp->b_npages = i;
985 	} else
986 		bp->b_pgafter = 0;
987 
988 	if (VM_OBJECT_WOWNED(object))
989 		VM_OBJECT_WUNLOCK(object);
990 
991 	/* Report back actual behind/ahead read. */
992 	if (a_rbehind)
993 		*a_rbehind = bp->b_pgbefore;
994 	if (a_rahead)
995 		*a_rahead = bp->b_pgafter;
996 
997 #ifdef INVARIANTS
998 	KASSERT(bp->b_npages <= nitems(bp->b_pages),
999 	    ("%s: buf %p overflowed", __func__, bp));
1000 	for (int j = 1, prev = 0; j < bp->b_npages; j++) {
1001 		if (bp->b_pages[j] == bogus_page)
1002 			continue;
1003 		KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
1004 		    j - prev, ("%s: pages array not consecutive, bp %p",
1005 		     __func__, bp));
1006 		prev = j;
1007 	}
1008 #endif
1009 
1010 	/*
1011 	 * Recalculate first offset and bytecount with regards to read behind.
1012 	 * Truncate bytecount to vnode real size and round up physical size
1013 	 * for real devices.
1014 	 */
1015 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1016 	bytecount = bp->b_npages << PAGE_SHIFT;
1017 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
1018 		bytecount = object->un_pager.vnp.vnp_size - foff;
1019 	secmask = bo->bo_bsize - 1;
1020 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
1021 	    ("%s: sector size %d too large", __func__, secmask + 1));
1022 	bytecount = (bytecount + secmask) & ~secmask;
1023 
1024 	/*
1025 	 * And map the pages to be read into the kva, if the filesystem
1026 	 * requires mapped buffers.
1027 	 */
1028 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1029 	    unmapped_buf_allowed) {
1030 		bp->b_data = unmapped_buf;
1031 		bp->b_offset = 0;
1032 	} else {
1033 		bp->b_data = bp->b_kvabase;
1034 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1035 	}
1036 
1037 	/* Build a minimal buffer header. */
1038 	bp->b_iocmd = BIO_READ;
1039 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1040 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1041 	bp->b_rcred = crhold(curthread->td_ucred);
1042 	bp->b_wcred = crhold(curthread->td_ucred);
1043 	pbgetbo(bo, bp);
1044 	bp->b_vp = vp;
1045 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1046 	bp->b_iooffset = dbtob(bp->b_blkno);
1047 	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1048 	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1049 	    IDX_TO_OFF(m[0]->pindex) % bsize,
1050 	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1051 	    "blkno0 %ju b_blkno %ju", bsize,
1052 	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1053 	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1054 
1055 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1056 	VM_CNT_INC(v_vnodein);
1057 	VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1058 
1059 	if (iodone != NULL) { /* async */
1060 		bp->b_pgiodone = iodone;
1061 		bp->b_caller1 = arg;
1062 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1063 		bp->b_flags |= B_ASYNC;
1064 		BUF_KERNPROC(bp);
1065 		bstrategy(bp);
1066 		return (VM_PAGER_OK);
1067 	} else {
1068 		bp->b_iodone = bdone;
1069 		bstrategy(bp);
1070 		bwait(bp, PVM, "vnread");
1071 		error = vnode_pager_generic_getpages_done(bp);
1072 		for (i = 0; i < bp->b_npages; i++)
1073 			bp->b_pages[i] = NULL;
1074 		bp->b_vp = NULL;
1075 		pbrelbo(bp);
1076 		uma_zfree(vnode_pbuf_zone, bp);
1077 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1078 	}
1079 }
1080 
1081 static void
1082 vnode_pager_generic_getpages_done_async(struct buf *bp)
1083 {
1084 	int error;
1085 
1086 	error = vnode_pager_generic_getpages_done(bp);
1087 	/* Run the iodone upon the requested range. */
1088 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1089 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1090 	for (int i = 0; i < bp->b_npages; i++)
1091 		bp->b_pages[i] = NULL;
1092 	bp->b_vp = NULL;
1093 	pbrelbo(bp);
1094 	uma_zfree(vnode_pbuf_zone, bp);
1095 }
1096 
1097 static int
1098 vnode_pager_generic_getpages_done(struct buf *bp)
1099 {
1100 	vm_object_t object;
1101 	off_t tfoff, nextoff;
1102 	int i, error;
1103 
1104 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1105 	object = bp->b_vp->v_object;
1106 
1107 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1108 		if (!buf_mapped(bp)) {
1109 			bp->b_data = bp->b_kvabase;
1110 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1111 			    bp->b_npages);
1112 		}
1113 		bzero(bp->b_data + bp->b_bcount,
1114 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1115 	}
1116 	if (buf_mapped(bp)) {
1117 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1118 		bp->b_data = unmapped_buf;
1119 	}
1120 
1121 	VM_OBJECT_WLOCK(object);
1122 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1123 	    i < bp->b_npages; i++, tfoff = nextoff) {
1124 		vm_page_t mt;
1125 
1126 		nextoff = tfoff + PAGE_SIZE;
1127 		mt = bp->b_pages[i];
1128 
1129 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1130 			/*
1131 			 * Read filled up entire page.
