1 /* 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 * $FreeBSD$ 42 */ 43 44 /* 45 * Page to/from files (vnodes). 46 */ 47 48 /* 49 * TODO: 50 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 51 * greatly re-simplify the vnode_pager. 52 */ 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/proc.h> 57 #include <sys/vnode.h> 58 #include <sys/mount.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/vmmeter.h> 62 #include <sys/conf.h> 63 #include <sys/stdint.h> 64 65 #include <vm/vm.h> 66 #include <vm/vm_object.h> 67 #include <vm/vm_page.h> 68 #include <vm/vm_pager.h> 69 #include <vm/vm_map.h> 70 #include <vm/vnode_pager.h> 71 #include <vm/vm_extern.h> 72 73 static void vnode_pager_init(void); 74 static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 75 int *run); 76 static void vnode_pager_iodone(struct buf *bp); 77 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 78 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 79 static void vnode_pager_dealloc(vm_object_t); 80 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 81 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 82 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 83 84 struct pagerops vnodepagerops = { 85 vnode_pager_init, 86 vnode_pager_alloc, 87 vnode_pager_dealloc, 88 vnode_pager_getpages, 89 vnode_pager_putpages, 90 vnode_pager_haspage, 91 NULL 92 }; 93 94 int vnode_pbuf_freecnt; 95 96 static void 97 vnode_pager_init(void) 98 { 99 100 vnode_pbuf_freecnt = nswbuf / 2 + 1; 101 } 102 103 /* 104 * Allocate (or lookup) pager for a vnode. 105 * Handle is a vnode pointer. 106 * 107 * MPSAFE 108 */ 109 vm_object_t 110 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 111 vm_ooffset_t offset) 112 { 113 vm_object_t object; 114 struct vnode *vp; 115 116 /* 117 * Pageout to vnode, no can do yet. 118 */ 119 if (handle == NULL) 120 return (NULL); 121 122 vp = (struct vnode *) handle; 123 124 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 125 126 mtx_lock(&Giant); 127 /* 128 * Prevent race condition when allocating the object. This 129 * can happen with NFS vnodes since the nfsnode isn't locked. 130 */ 131 VI_LOCK(vp); 132 while (vp->v_iflag & VI_OLOCK) { 133 vp->v_iflag |= VI_OWANT; 134 msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0); 135 } 136 vp->v_iflag |= VI_OLOCK; 137 VI_UNLOCK(vp); 138 139 /* 140 * If the object is being terminated, wait for it to 141 * go away. 142 */ 143 while (((object = vp->v_object) != NULL) && 144 (object->flags & OBJ_DEAD)) { 145 tsleep(object, PVM, "vadead", 0); 146 } 147 148 if (vp->v_usecount == 0) 149 panic("vnode_pager_alloc: no vnode reference"); 150 151 if (object == NULL) { 152 /* 153 * And an object of the appropriate size 154 */ 155 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 156 157 object->un_pager.vnp.vnp_size = size; 158 159 object->handle = handle; 160 vp->v_object = object; 161 } else { 162 object->ref_count++; 163 } 164 VI_LOCK(vp); 165 vp->v_usecount++; 166 vp->v_iflag &= ~VI_OLOCK; 167 if (vp->v_iflag & VI_OWANT) { 168 vp->v_iflag &= ~VI_OWANT; 169 wakeup(vp); 170 } 171 VI_UNLOCK(vp); 172 mtx_unlock(&Giant); 173 return (object); 174 } 175 176 static void 177 vnode_pager_dealloc(object) 178 vm_object_t object; 179 { 180 struct vnode *vp = object->handle; 181 182 GIANT_REQUIRED; 183 if (vp == NULL) 184 panic("vnode_pager_dealloc: pager already dealloced"); 185 186 vm_object_pip_wait(object, "vnpdea"); 187 188 object->handle = NULL; 189 