xref: /freebsd/sys/vm/vnode_pager.c (revision 788ca347b816afd83b2885e0c79aeeb88649b2ab)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include "opt_vm.h"
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/vnode.h>
62 #include <sys/mount.h>
63 #include <sys/bio.h>
64 #include <sys/buf.h>
65 #include <sys/vmmeter.h>
66 #include <sys/limits.h>
67 #include <sys/conf.h>
68 #include <sys/rwlock.h>
69 #include <sys/sf_buf.h>
70 
71 #include <machine/atomic.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vm_map.h>
79 #include <vm/vnode_pager.h>
80 #include <vm/vm_extern.h>
81 
82 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
83     daddr_t *rtaddress, int *run);
84 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
85 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
86 static void vnode_pager_dealloc(vm_object_t);
87 static int vnode_pager_local_getpages0(struct vnode *, vm_page_t *, int, int,
88     vop_getpages_iodone_t, void *);
89 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
90 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int,
91     vop_getpages_iodone_t, void *);
92 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
93 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
94 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
95     vm_ooffset_t, struct ucred *cred);
96 static int vnode_pager_generic_getpages_done(struct buf *);
97 static void vnode_pager_generic_getpages_done_async(struct buf *);
98 
99 struct pagerops vnodepagerops = {
100 	.pgo_alloc =	vnode_pager_alloc,
101 	.pgo_dealloc =	vnode_pager_dealloc,
102 	.pgo_getpages =	vnode_pager_getpages,
103 	.pgo_getpages_async = vnode_pager_getpages_async,
104 	.pgo_putpages =	vnode_pager_putpages,
105 	.pgo_haspage =	vnode_pager_haspage,
106 };
107 
108 int vnode_pbuf_freecnt;
109 int vnode_async_pbuf_freecnt;
110 
111 /* Create the VM system backing object for this vnode */
112 int
113 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
114 {
115 	vm_object_t object;
116 	vm_ooffset_t size = isize;
117 	struct vattr va;
118 
119 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
120 		return (0);
121 
122 	while ((object = vp->v_object) != NULL) {
123 		VM_OBJECT_WLOCK(object);
124 		if (!(object->flags & OBJ_DEAD)) {
125 			VM_OBJECT_WUNLOCK(object);
126 			return (0);
127 		}
128 		VOP_UNLOCK(vp, 0);
129 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
130 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
131 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
132 	}
133 
134 	if (size == 0) {
135 		if (vn_isdisk(vp, NULL)) {
136 			size = IDX_TO_OFF(INT_MAX);
137 		} else {
138 			if (VOP_GETATTR(vp, &va, td->td_ucred))
139 				return (0);
140 			size = va.va_size;
141 		}
142 	}
143 
144 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
145 	/*
146 	 * Dereference the reference we just created.  This assumes
147 	 * that the object is associated with the vp.
148 	 */
149 	VM_OBJECT_WLOCK(object);
150 	object->ref_count--;
151 	VM_OBJECT_WUNLOCK(object);
152 	vrele(vp);
153 
154 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
155 
156 	return (0);
157 }
158 
159 void
160 vnode_destroy_vobject(struct vnode *vp)
161 {
162 	struct vm_object *obj;
163 
164 	obj = vp->v_object;
165 	if (obj == NULL)
166 		return;
167 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
168 	VM_OBJECT_WLOCK(obj);
169 	if (obj->ref_count == 0) {
170 		/*
171 		 * don't double-terminate the object
172 		 */
173 		if ((obj->flags & OBJ_DEAD) == 0)
174 			vm_object_terminate(obj);
175 		else
176 			VM_OBJECT_WUNLOCK(obj);
177 	} else {
178 		/*
179 		 * Woe to the process that tries to page now :-).
180 		 */
181 		vm_pager_deallocate(obj);
182 		VM_OBJECT_WUNLOCK(obj);
183 	}
184 	vp->v_object = NULL;
185 }
186 
187 
188 /*
189  * Allocate (or lookup) pager for a vnode.
190  * Handle is a vnode pointer.
191  *
192  * MPSAFE
193  */
194 vm_object_t
195 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
196     vm_ooffset_t offset, struct ucred *cred)
197 {
198 	vm_object_t object;
199 	struct vnode *vp;
200 
201 	/*
202 	 * Pageout to vnode, no can do yet.
203 	 */
204 	if (handle == NULL)
205 		return (NULL);
206 
207 	vp = (struct vnode *) handle;
208 
209 	/*
210 	 * If the object is being terminated, wait for it to
211 	 * go away.