1132 			 */
1133 			mt->valid = VM_PAGE_BITS_ALL;
1134 			KASSERT(mt->dirty == 0,
1135 			    ("%s: page %p is dirty", __func__, mt));
1136 			KASSERT(!pmap_page_is_mapped(mt),
1137 			    ("%s: page %p is mapped", __func__, mt));
1138 		} else {
1139 			/*
1140 			 * Read did not fill up entire page.
1141 			 *
1142 			 * Currently we do not set the entire page valid,
1143 			 * we just try to clear the piece that we couldn't
1144 			 * read.
1145 			 */
1146 			vm_page_set_valid_range(mt, 0,
1147 			    object->un_pager.vnp.vnp_size - tfoff);
1148 			KASSERT((mt->dirty & vm_page_bits(0,
1149 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1150 			    ("%s: page %p is dirty", __func__, mt));
1151 		}
1152 
1153 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1154 			vm_page_readahead_finish(mt);
1155 	}
1156 	VM_OBJECT_WUNLOCK(object);
1157 	if (error != 0)
1158 		printf("%s: I/O read error %d\n", __func__, error);
1159 
1160 	return (error);
1161 }
1162 
1163 /*
1164  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1165  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1166  * vnode_pager_generic_putpages() to implement the previous behaviour.
1167  *
1168  * All other FS's should use the bypass to get to the local media
1169  * backing vp's VOP_PUTPAGES.
1170  */
1171 static void
1172 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1173     int flags, int *rtvals)
1174 {
1175 	int rtval;
1176 	struct vnode *vp;
1177 	int bytes = count * PAGE_SIZE;
1178 
1179 	/*
1180 	 * Force synchronous operation if we are extremely low on memory
1181 	 * to prevent a low-memory deadlock.  VOP operations often need to
1182 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1183 	 * operation ).  The swapper handles the case by limiting the amount
1184 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1185 	 * for the vnode pager without a lot of work.
1186 	 *
1187 	 * Also, the backing vnode's iodone routine may not wake the pageout
1188 	 * daemon up.  This should be probably be addressed XXX.
1189 	 */
1190 
1191 	if (vm_page_count_min())
1192 		flags |= VM_PAGER_PUT_SYNC;
1193 
1194 	/*
1195 	 * Call device-specific putpages function
1196 	 */
1197 	vp = object->handle;
1198 	VM_OBJECT_WUNLOCK(object);
1199 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1200 	KASSERT(rtval != EOPNOTSUPP,
1201 	    ("vnode_pager: stale FS putpages\n"));
1202 	VM_OBJECT_WLOCK(object);
1203 }
1204 
1205 static int
1206 vn_off2bidx(vm_ooffset_t offset)
1207 {
1208 
1209 	return ((offset & PAGE_MASK) / DEV_BSIZE);
1210 }
1211 
1212 static bool
1213 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1214 {
1215 
1216 	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1217 	    offset < IDX_TO_OFF(m->pindex + 1),
1218 	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1219 	    (uintmax_t)offset));
1220 	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1221 }
1222 
1223 /*
1224  * This is now called from local media FS's to operate against their
1225  * own vnodes if they fail to implement VOP_PUTPAGES.