object->type = OBJT_DEAD; 190 ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc"); 191 vp->v_object = NULL; 192 vp->v_vflag &= ~(VV_TEXT | VV_OBJBUF); 193 } 194 195 static boolean_t 196 vnode_pager_haspage(object, pindex, before, after) 197 vm_object_t object; 198 vm_pindex_t pindex; 199 int *before; 200 int *after; 201 { 202 struct vnode *vp = object->handle; 203 daddr_t bn; 204 int err; 205 daddr_t reqblock; 206 int poff; 207 int bsize; 208 int pagesperblock, blocksperpage; 209 210 GIANT_REQUIRED; 211 /* 212 * If no vp or vp is doomed or marked transparent to VM, we do not 213 * have the page. 214 */ 215 if (vp == NULL) 216 return FALSE; 217 218 VI_LOCK(vp); 219 if (vp->v_iflag & VI_DOOMED) { 220 VI_UNLOCK(vp); 221 return FALSE; 222 } 223 VI_UNLOCK(vp); 224 /* 225 * If filesystem no longer mounted or offset beyond end of file we do 226 * not have the page. 227 */ 228 if ((vp->v_mount == NULL) || 229 (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)) 230 return FALSE; 231 232 bsize = vp->v_mount->mnt_stat.f_iosize; 233 pagesperblock = bsize / PAGE_SIZE; 234 blocksperpage = 0; 235 if (pagesperblock > 0) { 236 reqblock = pindex / pagesperblock; 237 } else { 238 blocksperpage = (PAGE_SIZE / bsize); 239 reqblock = pindex * blocksperpage; 240 } 241 err = VOP_BMAP(vp, reqblock, (struct vnode **) 0, &bn, 242 after, before); 243 if (err) 244 return TRUE; 245 if (bn == -1) 246 return FALSE; 247 if (pagesperblock > 0) { 248 poff = pindex - (reqblock * pagesperblock); 249 if (before) { 250 *before *= pagesperblock; 251 *before += poff; 252 } 253 if (after) { 254 int numafter; 255 *after *= pagesperblock; 256 numafter = pagesperblock - (poff + 1); 257 if (IDX_TO_OFF(pindex + numafter) > 258 object->un_pager.vnp.vnp_size) { 259 numafter = 260 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 261 pindex; 262 } 263 *after += numafter; 264 } 265 } else { 266 if (before) { 267 *before /= blocksperpage; 268 } 269 270 if (after) { 271 *after /= blocksperpage; 272 } 273 } 274 return TRUE; 275 } 276 277 /* 278 * Lets the VM system know about a change in size for a file. 279 * We adjust our own internal size and flush any cached pages in 280 * the associated object that are affected by the size change. 281 * 282 * Note: this routine may be invoked as a result of a pager put 283 * operation (possibly at object termination time), so we must be careful. 284 */ 285 void 286 vnode_pager_setsize(vp, nsize) 287 struct vnode *vp; 288 vm_ooffset_t nsize; 289 { 290 vm_pindex_t nobjsize; 291 vm_object_t object = vp->v_object; 292 293 GIANT_REQUIRED; 294 295 if (object == NULL) 296 return; 297 298 /* 299 * Hasn't changed size 300 */ 301 if (nsize == object->un_pager.vnp.vnp_size) 302 return; 303 304 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 305 306 /* 307 * File has shrunk. Toss any cached pages beyond the new EOF. 308 */ 309 if (nsize < object->un_pager.vnp.vnp_size) { 310 if (nobjsize < object->size) { 311 vm_object_lock(object); 312 vm_object_page_remove(object, nobjsize, object->size, 313 FALSE); 314 vm_object_unlock(object); 315 } 316 /* 317 * this gets rid of garbage at the end of a page that is now 318 * only partially backed by the vnode. 319 * 320 * XXX for some reason (I don't know yet), if we take a 321 * completely invalid page and mark it partially valid 322 * it can screw up NFS reads, so we don't allow the case. 323 */ 324 if (nsize & PAGE_MASK) { 325 vm_page_t m; 326 327 m = vm_page_lookup(object, OFF_TO_IDX(nsize)); 328 if (m && m->valid) { 329 int base = (int)nsize & PAGE_MASK; 330 int size = PAGE_SIZE - base; 331 332 /* 333 * Clear out partial-page garbage in case 334 * the page has been mapped. 