xref: /freebsd/sys/vm/vnode_pager.c (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  * Copyright (c) 1993, 1994 John S. Dyson
8  * Copyright (c) 1995, David Greenman
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
43  */
44 
45 /*
46  * Page to/from files (vnodes).
47  */
48 
49 /*
50  * TODO:
51  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52  *	greatly re-simplify the vnode_pager.
53  */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include "opt_vm.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/systm.h>
63 #include <sys/sysctl.h>
64 #include <sys/proc.h>
65 #include <sys/vnode.h>
66 #include <sys/mount.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/vmmeter.h>
70 #include <sys/ktr.h>
71 #include <sys/limits.h>
72 #include <sys/conf.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sf_buf.h>
76 #include <sys/domainset.h>
77 #include <sys/user.h>
78 
79 #include <machine/atomic.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_map.h>
87 #include <vm/vnode_pager.h>
88 #include <vm/vm_extern.h>
89 #include <vm/uma.h>
90 
91 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
92     daddr_t *rtaddress, int *run);
93 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
94 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
95 static void vnode_pager_dealloc(vm_object_t);
96 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
97 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
98     int *, vop_getpages_iodone_t, void *);
99 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
100 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
101 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
102     vm_ooffset_t, struct ucred *cred);
103 static int vnode_pager_generic_getpages_done(struct buf *);
104 static void vnode_pager_generic_getpages_done_async(struct buf *);
105 static void vnode_pager_update_writecount(vm_object_t, vm_offset_t,
106     vm_offset_t);
107 static void vnode_pager_release_writecount(vm_object_t, vm_offset_t,
108     vm_offset_t);
109 static void vnode_pager_getvp(vm_object_t, struct vnode **, bool *);
110 
111 const struct pagerops vnodepagerops = {
112 	.pgo_kvme_type = KVME_TYPE_VNODE,
113 	.pgo_alloc =	vnode_pager_alloc,
114 	.pgo_dealloc =	vnode_pager_dealloc,
115 	.pgo_getpages =	vnode_pager_getpages,
116 	.pgo_getpages_async = vnode_pager_getpages_async,
117 	.pgo_putpages =	vnode_pager_putpages,
118 	.pgo_haspage =	vnode_pager_haspage,
119 	.pgo_update_writecount = vnode_pager_update_writecount,
120 	.pgo_release_writecount = vnode_pager_release_writecount,
121 	.pgo_set_writeable_dirty = vm_object_set_writeable_dirty_,
122 	.pgo_mightbedirty = vm_object_mightbedirty_,
123 	.pgo_getvp = vnode_pager_getvp,
124 };
125 
126 static struct domainset *vnode_domainset = NULL;
127 
128 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset,
129     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_RW, &vnode_domainset, 0,
130     sysctl_handle_domainset, "A", "Default vnode NUMA policy");
131 
132 static int nvnpbufs;
133 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
134     &nvnpbufs, 0, "number of physical buffers allocated for vnode pager");
135 
136 static uma_zone_t vnode_pbuf_zone;
137 
138 static void
139 vnode_pager_init(void *dummy)
140 {
141 
142 #ifdef __LP64__
143 	nvnpbufs = nswbuf * 2;
144 #else
145 	nvnpbufs = nswbuf / 2;
146 #endif
147 	TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs);
148 	vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs);
149 }
150 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL);
151 
152 /* Create the VM system backing object for this vnode */
153 int
154 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
155 {
156 	vm_object_t object;
157 	vm_ooffset_t size = isize;
158 	struct vattr va;
159 	bool last;
160 
161 	if (!vn_isdisk(vp) && vn_canvmio(vp) == FALSE)
162 		return (0);
163 
164 	object = vp->v_object;
165 	if (object != NULL)
166 		return (0);
167 
168 	if (size == 0) {
169 		if (vn_isdisk(vp)) {
170 			size = IDX_TO_OFF(INT_MAX);
171 		} else {
172 			if (VOP_GETATTR(vp, &va, td->td_ucred))
173 				return (0);
174 			size = va.va_size;
175 		}
176 	}
177 
178 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
179 	/*
180 	 * Dereference the reference we just created.  This assumes
181 	 * that the object is associated with the vp.  We still have
182 	 * to serialize with vnode_pager_dealloc() for the last
183 	 * potential reference.
184 	 */
185 	VM_OBJECT_RLOCK(object);
186 	last = refcount_release(&object->ref_count);
187 	VM_OBJECT_RUNLOCK(object);
188 	if (last)
189 		vrele(vp);
190 
191 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
192 
193 	return (0);
194 }
195 
196 void
197 vnode_destroy_vobject(struct vnode *vp)
198 {
199 	struct vm_object *obj;
200 
201 	obj = vp->v_object;
202 	if (obj == NULL || obj->handle != vp)
203 		return;
204 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
205 	VM_OBJECT_WLOCK(obj);
206 	MPASS(obj->type == OBJT_VNODE);
207 	umtx_shm_object_terminated(obj);
208 	if (obj->ref_count == 0) {
209 		KASSERT((obj->flags & OBJ_DEAD) == 0,
210 		   ("vnode_destroy_vobject: Terminating dead object"));
211 		vm_object_set_flag(obj, OBJ_DEAD);
212 
213 		/*
214 		 * Clean pages and flush buffers.
215 		 */
216 		vm_object_page_clean(obj, 0, 0, OBJPC_SYNC);
217 		VM_OBJECT_WUNLOCK(obj);
218 
219 		vinvalbuf(vp, V_SAVE, 0, 0);
220 
221 		BO_LOCK(&vp->v_bufobj);
222 		vp->v_bufobj.bo_flag |= BO_DEAD;
223 		BO_UNLOCK(&vp->v_bufobj);
224 
225 		VM_OBJECT_WLOCK(obj);
226 		vm_object_terminate(obj);
227 	} else {
228 		/*
229 		 * Woe to the process that tries to page now :-).
230 		 */
231 		vm_pager_deallocate(obj);
232 		VM_OBJECT_WUNLOCK(obj);
233 	}
234 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
235 }
236 
237 /*
238  * Allocate (or lookup) pager for a vnode.
239  * Handle is a vnode pointer.
240  */
241 vm_object_t
242 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
243     vm_ooffset_t offset, struct ucred *cred)
244 {
245 	vm_object_t object;
246 	struct vnode *vp;
247 
248 	/*
249 	 * Pageout to vnode, no can do yet.