1226  *
1227  * This is typically called indirectly via the pageout daemon and
1228  * clustering has already typically occurred, so in general we ask the
1229  * underlying filesystem to write the data out asynchronously rather
1230  * then delayed.
1231  */
1232 int
1233 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1234     int flags, int *rtvals)
1235 {
1236 	vm_object_t object;
1237 	vm_page_t m;
1238 	vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1239 	struct uio auio;
1240 	struct iovec aiov;
1241 	off_t prev_resid, wrsz;
1242 	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1243 	bool in_hole;
1244 	static struct timeval lastfail;
1245 	static int curfail;
1246 
1247 	object = vp->v_object;
1248 	count = bytecount / PAGE_SIZE;
1249 
1250 	for (i = 0; i < count; i++)
1251 		rtvals[i] = VM_PAGER_ERROR;
1252 
1253 	if ((int64_t)ma[0]->pindex < 0) {
1254 		printf("vnode_pager_generic_putpages: "
1255 		    "attempt to write meta-data 0x%jx(%lx)\n",
1256 		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1257 		rtvals[0] = VM_PAGER_BAD;
1258 		return (VM_PAGER_BAD);
1259 	}
1260 
1261 	maxsize = count * PAGE_SIZE;
1262 	ncount = count;
1263 
1264 	poffset = IDX_TO_OFF(ma[0]->pindex);
1265 
1266 	/*
1267 	 * If the page-aligned write is larger then the actual file we
1268 	 * have to invalidate pages occurring beyond the file EOF.  However,
1269 	 * there is an edge case where a file may not be page-aligned where
1270 	 * the last page is partially invalid.  In this case the filesystem
1271 	 * may not properly clear the dirty bits for the entire page (which
1272 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1273 	 * With the page locked we are free to fix-up the dirty bits here.
1274 	 *
1275 	 * We do not under any circumstances truncate the valid bits, as
1276 	 * this will screw up bogus page replacement.
1277 	 */
1278 	VM_OBJECT_RLOCK(object);
1279 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1280 		if (!VM_OBJECT_TRYUPGRADE(object)) {
1281 			VM_OBJECT_RUNLOCK(object);
1282 			VM_OBJECT_WLOCK(object);
1283 			if (maxsize + poffset <= object->un_pager.vnp.vnp_size)
1284 				goto downgrade;
1285 		}
1286 		if (object->un_pager.vnp.vnp_size > poffset) {
1287 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1288 			ncount = btoc(maxsize);
1289 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1290 				pgoff = roundup2(pgoff, DEV_BSIZE);
1291 
1292 				/*
1293 				 * If the object is locked and the following
1294 				 * conditions hold, then the page's dirty
1295 				 * field cannot be concurrently changed by a
1296 				 * pmap operation.
1297 				 */
1298 				m = ma[ncount - 1];
1299 				vm_page_assert_sbusied(m);
1300 				KASSERT(!pmap_page_is_write_mapped(m),
1301 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1302 				MPASS(m->dirty != 0);
1303 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1304 				    pgoff);
1305 			}
1306 		} else {
1307 			maxsize = 0;
1308 			ncount = 0;
1309 		}
1310 		for (i = ncount; i < count; i++)
1311 			rtvals[i] = VM_PAGER_BAD;
1312 downgrade:
1313 		VM_OBJECT_LOCK_DOWNGRADE(object);
1314 	}
1315 
1316 	auio.uio_iov = &aiov;
1317 	auio.uio_segflg = UIO_NOCOPY;
1318 	auio.uio_rw = UIO_WRITE;
1319 	auio.uio_td = NULL;
1320 	maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1321 
1322 	for (prev_offset = poffset; prev_offset < maxblksz;) {
1323 		/* Skip clean blocks. */
1324 		for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1325 			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1326 			for (i = vn_off2bidx(prev_offset);
1327 			    i < sizeof(vm_page_bits_t) * NBBY &&
1328 			    prev_offset < maxblksz; i++) {
1329 				if (vn_dirty_blk(m, prev_offset)) {
1330 					in_hole = false;
1331 					break;
1332 				}
1333 				prev_offset += DEV_BSIZE;
1334 			}
1335 		}
1336 		if (in_hole)
1337 			goto write_done;
1338 
1339 		/* Find longest run of dirty blocks. */
1340 		for (next_offset = prev_offset; next_offset < maxblksz;) {
1341 			m = ma[OFF_TO_IDX(next_offset - poffset)];
1342 			for (i = vn_off2bidx(next_offset);
1343 			    i < sizeof(vm_page_bits_t) * NBBY &&
1344 			    next_offset < maxblksz; i++) {
1345 				if (!vn_dirty_blk(m, next_offset))
1346 					goto start_write;
1347 				next_offset += DEV_BSIZE;
1348 			}
1349 		}
1350 start_write:
1351 		if (next_offset > poffset + maxsize)
1352 			next_offset = poffset + maxsize;
1353 
1354 		/*
1355 		 * Getting here requires finding a dirty block in the
1356 		 * 'skip clean blocks' loop.