335 */ 336 pmap_zero_page_area(m, base, size); 337 338 vm_page_lock_queues(); 339 /* 340 * XXX work around SMP data integrity race 341 * by unmapping the page from user processes. 342 * The garbage we just cleared may be mapped 343 * to a user process running on another cpu 344 * and this code is not running through normal 345 * I/O channels which handle SMP issues for 346 * us, so unmap page to synchronize all cpus. 347 * 348 * XXX should vm_pager_unmap_page() have 349 * dealt with this? 350 */ 351 pmap_remove_all(m); 352 353 /* 354 * Clear out partial-page dirty bits. This 355 * has the side effect of setting the valid 356 * bits, but that is ok. There are a bunch 357 * of places in the VM system where we expected 358 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 359 * case is one of them. If the page is still 360 * partially dirty, make it fully dirty. 361 * 362 * note that we do not clear out the valid 363 * bits. This would prevent bogus_page 364 * replacement from working properly. 365 */ 366 vm_page_set_validclean(m, base, size); 367 if (m->dirty != 0) 368 m->dirty = VM_PAGE_BITS_ALL; 369 vm_page_unlock_queues(); 370 } 371 } 372 } 373 object->un_pager.vnp.vnp_size = nsize; 374 object->size = nobjsize; 375 } 376 377 /* 378 * calculate the linear (byte) disk address of specified virtual 379 * file address 380 */ 381 static vm_offset_t 382 vnode_pager_addr(vp, address, run) 383 struct vnode *vp; 384 vm_ooffset_t address; 385 int *run; 386 { 387 int rtaddress; 388 int bsize; 389 daddr_t block; 390 struct vnode *rtvp; 391 int err; 392 daddr_t vblock; 393 int voffset; 394 395 GIANT_REQUIRED; 396 if ((int) address < 0) 397 return -1; 398 399 if (vp->v_mount == NULL) 400 return -1; 401 402 bsize = vp->v_mount->mnt_stat.f_iosize; 403 vblock = address / bsize; 404 voffset = address % bsize; 405 406 err = VOP_BMAP(vp, vblock, &rtvp, &block, run, NULL); 407 408 if (err || (block == -1)) 409 rtaddress = -1; 410 else { 411 rtaddress = block + voffset / DEV_BSIZE; 412 if (run) { 413 *run += 1; 414 *run *= bsize/PAGE_SIZE; 415 *run -= voffset/PAGE_SIZE; 416 } 417 } 418 419 return rtaddress; 420 } 421 422 /* 423 * interrupt routine for I/O completion 424 */ 425 static void 426 vnode_pager_iodone(bp) 427 struct buf *bp; 428 { 429 bp->b_flags |= B_DONE; 430 wakeup(bp); 431 } 432 433 /* 434 * small block filesystem vnode pager input 435 */ 436 static int 437 vnode_pager_input_smlfs(object, m) 438 vm_object_t object; 439 vm_page_t m; 440 { 441 int i; 442 int s; 443 struct vnode *dp, *vp; 444 struct buf *bp; 445 vm_offset_t kva; 446 int fileaddr; 447 vm_offset_t bsize; 448 int error = 0; 449 450 GIANT_REQUIRED; 451 452 vp = object->handle; 453 if (vp->v_mount == NULL) 454 return VM_PAGER_BAD; 455 456 bsize = vp->v_mount->mnt_stat.f_iosize; 457 458 VOP_BMAP(vp, 0, &dp, 0, NULL, NULL); 459 460 kva = vm_pager_map_page(m); 461 462 for (i = 0; i < PAGE_SIZE / bsize; i++) { 463 vm_ooffset_t address; 464 465 if (vm_page_bits(i * bsize, bsize) & m->valid) 466 continue; 467 468 address = IDX_TO_OFF(m->pindex) + i * bsize; 469 if (address >= object->un_pager.vnp.vnp_size) { 470 fileaddr = -1; 471 } else { 472 fileaddr = vnode_pager_addr(vp, address, NULL); 473 } 474 if (fileaddr != -1) { 475 bp = getpbuf(&vnode_pbuf_freecnt); 