250 	 */
251 	if (handle == NULL)
252 		return (NULL);
253 
254 	vp = (struct vnode *)handle;
255 	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
256 	VNPASS(vp->v_usecount > 0, vp);
257 retry:
258 	object = vp->v_object;
259 
260 	if (object == NULL) {
261 		/*
262 		 * Add an object of the appropriate size
263 		 */
264 		object = vm_object_allocate(OBJT_VNODE,
265 		    OFF_TO_IDX(round_page(size)));
266 
267 		object->un_pager.vnp.vnp_size = size;
268 		object->un_pager.vnp.writemappings = 0;
269 		object->domain.dr_policy = vnode_domainset;
270 		object->handle = handle;
271 		if ((vp->v_vflag & VV_VMSIZEVNLOCK) != 0) {
272 			VM_OBJECT_WLOCK(object);
273 			vm_object_set_flag(object, OBJ_SIZEVNLOCK);
274 			VM_OBJECT_WUNLOCK(object);
275 		}
276 		VI_LOCK(vp);
277 		if (vp->v_object != NULL) {
278 			/*
279 			 * Object has been created while we were allocating.
280 			 */
281 			VI_UNLOCK(vp);
282 			VM_OBJECT_WLOCK(object);
283 			KASSERT(object->ref_count == 1,
284 			    ("leaked ref %p %d", object, object->ref_count));
285 			object->type = OBJT_DEAD;
286 			refcount_init(&object->ref_count, 0);
287 			VM_OBJECT_WUNLOCK(object);
288 			vm_object_destroy(object);
289 			goto retry;
290 		}
291 		vp->v_object = object;
292 		VI_UNLOCK(vp);
293 		vrefact(vp);
294 	} else {
295 		vm_object_reference(object);
296 #if VM_NRESERVLEVEL > 0
297 		if ((object->flags & OBJ_COLORED) == 0) {
298 			VM_OBJECT_WLOCK(object);
299 			vm_object_color(object, 0);
300 			VM_OBJECT_WUNLOCK(object);
301 		}
302 #endif
303 	}
304 	return (object);
305 }
306 
307 /*
308  *	The object must be locked.
309  */
310 static void
311 vnode_pager_dealloc(vm_object_t object)
312 {
313 	struct vnode *vp;
314 	int refs;
315 
316 	vp = object->handle;
317 	if (vp == NULL)
318 		panic("vnode_pager_dealloc: pager already dealloced");
319 
320 	VM_OBJECT_ASSERT_WLOCKED(object);
321 	vm_object_pip_wait(object, "vnpdea");
322 	refs = object->ref_count;
323 
324 	object->handle = NULL;
325 	object->type = OBJT_DEAD;
326 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
327 	if (object->un_pager.vnp.writemappings > 0) {
328 		object->un_pager.vnp.writemappings = 0;
329 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
330 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
331 		    __func__, vp, vp->v_writecount);
332 	}
333 	vp->v_object = NULL;
334 	VI_LOCK(vp);
335 
336 	/*
337 	 * vm_map_entry_set_vnode_text() cannot reach this vnode by
338 	 * following object->handle.  Clear all text references now.
339 	 * This also clears the transient references from
340 	 * kern_execve(), which is fine because dead_vnodeops uses nop
341 	 * for VOP_UNSET_TEXT().
342 	 */
343 	if (vp->v_writecount < 0)
344 		vp->v_writecount = 0;
345 	VI_UNLOCK(vp);
346 	VM_OBJECT_WUNLOCK(object);
347 	if (refs > 0)
348 		vunref(vp);
349 	VM_OBJECT_WLOCK(object);
350 }
351 
352 static boolean_t
353 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
354     int *after)
355 {
356 	struct vnode *vp = object->handle;
357 	daddr_t bn;
358 	uintptr_t lockstate;
359 	int err;
360 	daddr_t reqblock;
361 	int poff;
362 	int bsize;
363 	int pagesperblock, blocksperpage;
364 
365 	VM_OBJECT_ASSERT_LOCKED(object);
366 	/*
367 	 * If no vp or vp is doomed or marked transparent to VM, we do not
368 	 * have the page.
369 	 */
370 	if (vp == NULL || VN_IS_DOOMED(vp))
371 		return FALSE;
372 	/*
373 	 * If the offset is beyond end of file we do
374 	 * not have the page.
375 	 */
376 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
377 		return FALSE;
378 
379 	bsize = vp->v_mount->mnt_stat.f_iosize;
380 	pagesperblock = bsize / PAGE_SIZE;
381 	blocksperpage = 0;
382 	if (pagesperblock > 0) {
383 		reqblock = pindex / pagesperblock;
384 	} else {
385 		blocksperpage = (PAGE_SIZE / bsize);
386 		reqblock = pindex * blocksperpage;
387 	}
388 	lockstate = VM_OBJECT_DROP(object);
389 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
390 	VM_OBJECT_PICKUP(object, lockstate);
391 	if (err)
392 		return TRUE;
393 	if (bn == -1)
394 		return FALSE;
395 	if (pagesperblock > 0) {
396 		poff = pindex - (reqblock * pagesperblock);
397 		if (before) {
398 			*before *= pagesperblock;
399 			*before += poff;
400 		}
401 		if (after) {
402 			/*
403 			 * The BMAP vop can report a partial block in the
404 			 * 'after', but must not report blocks after EOF.
405 			 * Assert the latter, and truncate 'after' in case
406 			 * of the former.
407 			 */
408 			KASSERT((reqblock + *after) * pagesperblock <
409 			    roundup2(object->size, pagesperblock),
410 			    ("%s: reqblock %jd after %d size %ju", __func__,
411 			    (intmax_t )reqblock, *after,
412 			    (uintmax_t )object->size));
413 			*after *= pagesperblock;
414 			*after += pagesperblock - (poff + 1);
415 			if (pindex + *after >= object->size)
416 				*after = object->size - 1 - pindex;
417 		}
418 	} else {
419 		if (before) {
420 			*before /= blocksperpage;
421 		}
422 
423 		if (after) {
424 			*after /= blocksperpage;
425 		}
426 	}
427 	return TRUE;
428 }
429 
430 /*
431  * Lets the VM system know about a change in size for a file.
432  * We adjust our own internal size and flush any cached pages in
433  * the associated object that are affected by the size change.
434  *
435  * Note: this routine may be invoked as a result of a pager put
436  * operation (possibly at object termination time), so we must be careful.