1357 		 */
1358 		MPASS(prev_offset < next_offset);
1359 
1360 		VM_OBJECT_RUNLOCK(object);
1361 		aiov.iov_base = NULL;
1362 		auio.uio_iovcnt = 1;
1363 		auio.uio_offset = prev_offset;
1364 		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1365 		    prev_offset;
1366 		error = VOP_WRITE(vp, &auio,
1367 		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1368 
1369 		wrsz = prev_resid - auio.uio_resid;
1370 		if (wrsz == 0) {
1371 			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1372 				vn_printf(vp, "vnode_pager_putpages: "
1373 				    "zero-length write at %ju resid %zd\n",
1374 				    auio.uio_offset, auio.uio_resid);
1375 			}
1376 			VM_OBJECT_RLOCK(object);
1377 			break;
1378 		}
1379 
1380 		/* Adjust the starting offset for next iteration. */
1381 		prev_offset += wrsz;
1382 		MPASS(auio.uio_offset == prev_offset);
1383 
1384 		ppscheck = 0;
1385 		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1386 		    &curfail, 1)) != 0)
1387 			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1388 			    error);
1389 		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1390 		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1391 			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1392 			    "at %ju\n", auio.uio_resid,
1393 			    (uintmax_t)ma[0]->pindex);
1394 		VM_OBJECT_RLOCK(object);
1395 		if (error != 0 || auio.uio_resid != 0)
1396 			break;
1397 	}
1398 write_done:
1399 	/* Mark completely processed pages. */
1400 	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1401 		rtvals[i] = VM_PAGER_OK;
1402 	/* Mark partial EOF page. */
1403 	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1404 		rtvals[i++] = VM_PAGER_OK;
1405 	/* Unwritten pages in range, free bonus if the page is clean. */
1406 	for (; i < ncount; i++)
1407 		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1408 	VM_OBJECT_RUNLOCK(object);
1409 	VM_CNT_ADD(v_vnodepgsout, i);
1410 	VM_CNT_INC(v_vnodeout);
1411 	return (rtvals[0]);
1412 }
1413 
1414 int
1415 vnode_pager_putpages_ioflags(int pager_flags)
1416 {
1417 	int ioflags;
1418 
1419 	/*
1420 	 * Pageouts are already clustered, use IO_ASYNC to force a
1421 	 * bawrite() rather then a bdwrite() to prevent paging I/O
1422 	 * from saturating the buffer cache.  Dummy-up the sequential
1423 	 * heuristic to cause large ranges to cluster.  If neither
1424 	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1425 	 * cluster.
1426 	 */
1427 	ioflags = IO_VMIO;
1428 	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1429 		ioflags |= IO_SYNC;
1430 	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1431 		ioflags |= IO_ASYNC;
1432 	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1433 	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1434 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1435 	return (ioflags);
1436 }
1437 
1438 /*
1439  * vnode_pager_undirty_pages().
1440  *
1441  * A helper to mark pages as clean after pageout that was possibly
1442  * done with a short write.  The lpos argument specifies the page run
1443  * length in bytes, and the written argument specifies how many bytes
1444  * were actually written.  eof is the offset past the last valid byte
1445  * in the vnode using the absolute file position of the first byte in
1446  * the run as the base from which it is computed.