476 477 /* build a minimal buffer header */ 478 bp->b_iocmd = BIO_READ; 479 bp->b_iodone = vnode_pager_iodone; 480 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 481 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 482 bp->b_rcred = crhold(curthread->td_ucred); 483 bp->b_wcred = crhold(curthread->td_ucred); 484 bp->b_data = (caddr_t) kva + i * bsize; 485 bp->b_blkno = fileaddr; 486 pbgetvp(dp, bp); 487 bp->b_bcount = bsize; 488 bp->b_bufsize = bsize; 489 bp->b_runningbufspace = bp->b_bufsize; 490 runningbufspace += bp->b_runningbufspace; 491 492 /* do the input */ 493 VOP_SPECSTRATEGY(bp->b_vp, bp); 494 495 /* we definitely need to be at splvm here */ 496 497 s = splvm(); 498 while ((bp->b_flags & B_DONE) == 0) { 499 tsleep(bp, PVM, "vnsrd", 0); 500 } 501 splx(s); 502 if ((bp->b_ioflags & BIO_ERROR) != 0) 503 error = EIO; 504 505 /* 506 * free the buffer header back to the swap buffer pool 507 */ 508 relpbuf(bp, &vnode_pbuf_freecnt); 509 if (error) 510 break; 511 512 vm_page_lock_queues(); 513 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 514 vm_page_unlock_queues(); 515 } else { 516 vm_page_lock_queues(); 517 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 518 vm_page_unlock_queues(); 519 bzero((caddr_t) kva + i * bsize, bsize); 520 } 521 } 522 vm_pager_unmap_page(kva); 523 vm_page_lock_queues(); 524 pmap_clear_modify(m); 525 vm_page_flag_clear(m, PG_ZERO); 526 vm_page_unlock_queues(); 527 if (error) { 528 return VM_PAGER_ERROR; 529 } 530 return VM_PAGER_OK; 531 532 } 533 534 535 /* 536 * old style vnode pager output routine 537 */ 538 static int 539 vnode_pager_input_old(object, m) 540 vm_object_t object; 541 vm_page_t m; 542 { 543 struct uio auio; 544 struct iovec aiov; 545 int error; 546 int size; 547 vm_offset_t kva; 548 struct vnode *vp; 549 550 GIANT_REQUIRED; 551 error = 0; 552 553 /* 554 * Return failure if beyond current EOF 555 */ 556 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 557 return VM_PAGER_BAD; 558 } else { 559 size = PAGE_SIZE; 560 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 561 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 562 563 /* 564 * Allocate a kernel virtual address and initialize so that 565 * we can use VOP_READ/WRITE routines. 566 */ 567 kva = vm_pager_map_page(m); 568 569 vp = object->handle; 570 aiov.iov_base = (caddr_t) kva; 571 aiov.iov_len = size; 572 auio.uio_iov = &aiov; 573 auio.uio_iovcnt = 1; 574 auio.uio_offset = IDX_TO_OFF(m->pindex); 575 auio.uio_segflg = UIO_SYSSPACE; 576 auio.uio_rw = UIO_READ; 577 auio.uio_resid = size; 578 auio.uio_td = curthread; 579 580 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 581 if (!error) { 582 int count = size - auio.uio_resid; 583 584 if (count == 0) 585 error = EINVAL; 586 else if (count != PAGE_SIZE) 587 bzero((caddr_t) kva + count, PAGE_SIZE - count); 588 } 589 vm_pager_unmap_page(kva); 590 } 591 vm_page_lock_queues(); 592 pmap_clear_modify(m); 593 vm_page_undirty(m); 594 vm_page_flag_clear(m, PG_ZERO); 595 if (!error) 596 m->valid = VM_PAGE_BITS_ALL; 597 vm_page_unlock_queues(); 598 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 599 } 600 601 /* 602 * generic vnode pager input routine 603 */ 604 605 /* 606 * Local media VFS's that do not implement their own VOP_GETPAGES 607 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 608 * to implement the previous behaviour. 609 * 610 * All other FS's should use the bypass to get to the local media 611 * backing vp's VOP_GETPAGES. 