437  */
438 void
439 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
440 {
441 	vm_object_t object;
442 	vm_page_t m;
443 	vm_pindex_t nobjsize;
444 
445 	if ((object = vp->v_object) == NULL)
446 		return;
447 #ifdef DEBUG_VFS_LOCKS
448 	{
449 		struct mount *mp;
450 
451 		mp = vp->v_mount;
452 		if (mp != NULL && (mp->mnt_kern_flag & MNTK_VMSETSIZE_BUG) == 0)
453 			assert_vop_elocked(vp,
454 			    "vnode_pager_setsize and not locked vnode");
455 	}
456 #endif
457 	VM_OBJECT_WLOCK(object);
458 	if (object->type == OBJT_DEAD) {
459 		VM_OBJECT_WUNLOCK(object);
460 		return;
461 	}
462 	KASSERT(object->type == OBJT_VNODE,
463 	    ("not vnode-backed object %p", object));
464 	if (nsize == object->un_pager.vnp.vnp_size) {
465 		/*
466 		 * Hasn't changed size
467 		 */
468 		VM_OBJECT_WUNLOCK(object);
469 		return;
470 	}
471 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
472 	if (nsize < object->un_pager.vnp.vnp_size) {
473 		/*
474 		 * File has shrunk. Toss any cached pages beyond the new EOF.
475 		 */
476 		if (nobjsize < object->size)
477 			vm_object_page_remove(object, nobjsize, object->size,
478 			    0);
479 		/*
480 		 * this gets rid of garbage at the end of a page that is now
481 		 * only partially backed by the vnode.
482 		 *
483 		 * XXX for some reason (I don't know yet), if we take a
484 		 * completely invalid page and mark it partially valid
485 		 * it can screw up NFS reads, so we don't allow the case.
486 		 */
487 		if (!(nsize & PAGE_MASK))
488 			goto out;
489 		m = vm_page_grab(object, OFF_TO_IDX(nsize), VM_ALLOC_NOCREAT);
490 		if (m == NULL)
491 			goto out;
492 		if (!vm_page_none_valid(m)) {
493 			int base = (int)nsize & PAGE_MASK;
494 			int size = PAGE_SIZE - base;
495 
496 			/*
497 			 * Clear out partial-page garbage in case
498 			 * the page has been mapped.
499 			 */
500 			pmap_zero_page_area(m, base, size);
501 
502 			/*
503 			 * Update the valid bits to reflect the blocks that
504 			 * have been zeroed.  Some of these valid bits may
505 			 * have already been set.
506 			 */
507 			vm_page_set_valid_range(m, base, size);
508 
509 			/*
510 			 * Round "base" to the next block boundary so that the
511 			 * dirty bit for a partially zeroed block is not
512 			 * cleared.
513 			 */
514 			base = roundup2(base, DEV_BSIZE);
515 
516 			/*
517 			 * Clear out partial-page dirty bits.
518 			 *
519 			 * note that we do not clear out the valid
520 			 * bits.  This would prevent bogus_page
521 			 * replacement from working properly.
522 			 */
523 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
524 		}
525 		vm_page_xunbusy(m);
526 	}
527 out:
528 #if defined(__powerpc__) && !defined(__powerpc64__)
529 	object->un_pager.vnp.vnp_size = nsize;
530 #else
531 	atomic_store_64(&object->un_pager.vnp.vnp_size, nsize);
532 #endif
533 	object->size = nobjsize;
534 	VM_OBJECT_WUNLOCK(object);
535 }
536 
537 /*
538  * calculate the linear (byte) disk address of specified virtual
539  * file address
540  */
541 static int
542 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
543     int *run)
544 {
545 	int bsize;
546 	int err;
547 	daddr_t vblock;
548 	daddr_t voffset;
549 
550 	if (VN_IS_DOOMED(vp))
551 		return -1;
552 
553 	bsize = vp->v_mount->mnt_stat.f_iosize;
554 	vblock = address / bsize;
555 	voffset = address % bsize;
556 
557 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
558 	if (err == 0) {
559 		if (*rtaddress != -1)
560 			*rtaddress += voffset / DEV_BSIZE;
561 		if (run) {
562 			*run += 1;
563 			*run *= bsize / PAGE_SIZE;
564 			*run -= voffset / PAGE_SIZE;
565 		}
566 	}
567 
568 	return (err);
569 }
570 
571 /*
572  * small block filesystem vnode pager input
573  */
574 static int
575 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
576 {
577 	struct vnode *vp;
578 	struct bufobj *bo;
579 	struct buf *bp;
580 	struct sf_buf *sf;
581 	daddr_t fileaddr;
582 	vm_offset_t bsize;
583 	vm_page_bits_t bits;
584 	int error, i;
585 
586 	error = 0;
587 	vp = object->handle;
588 	if (VN_IS_DOOMED(vp))
589 		return VM_PAGER_BAD;
590 
591 	bsize = vp->v_mount->mnt_stat.f_iosize;
592 
593 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
594 
595 	sf = sf_buf_alloc(m, 0);
596 
597 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
598 		vm_ooffset_t address;
599 
600 		bits = vm_page_bits(i * bsize, bsize);
601 		if (m->valid & bits)
602 			continue;
603 
604 		address = IDX_TO_OFF(m->pindex) + i * bsize;
605 		if (address >= object->un_pager.vnp.vnp_size) {
606 			fileaddr = -1;
607 		} else {
608 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
609 			if (error)
610 				break;
611 		}
612 		if (fileaddr != -1) {
613 			bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
614 
615 			/* build a minimal buffer header */
616 			bp->b_iocmd = BIO_READ;
617 			bp->b_iodone = bdone;
618 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
619 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
620 			bp->b_rcred = crhold(curthread->td_ucred);
621 			bp->b_wcred = crhold(curthread->td_ucred);
622 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
623 			bp->b_blkno = fileaddr;
624 			pbgetbo(bo, bp);
625 			bp->b_vp = vp;
626 			bp->b_bcount = bsize;
627 			bp->b_bufsize = bsize;
628 			bp->b_runningbufspace = bp->b_bufsize;
629 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
630 
631 			/* do the input */
632 			bp->b_iooffset = dbtob(bp->b_blkno);
633 			bstrategy(bp);
634 
635 			bwait(bp, PVM, "vnsrd");
636 
637 			if ((bp->b_ioflags & BIO_ERROR) != 0) {
638 				KASSERT(bp->b_error != 0,
639 				    ("%s: buf error but b_error == 0\n", __func__));
640 				error = bp->b_error;
641 			}
642 
643 			/*
644 			 * free the buffer header back to the swap buffer pool
645 			 */
646 			bp->b_vp = NULL;
647 			pbrelbo(bp);
648 			uma_zfree(vnode_pbuf_zone, bp);
649 			if (error)
650 				break;
651 		} else
652 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
653 		KASSERT((m->dirty & bits) == 0,
654 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
655 		vm_page_bits_set(m, &m->valid, bits);
656 	}
657 	sf_buf_free(sf);
658 	if (error) {
659 		return VM_PAGER_ERROR;
660 	}
661 	return VM_PAGER_OK;
662 }
663 
664 /*
665  * old style vnode pager input routine
666  */
667 static int
668 vnode_pager_input_old(vm_object_t object, vm_page_t m)
669 {
670 	struct uio auio;
671 	struct iovec aiov;
672 	int error;
673 	int size;
674 	struct sf_buf *sf;
675 	struct vnode *vp;
676 
677 	VM_OBJECT_ASSERT_WLOCKED(object);
678 	error = 0;
679 
680 	/*
681 	 * Return failure if beyond current EOF
682 	 */
683 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
684 		return VM_PAGER_BAD;
685 	} else {
686 		size = PAGE_SIZE;
687 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
688 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
689 		vp = object->handle;
690 		VM_OBJECT_WUNLOCK(object);
691 
692 		/*
693 		 * Allocate a kernel virtual address and initialize so that
694 		 * we can use VOP_READ/WRITE routines.