1447  */
1448 void
1449 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1450     int lpos)
1451 {
1452 	vm_object_t obj;
1453 	int i, pos, pos_devb;
1454 
1455 	if (written == 0 && eof >= lpos)
1456 		return;
1457 	obj = ma[0]->object;
1458 	VM_OBJECT_WLOCK(obj);
1459 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1460 		if (pos < trunc_page(written)) {
1461 			rtvals[i] = VM_PAGER_OK;
1462 			vm_page_undirty(ma[i]);
1463 		} else {
1464 			/* Partially written page. */
1465 			rtvals[i] = VM_PAGER_AGAIN;
1466 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1467 		}
1468 	}
1469 	if (eof >= lpos) /* avoid truncation */
1470 		goto done;
1471 	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1472 		if (pos != trunc_page(pos)) {
1473 			/*
1474 			 * The page contains the last valid byte in
1475 			 * the vnode, mark the rest of the page as
1476 			 * clean, potentially making the whole page
1477 			 * clean.
1478 			 */
1479 			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1480 			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1481 			    pos_devb);
1482 
1483 			/*
1484 			 * If the page was cleaned, report the pageout
1485 			 * on it as successful.  msync() no longer
1486 			 * needs to write out the page, endlessly
1487 			 * creating write requests and dirty buffers.
1488 			 */
1489 			if (ma[i]->dirty == 0)
1490 				rtvals[i] = VM_PAGER_OK;
1491 
1492 			pos = round_page(pos);
1493 		} else {
1494 			/* vm_pageout_flush() clears dirty */
1495 			rtvals[i] = VM_PAGER_BAD;
1496 			pos += PAGE_SIZE;
1497 		}
1498 	}
1499 done:
1500 	VM_OBJECT_WUNLOCK(obj);
1501 }
1502 
1503 void
1504 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1505     vm_offset_t end)
1506 {
1507 	struct vnode *vp;
1508 	vm_ooffset_t old_wm;
1509 
1510 	VM_OBJECT_WLOCK(object);
1511 	if (object->type != OBJT_VNODE) {
1512 		VM_OBJECT_WUNLOCK(object);
1513 		return;
1514 	}
1515 	old_wm = object->un_pager.vnp.writemappings;
1516 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1517 	vp = object->handle;
1518 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1519 		ASSERT_VOP_LOCKED(vp, "v_writecount inc");
1520 		VOP_ADD_WRITECOUNT_CHECKED(vp, 1);
1521 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1522 		    __func__, vp, vp->v_writecount);
1523 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1524 		ASSERT_VOP_LOCKED(vp, "v_writecount dec");
1525 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1526 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1527 		    __func__, vp, vp->v_writecount);
1528 	}
1529 	VM_OBJECT_WUNLOCK(object);
1530 }
1531 
1532 void
1533 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1534     vm_offset_t end)
1535 {
1536 	struct vnode *vp;
1537 	struct mount *mp;
1538 	vm_offset_t inc;
1539 
1540 	VM_OBJECT_WLOCK(object);
1541 
1542 	/*
1543 	 * First, recheck the object type to account for the race when
1544 	 * the vnode is reclaimed.
1545 	 */
1546 	if (object->type != OBJT_VNODE) {
1547 		VM_OBJECT_WUNLOCK(object);
1548 		return;
1549 	}
1550 
1551 	/*
1552 	 * Optimize for the case when writemappings is not going to
1553 	 * zero.
1554 	 */
1555 	inc = end - start;
1556 	if (object->un_pager.vnp.writemappings != inc) {
1557 		object->un_pager.vnp.writemappings -= inc;
1558 		VM_OBJECT_WUNLOCK(object);
1559 		return;
1560 	}
1561 
1562 	vp = object->handle;
1563 	vhold(vp);
1564 	VM_OBJECT_WUNLOCK(object);
1565 	mp = NULL;
1566 	vn_start_write(vp, &mp, V_WAIT);
1567 	vn_lock(vp, LK_SHARED | LK_RETRY);
1568 
1569 	/*
1570 	 * Decrement the object's writemappings, by swapping the start
1571 	 * and end arguments for vnode_pager_update_writecount().  If
1572 	 * there was not a race with vnode reclaimation, then the
1573 	 * vnode's v_writecount is decremented.
1574 	 */
1575 	vnode_pager_update_writecount(object, end, start);
1576 	VOP_UNLOCK(vp, 0);
1577 	vdrop(vp);
1578 	if (mp != NULL)
1579 		vn_finished_write(mp);
1580 }
1581