612 */ 613 static int 614 vnode_pager_getpages(object, m, count, reqpage) 615 vm_object_t object; 616 vm_page_t *m; 617 int count; 618 int reqpage; 619 { 620 int rtval; 621 struct vnode *vp; 622 int bytes = count * PAGE_SIZE; 623 624 GIANT_REQUIRED; 625 vp = object->handle; 626 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 627 KASSERT(rtval != EOPNOTSUPP, 628 ("vnode_pager: FS getpages not implemented\n")); 629 return rtval; 630 } 631 632 /* 633 * This is now called from local media FS's to operate against their 634 * own vnodes if they fail to implement VOP_GETPAGES. 635 */ 636 int 637 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 638 struct vnode *vp; 639 vm_page_t *m; 640 int bytecount; 641 int reqpage; 642 { 643 vm_object_t object; 644 vm_offset_t kva; 645 off_t foff, tfoff, nextoff; 646 int i, j, size, bsize, first, firstaddr; 647 struct vnode *dp; 648 int runpg; 649 int runend; 650 struct buf *bp; 651 int s; 652 int count; 653 int error = 0; 654 655 GIANT_REQUIRED; 656 object = vp->v_object; 657 count = bytecount / PAGE_SIZE; 658 659 if (vp->v_mount == NULL) 660 return VM_PAGER_BAD; 661 662 bsize = vp->v_mount->mnt_stat.f_iosize; 663 664 /* get the UNDERLYING device for the file with VOP_BMAP() */ 665 666 /* 667 * originally, we did not check for an error return value -- assuming 668 * an fs always has a bmap entry point -- that assumption is wrong!!! 669 */ 670 foff = IDX_TO_OFF(m[reqpage]->pindex); 671 672 /* 673 * if we can't bmap, use old VOP code 674 */ 675 if (VOP_BMAP(vp, 0, &dp, 0, NULL, NULL)) { 676 vm_page_lock_queues(); 677 for (i = 0; i < count; i++) 678 if (i != reqpage) 679 vm_page_free(m[i]); 680 vm_page_unlock_queues(); 681 cnt.v_vnodein++; 682 cnt.v_vnodepgsin++; 683 return vnode_pager_input_old(object, m[reqpage]); 684 685 /* 686 * if the blocksize is smaller than a page size, then use 687 * special small filesystem code. NFS sometimes has a small 688 * blocksize, but it can handle large reads itself. 689 */ 690 } else if ((PAGE_SIZE / bsize) > 1 && 691 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 692 vm_page_lock_queues(); 693 for (i = 0; i < count; i++) 694 if (i != reqpage) 695 vm_page_free(m[i]); 696 vm_page_unlock_queues(); 697 cnt.v_vnodein++; 698 cnt.v_vnodepgsin++; 699 return vnode_pager_input_smlfs(object, m[reqpage]); 700 } 701 702 /* 703 * If we have a completely valid page available to us, we can 704 * clean up and return. Otherwise we have to re-read the 705 * media. 706 */ 707 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 708 vm_page_lock_queues(); 709 for (i = 0; i < count; i++) 710 if (i != reqpage) 711 vm_page_free(m[i]); 712 vm_page_unlock_queues(); 713 return VM_PAGER_OK; 714 } 715 m[reqpage]->valid = 0; 716 717 /* 718 * here on direct device I/O 719 */ 720 firstaddr = -1; 721 722 /* 723 * calculate the run that includes the required page 724 */ 725 for (first = 0, i = 0; i < count; i = runend) { 726 firstaddr = vnode_pager_addr(vp, 727 IDX_TO_OFF(m[i]->pindex), &runpg); 728 if (firstaddr == -1) { 729 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 730 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 731 firstaddr, (uintmax_t)(foff >> 32), 732 (uintmax_t)foff, 733 (uintmax_t) 734 (object->un_pager.vnp.vnp_size >> 32), 735 (uintmax_t)object->un_pager.vnp.vnp_size); 736 } 737 vm_page_lock_queues(); 738 vm_page_free(m[i]); 739 vm_page_unlock_queues(); 740 runend = i + 1; 741 first = runend; 742 