695 		 */
696 		sf = sf_buf_alloc(m, 0);
697 
698 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
699 		aiov.iov_len = size;
700 		auio.uio_iov = &aiov;
701 		auio.uio_iovcnt = 1;
702 		auio.uio_offset = IDX_TO_OFF(m->pindex);
703 		auio.uio_segflg = UIO_SYSSPACE;
704 		auio.uio_rw = UIO_READ;
705 		auio.uio_resid = size;
706 		auio.uio_td = curthread;
707 
708 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
709 		if (!error) {
710 			int count = size - auio.uio_resid;
711 
712 			if (count == 0)
713 				error = EINVAL;
714 			else if (count != PAGE_SIZE)
715 				bzero((caddr_t)sf_buf_kva(sf) + count,
716 				    PAGE_SIZE - count);
717 		}
718 		sf_buf_free(sf);
719 
720 		VM_OBJECT_WLOCK(object);
721 	}
722 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
723 	if (!error)
724 		vm_page_valid(m);
725 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
726 }
727 
728 /*
729  * generic vnode pager input routine
730  */
731 
732 /*
733  * Local media VFS's that do not implement their own VOP_GETPAGES
734  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
735  * to implement the previous behaviour.
736  *
737  * All other FS's should use the bypass to get to the local media
738  * backing vp's VOP_GETPAGES.
739  */
740 static int
741 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
742     int *rahead)
743 {
744 	struct vnode *vp;
745 	int rtval;
746 
747 	/* Handle is stable with paging in progress. */
748 	vp = object->handle;
749 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
750 	KASSERT(rtval != EOPNOTSUPP,
751 	    ("vnode_pager: FS getpages not implemented\n"));
752 	return rtval;
753 }
754 
755 static int
756 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
757     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
758 {
759 	struct vnode *vp;
760 	int rtval;
761 
762 	vp = object->handle;
763 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
764 	KASSERT(rtval != EOPNOTSUPP,
765 	    ("vnode_pager: FS getpages_async not implemented\n"));
766 	return (rtval);
767 }
768 
769 /*
770  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
771  * local filesystems, where partially valid pages can only occur at
772  * the end of file.
773  */
774 int
775 vnode_pager_local_getpages(struct vop_getpages_args *ap)
776 {
777 
778 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
779 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
780 }
781 
782 int
783 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
784 {
785 	int error;
786 
787 	error = vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
788 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg);
789 	if (error != 0 && ap->a_iodone != NULL)
790 		ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error);
791 	return (error);
792 }
793 
794 /*
795  * This is now called from local media FS's to operate against their
796  * own vnodes if they fail to implement VOP_GETPAGES.
797  */
798 int
799 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
800     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
801 {
802 	vm_object_t object;
803 	struct bufobj *bo;
804 	struct buf *bp;
805 	off_t foff;
806 #ifdef INVARIANTS
807 	off_t blkno0;
808 #endif
809 	int bsize, pagesperblock;
810 	int error, before, after, rbehind, rahead, poff, i;
811 	int bytecount, secmask;
812 
813 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
814 	    ("%s does not support devices", __func__));
815 
816 	if (VN_IS_DOOMED(vp))
817 		return (VM_PAGER_BAD);
818 
819 	object = vp->v_object;
820 	foff = IDX_TO_OFF(m[0]->pindex);
821 	bsize = vp->v_mount->mnt_stat.f_iosize;
822 	pagesperblock = bsize / PAGE_SIZE;
823 
824 	KASSERT(foff < object->un_pager.vnp.vnp_size,
825 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
826 	KASSERT(count <= atop(maxphys),
827 	    ("%s: requested %d pages", __func__, count));
828 
829 	/*
830 	 * The last page has valid blocks.  Invalid part can only
831 	 * exist at the end of file, and the page is made fully valid
832 	 * by zeroing in vm_pager_get_pages().
833 	 */
834 	if (!vm_page_none_valid(m[count - 1]) && --count == 0) {
835 		if (iodone != NULL)
836 			iodone(arg, m, 1, 0);
837 		return (VM_PAGER_OK);
838 	}
839 
840 	bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
841 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
842 
843 	/*
844 	 * Get the underlying device blocks for the file with VOP_BMAP().
845 	 * If the file system doesn't support VOP_BMAP, use old way of
846 	 * getting pages via VOP_READ.
847 	 */
848 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
849 	if (error == EOPNOTSUPP) {
850 		uma_zfree(vnode_pbuf_zone, bp);
851 		VM_OBJECT_WLOCK(object);
852 		for (i = 0; i < count; i++) {
853 			VM_CNT_INC(v_vnodein);
854 			VM_CNT_INC(v_vnodepgsin);
855 			error = vnode_pager_input_old(object, m[i]);
856 			if (error)
857 				break;
858 		}
859 		VM_OBJECT_WUNLOCK(object);
860 		return (error);
861 	} else if (error != 0) {
862 		uma_zfree(vnode_pbuf_zone, bp);
863 		return (VM_PAGER_ERROR);
864 	}
865 
866 	/*
867 	 * If the file system supports BMAP, but blocksize is smaller
868 	 * than a page size, then use special small filesystem code.
869 	 */
870 	if (pagesperblock == 0) {
871 		uma_zfree(vnode_pbuf_zone, bp);
872 		for (i = 0; i < count; i++) {
873 			VM_CNT_INC(v_vnodein);
874 			VM_CNT_INC(v_vnodepgsin);
875 			error = vnode_pager_input_smlfs(object, m[i]);
876 			if (error)
877 				break;
878 		}
879 		return (error);
880 	}
881 
882 	/*
883 	 * A sparse file can be encountered only for a single page request,
884 	 * which may not be preceded by call to vm_pager_haspage().
885 	 */
886 	if (bp->b_blkno == -1) {
887 		KASSERT(count == 1,
888 		    ("%s: array[%d] request to a sparse file %p", __func__,
889 		    count, vp));
890 		uma_zfree(vnode_pbuf_zone, bp);
891 		pmap_zero_page(m[0]);
892 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
893 		    __func__, m[0]));
894 		vm_page_valid(m[0]);
895 		return (VM_PAGER_OK);
896 	}
897 
898 #ifdef INVARIANTS
899 	blkno0 = bp->b_blkno;
900 #endif
901 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
902 
903 	/* Recalculate blocks available after/before to pages. */
904 	poff = (foff % bsize) / PAGE_SIZE;
905 	before *= pagesperblock;
906 	before += poff;
907 	after *= pagesperblock;
908 	after += pagesperblock - (poff + 1);
909 	if (m[0]->pindex + after >= object->size)
910 		after = object->size - 1 - m[0]->pindex;
911 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
912 	    __func__, count, after + 1));
913 	after -= count - 1;
914 
915 	/* Trim requested rbehind/rahead to possible values. */
916 	rbehind = a_rbehind ? *a_rbehind : 0;
917 	rahead = a_rahead ? *a_rahead : 0;
918 	rbehind = min(rbehind, before);
919 	rbehind = min(rbehind, m[0]->pindex);
920 	rahead = min(rahead, after);
921 	rahead = min(rahead, object->size - m[count - 1]->pindex);
922 	/*
923 	 * Check that total amount of pages fit into buf.  Trim rbehind and
924 	 * rahead evenly if not.
925 	 */
926 	if (rbehind + rahead + count > atop(maxphys)) {
927 		int trim, sum;
928 
929 		trim = rbehind + rahead + count - atop(maxphys) + 1;
930 		sum = rbehind + rahead;
931 		if (rbehind == before) {
932 			/* Roundup rbehind trim to block size. */
933 			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
934 			if (rbehind < 0)
935 				rbehind = 0;
936 		} else
937 			rbehind -= trim * rbehind / sum;
938 		rahead -= trim * rahead / sum;
939 	}
940 	KASSERT(rbehind + rahead + count <= atop(maxphys),
941 	    ("%s: behind %d ahead %d count %d maxphys %lu", __func__,
942 	    rbehind, rahead, count, maxphys));
943 
944 	/*
945 	 * Fill in the bp->b_pages[] array with requested and optional
946 	 * read behind or read ahead pages.  Read behind pages are looked
947 	 * up in a backward direction, down to a first cached page.  Same
948 	 * for read ahead pages, but there is no need to shift the array
949 	 * in case of encountering a cached page.
950 	 */
951 	i = bp->b_npages = 0;
952 	if (rbehind) {
953 		vm_pindex_t startpindex, tpindex;
954 		vm_page_t p;
955 
956 		VM_OBJECT_WLOCK(object);
957 		startpindex = m[0]->pindex - rbehind;
958 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
959 		    p->pindex >= startpindex)
960 			startpindex = p->pindex + 1;
961 
962 		/* tpindex is unsigned; beware of numeric underflow. */
963 		for (tpindex = m[0]->pindex - 1;
964 		    tpindex >= startpindex && tpindex < m[0]->pindex;
965 		    tpindex--, i++) {
966 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
967 			if (p == NULL) {
968 				/* Shift the array. */
969 				for (int j = 0; j < i; j++)
970 					bp->b_pages[j] = bp->b_pages[j +
971 					    tpindex + 1 - startpindex];
972 				break;
973 			}
974 			bp->b_pages[tpindex - startpindex] = p;
975 		}
976 
977 		bp->b_pgbefore = i;
978 		bp->b_npages += i;
979 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
980 	} else
981 		bp->b_pgbefore = 0;
982 
983 	/* Requested pages. */
984 	for (int j = 0; j < count; j++, i++)
985 		bp->b_pages[i] = m[j];
986 	bp->b_npages += count;
987 
988 	if (rahead) {
989 		vm_pindex_t endpindex, tpindex;
990 		vm_page_t p;
991 
992 		if (!VM_OBJECT_WOWNED(object))
993 			VM_OBJECT_WLOCK(object);
994 		endpindex = m[count - 1]->pindex + rahead + 1;
995 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
996 		    p->pindex < endpindex)
997 			endpindex = p->pindex;
998 		if (endpindex > object->size)
999 			endpindex = object->size;
1000 
1001 		for (tpindex = m[count - 1]->pindex + 1;
1002 		    tpindex < endpindex; i++, tpindex++) {
1003 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1004 			if (p == NULL)
1005 				break;
1006 			bp->b_pages[i] = p;
1007 		}
1008 
1009 		bp->b_pgafter = i - bp->b_npages;
1010 		bp->b_npages = i;
1011 	} else
1012 		bp->b_pgafter = 0;
1013 
1014 	if (VM_OBJECT_WOWNED(object))
1015 		VM_OBJECT_WUNLOCK(object);
1016 
1017 	/* Report back actual behind/ahead read. */
1018 	if (a_rbehind)
1019 		*a_rbehind = bp->b_pgbefore;
1020 	if (a_rahead)
1021 		*a_rahead = bp->b_pgafter;
1022 
1023 #ifdef INVARIANTS
1024 	KASSERT(bp->b_npages <= atop(maxphys),
1025 	    ("%s: buf %p overflowed", __func__, bp));
1026 	for (int j = 1, prev = 0; j < bp->b_npages; j++) {
1027 		if (bp->b_pages[j] == bogus_page)
1028 			continue;
1029 		KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
1030 		    j - prev, ("%s: pages array not consecutive, bp %p",
1031 		     __func__, bp));
1032 		prev = j;
1033 	}
1034 #endif
1035 
1036 	/*
1037 	 * Recalculate first offset and bytecount with regards to read behind.
1038 	 * Truncate bytecount to vnode real size and round up physical size
1039 	 * for real devices.
1040 	 */
1041 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1042 	bytecount = bp->b_npages << PAGE_SHIFT;
1043 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
1044 		bytecount = object->un_pager.vnp.vnp_size - foff;
1045 	secmask = bo->bo_bsize - 1;
1046 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
1047 	    ("%s: sector size %d too large", __func__, secmask + 1));
1048 	bytecount = (bytecount + secmask) & ~secmask;
1049 
1050 	/*
1051 	 * And map the pages to be read into the kva, if the filesystem
1052 	 * requires mapped buffers.