continue; 743 } 744 runend = i + runpg; 745 if (runend <= reqpage) { 746 vm_page_lock_queues(); 747 for (j = i; j < runend; j++) 748 vm_page_free(m[j]); 749 vm_page_unlock_queues(); 750 } else { 751 if (runpg < (count - first)) { 752 vm_page_lock_queues(); 753 for (i = first + runpg; i < count; i++) 754 vm_page_free(m[i]); 755 vm_page_unlock_queues(); 756 count = first + runpg; 757 } 758 break; 759 } 760 first = runend; 761 } 762 763 /* 764 * the first and last page have been calculated now, move input pages 765 * to be zero based... 766 */ 767 if (first != 0) { 768 for (i = first; i < count; i++) { 769 m[i - first] = m[i]; 770 } 771 count -= first; 772 reqpage -= first; 773 } 774 775 /* 776 * calculate the file virtual address for the transfer 777 */ 778 foff = IDX_TO_OFF(m[0]->pindex); 779 780 /* 781 * calculate the size of the transfer 782 */ 783 size = count * PAGE_SIZE; 784 if ((foff + size) > object->un_pager.vnp.vnp_size) 785 size = object->un_pager.vnp.vnp_size - foff; 786 787 /* 788 * round up physical size for real devices. 789 */ 790 if (dp->v_type == VBLK || dp->v_type == VCHR) { 791 int secmask = dp->v_rdev->si_bsize_phys - 1; 792 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1)); 793 size = (size + secmask) & ~secmask; 794 } 795 796 bp = getpbuf(&vnode_pbuf_freecnt); 797 kva = (vm_offset_t) bp->b_data; 798 799 /* 800 * and map the pages to be read into the kva 801 */ 802 pmap_qenter(kva, m, count); 803 804 /* build a minimal buffer header */ 805 bp->b_iocmd = BIO_READ; 806 bp->b_iodone = vnode_pager_iodone; 807 /* B_PHYS is not set, but it is nice to fill this in */ 808 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 809 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 810 bp->b_rcred = crhold(curthread->td_ucred); 811 bp->b_wcred = crhold(curthread->td_ucred); 812 bp->b_blkno = firstaddr; 813 pbgetvp(dp, bp); 814 bp->b_bcount = size; 815 bp->b_bufsize = size; 816 bp->b_runningbufspace = bp->b_bufsize; 817 runningbufspace += bp->b_runningbufspace; 818 819 cnt.v_vnodein++; 820 cnt.v_vnodepgsin += count; 821 822 /* do the input */ 823 if (dp->v_type == VCHR) 824 VOP_SPECSTRATEGY(bp->b_vp, bp); 825 else 826 VOP_STRATEGY(bp->b_vp, bp); 827 828 s = splvm(); 829 /* we definitely need to be at splvm here */ 830 831 while ((bp->b_flags & B_DONE) == 0) { 832 tsleep(bp, PVM, "vnread", 0); 833 } 834 splx(s); 835 if ((bp->b_ioflags & BIO_ERROR) != 0) 836 error = EIO; 837 838 if (!error) { 839 if (size != count * PAGE_SIZE) 840 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 841 } 842 pmap_qremove(kva, count); 843 844 /* 845 * free the buffer header back to the swap buffer pool 846 */ 847 relpbuf(bp, &vnode_pbuf_freecnt); 848 849 vm_page_lock_queues(); 850 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 851 vm_page_t mt; 852 853 nextoff = tfoff + PAGE_SIZE; 854 mt = m[i]; 855 856 if (nextoff <= object->un_pager.vnp.vnp_size) { 857 /* 858 * Read filled up entire page. 859 */ 860 mt->valid = VM_PAGE_BITS_ALL; 861 vm_page_undirty(mt); /* should be an assert? XXX */ 862 pmap_clear_modify(mt); 863 } else { 864 /* 865 * Read did not fill up entire page. Since this 866 * is getpages, the page may be mapped, so we have 867 * to zero the invalid portions of the page even 868 * though we aren't setting them valid. 