1053 	 */
1054 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1055 	    unmapped_buf_allowed) {
1056 		bp->b_data = unmapped_buf;
1057 		bp->b_offset = 0;
1058 	} else {
1059 		bp->b_data = bp->b_kvabase;
1060 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1061 	}
1062 
1063 	/* Build a minimal buffer header. */
1064 	bp->b_iocmd = BIO_READ;
1065 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1066 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1067 	bp->b_rcred = crhold(curthread->td_ucred);
1068 	bp->b_wcred = crhold(curthread->td_ucred);
1069 	pbgetbo(bo, bp);
1070 	bp->b_vp = vp;
1071 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1072 	bp->b_iooffset = dbtob(bp->b_blkno);
1073 	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1074 	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1075 	    IDX_TO_OFF(m[0]->pindex) % bsize,
1076 	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1077 	    "blkno0 %ju b_blkno %ju", bsize,
1078 	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1079 	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1080 
1081 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1082 	VM_CNT_INC(v_vnodein);
1083 	VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1084 
1085 	if (iodone != NULL) { /* async */
1086 		bp->b_pgiodone = iodone;
1087 		bp->b_caller1 = arg;
1088 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1089 		bp->b_flags |= B_ASYNC;
1090 		BUF_KERNPROC(bp);
1091 		bstrategy(bp);
1092 		return (VM_PAGER_OK);
1093 	} else {
1094 		bp->b_iodone = bdone;
1095 		bstrategy(bp);
1096 		bwait(bp, PVM, "vnread");
1097 		error = vnode_pager_generic_getpages_done(bp);
1098 		for (i = 0; i < bp->b_npages; i++)
1099 			bp->b_pages[i] = NULL;
1100 		bp->b_vp = NULL;
1101 		pbrelbo(bp);
1102 		uma_zfree(vnode_pbuf_zone, bp);
1103 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1104 	}
1105 }
1106 
1107 static void
1108 vnode_pager_generic_getpages_done_async(struct buf *bp)
1109 {
1110 	int error;
1111 
1112 	error = vnode_pager_generic_getpages_done(bp);
1113 	/* Run the iodone upon the requested range. */
1114 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1115 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1116 	for (int i = 0; i < bp->b_npages; i++)
1117 		bp->b_pages[i] = NULL;
1118 	bp->b_vp = NULL;
1119 	pbrelbo(bp);
1120 	uma_zfree(vnode_pbuf_zone, bp);
1121 }
1122 
1123 static int
1124 vnode_pager_generic_getpages_done(struct buf *bp)
1125 {
1126 	vm_object_t object;
1127 	off_t tfoff, nextoff;
1128 	int i, error;
1129 
1130 	KASSERT((bp->b_ioflags & BIO_ERROR) == 0 || bp->b_error != 0,
1131 	    ("%s: buf error but b_error == 0\n", __func__));
1132 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? bp->b_error : 0;
1133 	object = bp->b_vp->v_object;
1134 
1135 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1136 		if (!buf_mapped(bp)) {
1137 			bp->b_data = bp->b_kvabase;
1138 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1139 			    bp->b_npages);
1140 		}
1141 		bzero(bp->b_data + bp->b_bcount,
1142 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1143 	}
1144 	if (buf_mapped(bp)) {
1145 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1146 		bp->b_data = unmapped_buf;
1147 	}
1148 
1149 	/*
1150 	 * If the read failed, we must free any read ahead/behind pages here.
1151 	 * The requested pages are freed by the caller (for sync requests)
1152 	 * or by the bp->b_pgiodone callback (for async requests).
1153 	 */
1154 	if (error != 0) {
1155 		VM_OBJECT_WLOCK(object);
1156 		for (i = 0; i < bp->b_pgbefore; i++)
1157 			vm_page_free_invalid(bp->b_pages[i]);
1158 		for (i = bp->b_npages - bp->b_pgafter; i < bp->b_npages; i++)
1159 			vm_page_free_invalid(bp->b_pages[i]);
1160 		VM_OBJECT_WUNLOCK(object);
1161 		return (error);
1162 	}
1163 
1164 	/* Read lock to protect size. */
1165 	VM_OBJECT_RLOCK(object);
1166 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1167 	    i < bp->b_npages; i++, tfoff = nextoff) {
1168 		vm_page_t mt;
1169 
1170 		nextoff = tfoff + PAGE_SIZE;
1171 		mt = bp->b_pages[i];
1172 		if (mt == bogus_page)
1173 			continue;
1174 
1175 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1176 			/*
1177 			 * Read filled up entire page.
1178 			 */
1179 			vm_page_valid(mt);
1180 			KASSERT(mt->dirty == 0,
1181 			    ("%s: page %p is dirty", __func__, mt));
1182 			KASSERT(!pmap_page_is_mapped(mt),
1183 			    ("%s: page %p is mapped", __func__, mt));
1184 		} else {
1185 			/*
1186 			 * Read did not fill up entire page.
1187 			 *
1188 			 * Currently we do not set the entire page valid,
1189 			 * we just try to clear the piece that we couldn't
1190 			 * read.
1191 			 */
1192 			vm_page_set_valid_range(mt, 0,
1193 			    object->un_pager.vnp.vnp_size - tfoff);
1194 			KASSERT((mt->dirty & vm_page_bits(0,
1195 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1196 			    ("%s: page %p is dirty", __func__, mt));
1197 		}
1198 
1199 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1200 			vm_page_readahead_finish(mt);
1201 	}
1202 	VM_OBJECT_RUNLOCK(object);
1203 
1204 	return (error);
1205 }
1206 
1207 /*
1208  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1209  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1210  * vnode_pager_generic_putpages() to implement the previous behaviour.
1211  *
1212  * All other FS's should use the bypass to get to the local media
1213  * backing vp's VOP_PUTPAGES.
1214  */
1215 static void
1216 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1217     int flags, int *rtvals)
1218 {
1219 	int rtval;
1220 	struct vnode *vp;
1221 	int bytes = count * PAGE_SIZE;
1222 
1223 	/*
1224 	 * Force synchronous operation if we are extremely low on memory
1225 	 * to prevent a low-memory deadlock.  VOP operations often need to
1226 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1227 	 * operation ).  The swapper handles the case by limiting the amount
1228 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1229 	 * for the vnode pager without a lot of work.
1230 	 *
1231 	 * Also, the backing vnode's iodone routine may not wake the pageout
1232 	 * daemon up.  This should be probably be addressed XXX.
1233 	 */
1234 
1235 	if (vm_page_count_min())
1236 		flags |= VM_PAGER_PUT_SYNC;
1237 
1238 	/*
1239 	 * Call device-specific putpages function
1240 	 */
1241 	vp = object->handle;
1242 	VM_OBJECT_WUNLOCK(object);
1243 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1244 	KASSERT(rtval != EOPNOTSUPP,
1245 	    ("vnode_pager: stale FS putpages\n"));
1246 	VM_OBJECT_WLOCK(object);
1247 }
1248 
1249 static int
1250 vn_off2bidx(vm_ooffset_t offset)
1251 {
1252 
1253 	return ((offset & PAGE_MASK) / DEV_BSIZE);
1254 }
1255 
1256 static bool
1257 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1258 {
1259 
1260 	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1261 	    offset < IDX_TO_OFF(m->pindex + 1),
1262 	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1263 	    (uintmax_t)offset));
1264 	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1265 }
1266 
1267 /*
1268  * This is now called from local media FS's to operate against their
1269  * own vnodes if they fail to implement VOP_PUTPAGES.
1270  *
1271  * This is typically called indirectly via the pageout daemon and
1272  * clustering has already typically occurred, so in general we ask the
1273  * underlying filesystem to write the data out asynchronously rather
1274  * then delayed.
1275  */
1276 int
1277 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1278     int flags, int *rtvals)
1279 {
1280 	vm_object_t object;
1281 	vm_page_t m;
1282 	vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1283 	struct uio auio;
1284 	struct iovec aiov;
1285 	off_t prev_resid, wrsz;
1286 	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1287 	bool in_hole;
1288 	static struct timeval lastfail;
1289 	static int curfail;
1290 
1291 	object = vp->v_object;
1292 	count = bytecount / PAGE_SIZE;
1293 
1294 	for (i = 0; i < count; i++)
1295 		rtvals[i] = VM_PAGER_ERROR;
1296 
1297 	if ((int64_t)ma[0]->pindex < 0) {
1298 		printf("vnode_pager_generic_putpages: "
1299 		    "attempt to write meta-data 0x%jx(%lx)\n",
1300 		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1301 		rtvals[0] = VM_PAGER_BAD;
1302 		return (VM_PAGER_BAD);
1303 	}
1304 
1305 	maxsize = count * PAGE_SIZE;
1306 	ncount = count;
1307 
1308 	poffset = IDX_TO_OFF(ma[0]->pindex);
1309 
1310 	/*
1311 	 * If the page-aligned write is larger then the actual file we
1312 	 * have to invalidate pages occurring beyond the file EOF.  However,
1313 	 * there is an edge case where a file may not be page-aligned where
1314 	 * the last page is partially invalid.  In this case the filesystem
1315 	 * may not properly clear the dirty bits for the entire page (which
1316 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1317 	 * With the page busied we are free to fix up the dirty bits here.
1318 	 *
1319 	 * We do not under any circumstances truncate the valid bits, as
1320 	 * this will screw up bogus page replacement.
1321 	 */
1322 	VM_OBJECT_RLOCK(object);
1323 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1324 		if (object->un_pager.vnp.vnp_size > poffset) {
1325 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1326 			ncount = btoc(maxsize);
1327 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1328 				pgoff = roundup2(pgoff, DEV_BSIZE);
1329 
1330 				/*
1331 				 * If the page is busy and the following
1332 				 * conditions hold, then the page's dirty
1333 				 * field cannot be concurrently changed by a
1334 				 * pmap operation.
1335 				 */
1336 				m = ma[ncount - 1];
1337 				vm_page_assert_sbusied(m);
1338 				KASSERT(!pmap_page_is_write_mapped(m),
1339 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1340 				MPASS(m->dirty != 0);
1341 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1342 				    pgoff);
1343 			}
1344 		} else {
1345 			maxsize = 0;
1346 			ncount = 0;
1347 		}
1348 		for (i = ncount; i < count; i++)
1349 			rtvals[i] = VM_PAGER_BAD;
1350 	}
1351 	VM_OBJECT_RUNLOCK(object);
1352 
1353 	auio.uio_iov = &aiov;
1354 	auio.uio_segflg = UIO_NOCOPY;
1355 	auio.uio_rw = UIO_WRITE;
1356 	auio.uio_td = NULL;
1357 	maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1358 
1359 	for (prev_offset = poffset; prev_offset < maxblksz;) {
1360 		/* Skip clean blocks. */
1361 		for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1362 			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1363 			for (i = vn_off2bidx(prev_offset);
1364 			    i < sizeof(vm_page_bits_t) * NBBY &&
1365 			    prev_offset < maxblksz; i++) {
1366 				if (vn_dirty_blk(m, prev_offset)) {
1367 					in_hole = false;
1368 					break;
1369 				}
1370 				prev_offset += DEV_BSIZE;
1371 			}
1372 		}
1373 		if (in_hole)
1374 			goto write_done;
1375 
1376 		/* Find longest run of dirty blocks. */
1377 		for (next_offset = prev_offset; next_offset < maxblksz;) {
1378 			m = ma[OFF_TO_IDX(next_offset - poffset)];
1379 			for (i = vn_off2bidx(next_offset);
1380 			    i < sizeof(vm_page_bits_t) * NBBY &&
1381 			    next_offset < maxblksz; i++) {
1382 				if (!vn_dirty_blk(m, next_offset))
1383 					goto start_write;
1384 				next_offset += DEV_BSIZE;
1385 			}
1386 		}
1387 start_write:
1388 		if (next_offset > poffset + maxsize)
1389 			next_offset = poffset + maxsize;
1390 
1391 		/*
1392 		 * Getting here requires finding a dirty block in the
1393 		 * 'skip clean blocks' loop.