869 * 870 * Currently we do not set the entire page valid, 871 * we just try to clear the piece that we couldn't 872 * read. 873 */ 874 vm_page_set_validclean(mt, 0, 875 object->un_pager.vnp.vnp_size - tfoff); 876 /* handled by vm_fault now */ 877 /* vm_page_zero_invalid(mt, FALSE); */ 878 } 879 880 vm_page_flag_clear(mt, PG_ZERO); 881 if (i != reqpage) { 882 883 /* 884 * whether or not to leave the page activated is up in 885 * the air, but we should put the page on a page queue 886 * somewhere. (it already is in the object). Result: 887 * It appears that empirical results show that 888 * deactivating pages is best. 889 */ 890 891 /* 892 * just in case someone was asking for this page we 893 * now tell them that it is ok to use 894 */ 895 if (!error) { 896 if (mt->flags & PG_WANTED) 897 vm_page_activate(mt); 898 else 899 vm_page_deactivate(mt); 900 vm_page_wakeup(mt); 901 } else { 902 vm_page_free(mt); 903 } 904 } 905 } 906 vm_page_unlock_queues(); 907 if (error) { 908 printf("vnode_pager_getpages: I/O read error\n"); 909 } 910 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 911 } 912 913 /* 914 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 915 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 916 * vnode_pager_generic_putpages() to implement the previous behaviour. 917 * 918 * All other FS's should use the bypass to get to the local media 919 * backing vp's VOP_PUTPAGES. 920 */ 921 static void 922 vnode_pager_putpages(object, m, count, sync, rtvals) 923 vm_object_t object; 924 vm_page_t *m; 925 int count; 926 boolean_t sync; 927 int *rtvals; 928 { 929 int rtval; 930 struct vnode *vp; 931 struct mount *mp; 932 int bytes = count * PAGE_SIZE; 933 934 GIANT_REQUIRED; 935 /* 936 * Force synchronous operation if we are extremely low on memory 937 * to prevent a low-memory deadlock. VOP operations often need to 938 * allocate more memory to initiate the I/O ( i.e. do a BMAP 939 * operation ). The swapper handles the case by limiting the amount 940 * of asynchronous I/O, but that sort of solution doesn't scale well 941 * for the vnode pager without a lot of work. 942 * 943 * Also, the backing vnode's iodone routine may not wake the pageout 944 * daemon up. This should be probably be addressed XXX. 945 */ 946 947 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 948 sync |= OBJPC_SYNC; 949 950 /* 951 * Call device-specific putpages function 952 */ 953 vp = object->handle; 954 if (vp->v_type != VREG) 955 mp = NULL; 956 (void)vn_start_write(vp, &mp, V_WAIT); 957 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 958 KASSERT(rtval != EOPNOTSUPP, 959 ("vnode_pager: stale FS putpages\n")); 960 vn_finished_write(mp); 961 } 962 963 964 /* 965 * This is now called from local media FS's to operate against their 966 * own vnodes if they fail to implement VOP_PUTPAGES. 967 * 968 * This is typically called indirectly via the pageout daemon and 969 * clustering has already typically occured, so in general we ask the 970 * underlying filesystem to write the data out asynchronously rather 971 * then delayed. 972 */ 973 int 974 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 975 struct vnode *vp; 976 vm_page_t *m; 977 int bytecount; 978 int flags; 979 int *rtvals; 980 { 981 int i; 982 vm_object_t object; 983 int count; 984 985 int maxsize, ncount; 986 vm_ooffset_t poffset; 987 struct uio auio; 988 struct iovec aiov; 989 int error; 990 int ioflags; 991 992 GIANT_REQUIRED; 993 object = vp->v_object; 994 count = bytecount / PAGE_SIZE; 995 996 for (i = 0; i < count; i++) 997 rtvals[i] = VM_PAGER_AGAIN; 998 999 if ((int) m[0]->pindex < 0) { 1000 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n", 1001 (long)m[0]->pindex, m[0]->dirty); 1002 rtvals[0] = VM_PAGER_BAD; 1003 return VM_PAGER_BAD; 1004 } 1005 1006 maxsize = count * PAGE_SIZE; 1007 ncount = count; 1008 1009 poffset = IDX_TO_OFF(m[0]->pindex); 1010 1011 /* 1012 * If the page-aligned write is larger then the actual file we 1013 * have to invalidate pages occuring beyond the file EOF. However, 1014 * there is an edge case where a file may not be page-aligned where 1015 * the last page is partially invalid. In this case the filesystem 1016 * may not properly clear the dirty bits for the entire page (which 1017 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1018 * With the page locked we are free to fix-up the dirty bits here. 1019 * 1020 * We do not under any circumstances truncate the valid bits, as 1021 * this will screw up bogus page replacement. 1022 */ 1023 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1024 if (object->un_pager.vnp.vnp_size > poffset) { 1025 int pgoff; 1026 1027 maxsize = object->un_pager.vnp.vnp_size - poffset; 1028 ncount = btoc(maxsize); 1029 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1030 vm_page_clear_dirty(m[ncount - 1], pgoff, 1031 PAGE_SIZE - pgoff); 1032 } 1033 } else { 1034 maxsize = 0; 1035 ncount = 0; 1036 } 1037 if (ncount < count) { 1038 for (i = ncount; i < count; i++) { 1039 rtvals[i] = VM_PAGER_BAD; 1040 } 1041 } 1042 } 1043 1044 /* 1045 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 1046 * rather then a bdwrite() to prevent paging I/O from saturating 1047 * the buffer cache. Dummy-up the sequential heuristic to cause 1048 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1049 * the system decides how to cluster. 1050 */ 1051 ioflags = IO_VMIO; 1052 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1053 ioflags |= IO_SYNC; 1054 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1055 ioflags |= IO_ASYNC; 1056 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1057 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1058 1059 aiov.iov_base = (caddr_t) 0; 1060 aiov.iov_len = maxsize; 1061 auio.uio_iov = &aiov; 1062 auio.uio_iovcnt = 1; 1063 auio.uio_offset = poffset; 1064 auio.uio_segflg = UIO_NOCOPY; 1065 auio.uio_rw = UIO_WRITE; 1066 auio.uio_resid = maxsize; 1067 auio.uio_td = (struct thread *) 0; 1068 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1069 cnt.v_vnodeout++; 1070 cnt.v_vnodepgsout += ncount; 1071 1072 if (error) { 1073 printf("vnode_pager_putpages: I/O error %d\n", error); 1074 } 1075 if (auio.uio_resid) { 1076 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1077 auio.uio_resid, (u_long)m[0]->pindex); 1078 } 1079 for (i = 0; i < ncount; i++) { 1080 rtvals[i] = VM_PAGER_OK; 1081 } 1082 return rtvals[0]; 1083 } 1084 1085 struct vnode * 1086 vnode_pager_lock(object) 1087 vm_object_t object; 1088 { 1089 struct thread *td = curthread; /* XXX */ 1090 1091 GIANT_REQUIRED; 1092 1093 for (; object != NULL; object = object->backing_object) { 1094 if (object->type != OBJT_VNODE) 1095 continue; 1096 if (object->flags & OBJ_DEAD) { 1097 return NULL; 1098 } 1099 1100 /* XXX; If object->handle can change, we need to cache it. */ 1101 while (vget(object->handle, 1102 LK_NOPAUSE | LK_SHARED | LK_RETRY | LK_CANRECURSE, td)){ 1103 if ((object->flags & OBJ_DEAD) || (object->type != OBJT_VNODE)) 1104 return NULL; 1105 printf("vnode_pager_lock: retrying\n"); 1106 } 1107 return object->handle; 1108 } 1109 return NULL; 1110 } 1111