1394 		 */
1395 		MPASS(prev_offset < next_offset);
1396 
1397 		aiov.iov_base = NULL;
1398 		auio.uio_iovcnt = 1;
1399 		auio.uio_offset = prev_offset;
1400 		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1401 		    prev_offset;
1402 		error = VOP_WRITE(vp, &auio,
1403 		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1404 
1405 		wrsz = prev_resid - auio.uio_resid;
1406 		if (wrsz == 0) {
1407 			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1408 				vn_printf(vp, "vnode_pager_putpages: "
1409 				    "zero-length write at %ju resid %zd\n",
1410 				    auio.uio_offset, auio.uio_resid);
1411 			}
1412 			break;
1413 		}
1414 
1415 		/* Adjust the starting offset for next iteration. */
1416 		prev_offset += wrsz;
1417 		MPASS(auio.uio_offset == prev_offset);
1418 
1419 		ppscheck = 0;
1420 		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1421 		    &curfail, 1)) != 0)
1422 			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1423 			    error);
1424 		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1425 		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1426 			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1427 			    "at %ju\n", auio.uio_resid,
1428 			    (uintmax_t)ma[0]->pindex);
1429 		if (error != 0 || auio.uio_resid != 0)
1430 			break;
1431 	}
1432 write_done:
1433 	/* Mark completely processed pages. */
1434 	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1435 		rtvals[i] = VM_PAGER_OK;
1436 	/* Mark partial EOF page. */
1437 	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1438 		rtvals[i++] = VM_PAGER_OK;
1439 	/* Unwritten pages in range, free bonus if the page is clean. */
1440 	for (; i < ncount; i++)
1441 		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1442 	VM_CNT_ADD(v_vnodepgsout, i);
1443 	VM_CNT_INC(v_vnodeout);
1444 	return (rtvals[0]);
1445 }
1446 
1447 int
1448 vnode_pager_putpages_ioflags(int pager_flags)
1449 {
1450 	int ioflags;
1451 
1452 	/*
1453 	 * Pageouts are already clustered, use IO_ASYNC to force a
1454 	 * bawrite() rather then a bdwrite() to prevent paging I/O
1455 	 * from saturating the buffer cache.  Dummy-up the sequential
1456 	 * heuristic to cause large ranges to cluster.  If neither
1457 	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1458 	 * cluster.
1459 	 */
1460 	ioflags = IO_VMIO;
1461 	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1462 		ioflags |= IO_SYNC;
1463 	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1464 		ioflags |= IO_ASYNC;
1465 	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1466 	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1467 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1468 	return (ioflags);
1469 }
1470 
1471 /*
1472  * vnode_pager_undirty_pages().
1473  *
1474  * A helper to mark pages as clean after pageout that was possibly
1475  * done with a short write.  The lpos argument specifies the page run
1476  * length in bytes, and the written argument specifies how many bytes
1477  * were actually written.  eof is the offset past the last valid byte
1478  * in the vnode using the absolute file position of the first byte in
1479  * the run as the base from which it is computed.
1480  */
1481 void
1482 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1483     int lpos)
1484 {
1485 	int i, pos, pos_devb;
1486 
1487 	if (written == 0 && eof >= lpos)
1488 		return;
1489 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1490 		if (pos < trunc_page(written)) {
1491 			rtvals[i] = VM_PAGER_OK;
1492 			vm_page_undirty(ma[i]);
1493 		} else {
1494 			/* Partially written page. */
1495 			rtvals[i] = VM_PAGER_AGAIN;
1496 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1497 		}
1498 	}
1499 	if (eof >= lpos) /* avoid truncation */
1500 		return;
1501 	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1502 		if (pos != trunc_page(pos)) {
1503 			/*
1504 			 * The page contains the last valid byte in
1505 			 * the vnode, mark the rest of the page as
1506 			 * clean, potentially making the whole page
1507 			 * clean.
1508 			 */
1509 			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1510 			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1511 			    pos_devb);
1512 
1513 			/*
1514 			 * If the page was cleaned, report the pageout
1515 			 * on it as successful.  msync() no longer
1516 			 * needs to write out the page, endlessly
1517 			 * creating write requests and dirty buffers.
1518 			 */
1519 			if (ma[i]->dirty == 0)
1520 				rtvals[i] = VM_PAGER_OK;
1521 
1522 			pos = round_page(pos);
1523 		} else {
1524 			/* vm_pageout_flush() clears dirty */
1525 			rtvals[i] = VM_PAGER_BAD;
1526 			pos += PAGE_SIZE;
1527 		}
1528 	}
1529 }
1530 
1531 static void
1532 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1533     vm_offset_t end)
1534 {
1535 	struct vnode *vp;
1536 	vm_ooffset_t old_wm;
1537 
1538 	VM_OBJECT_WLOCK(object);
1539 	if (object->type != OBJT_VNODE) {
1540 		VM_OBJECT_WUNLOCK(object);
1541 		return;
1542 	}
1543 	old_wm = object->un_pager.vnp.writemappings;
1544 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1545 	vp = object->handle;
1546 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1547 		ASSERT_VOP_LOCKED(vp, "v_writecount inc");
1548 		VOP_ADD_WRITECOUNT_CHECKED(vp, 1);
1549 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1550 		    __func__, vp, vp->v_writecount);
1551 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1552 		ASSERT_VOP_LOCKED(vp, "v_writecount dec");
1553 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1554 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1555 		    __func__, vp, vp->v_writecount);
1556 	}
1557 	VM_OBJECT_WUNLOCK(object);
1558 }
1559 
1560 static void
1561 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1562     vm_offset_t end)
1563 {
1564 	struct vnode *vp;
1565 	struct mount *mp;
1566 	vm_offset_t inc;
1567 
1568 	VM_OBJECT_WLOCK(object);
1569 
1570 	/*
1571 	 * First, recheck the object type to account for the race when
1572 	 * the vnode is reclaimed.
1573 	 */
1574 	if (object->type != OBJT_VNODE) {
1575 		VM_OBJECT_WUNLOCK(object);
1576 		return;
1577 	}
1578 
1579 	/*
1580 	 * Optimize for the case when writemappings is not going to
1581 	 * zero.
1582 	 */
1583 	inc = end - start;
1584 	if (object->un_pager.vnp.writemappings != inc) {
1585 		object->un_pager.vnp.writemappings -= inc;
1586 		VM_OBJECT_WUNLOCK(object);
1587 		return;
1588 	}
1589 
1590 	vp = object->handle;
1591 	vhold(vp);
1592 	VM_OBJECT_WUNLOCK(object);
1593 	mp = NULL;
1594 	vn_start_write(vp, &mp, V_WAIT);
1595 	vn_lock(vp, LK_SHARED | LK_RETRY);
1596 
1597 	/*
1598 	 * Decrement the object's writemappings, by swapping the start
1599 	 * and end arguments for vnode_pager_update_writecount().  If
1600 	 * there was not a race with vnode reclaimation, then the
1601 	 * vnode's v_writecount is decremented.
1602 	 */
1603 	vnode_pager_update_writecount(object, end, start);
1604 	VOP_UNLOCK(vp);
1605 	vdrop(vp);
1606 	if (mp != NULL)
1607 		vn_finished_write(mp);
1608 }
1609 
1610 static void
1611 vnode_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
1612 {
1613 	*vpp = object->handle;
1614 }
1615