212 	 */
213 retry:
214 	while ((object = vp->v_object) != NULL) {
215 		VM_OBJECT_WLOCK(object);
216 		if ((object->flags & OBJ_DEAD) == 0)
217 			break;
218 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
219 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
220 	}
221 
222 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
223 
224 	if (object == NULL) {
225 		/*
226 		 * Add an object of the appropriate size
227 		 */
228 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
229 
230 		object->un_pager.vnp.vnp_size = size;
231 		object->un_pager.vnp.writemappings = 0;
232 
233 		object->handle = handle;
234 		VI_LOCK(vp);
235 		if (vp->v_object != NULL) {
236 			/*
237 			 * Object has been created while we were sleeping
238 			 */
239 			VI_UNLOCK(vp);
240 			vm_object_destroy(object);
241 			goto retry;
242 		}
243 		vp->v_object = object;
244 		VI_UNLOCK(vp);
245 	} else {
246 		object->ref_count++;
247 #if VM_NRESERVLEVEL > 0
248 		vm_object_color(object, 0);
249 #endif
250 		VM_OBJECT_WUNLOCK(object);
251 	}
252 	vref(vp);
253 	return (object);
254 }
255 
256 /*
257  *	The object must be locked.
258  */
259 static void
260 vnode_pager_dealloc(vm_object_t object)
261 {
262 	struct vnode *vp;
263 	int refs;
264 
265 	vp = object->handle;
266 	if (vp == NULL)
267 		panic("vnode_pager_dealloc: pager already dealloced");
268 
269 	VM_OBJECT_ASSERT_WLOCKED(object);
270 	vm_object_pip_wait(object, "vnpdea");
271 	refs = object->ref_count;
272 
273 	object->handle = NULL;
274 	object->type = OBJT_DEAD;
275 	if (object->flags & OBJ_DISCONNECTWNT) {
276 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
277 		wakeup(object);
278 	}
279 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
280 	if (object->un_pager.vnp.writemappings > 0) {
281 		object->un_pager.vnp.writemappings = 0;
282 		VOP_ADD_WRITECOUNT(vp, -1);
283 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
284 		    __func__, vp, vp->v_writecount);
285 	}
286 	vp->v_object = NULL;
287 	VOP_UNSET_TEXT(vp);
288 	VM_OBJECT_WUNLOCK(object);
289 	while (refs-- > 0)
290 		vunref(vp);
291 	VM_OBJECT_WLOCK(object);
292 }
293 
294 static boolean_t
295 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
296     int *after)
297 {
298 	struct vnode *vp = object->handle;
299 	daddr_t bn;
300 	int err;
301 	daddr_t reqblock;
302 	int poff;
303 	int bsize;
304 	int pagesperblock, blocksperpage;
305 
306 	VM_OBJECT_ASSERT_WLOCKED(object);
307 	/*
308 	 * If no vp or vp is doomed or marked transparent to VM, we do not
309 	 * have the page.
310 	 */
311 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
312 		return FALSE;
313 	/*
314 	 * If the offset is beyond end of file we do
315 	 * not have the page.
316 	 */
317 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
318 		return FALSE;
319 
320 	bsize = vp->v_mount->mnt_stat.f_iosize;
321 	pagesperblock = bsize / PAGE_SIZE;
322 	blocksperpage = 0;
323 	if (pagesperblock > 0) {
324 		reqblock = pindex / pagesperblock;
325 	} else {
326 		blocksperpage = (PAGE_SIZE / bsize);
327 		reqblock = pindex * blocksperpage;
328 	}
329 	VM_OBJECT_WUNLOCK(object);
330 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
331 	VM_OBJECT_WLOCK(object);
332 	if (err)
333 		return TRUE;
334 	if (bn == -1)
335 		return FALSE;
336 	if (pagesperblock > 0) {
337 		poff = pindex - (reqblock * pagesperblock);
338 		if (before) {
339 			*before *= pagesperblock;
340 			*before += poff;
341 		}
342 		if (after) {
343 			int numafter;
344 			*after *= pagesperblock;
345 			numafter = pagesperblock - (poff + 1);
346 			if (IDX_TO_OFF(pindex + numafter) >
347 			    object->un_pager.vnp.vnp_size) {
348 				numafter =
349 		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
350 				    pindex;
351 			}
352 			*after += numafter;
353 		}
354 	} else {
355 		if (before) {
356 			*before /= blocksperpage;
357 		}
358 
359 		if (after) {
360 			*after /= blocksperpage;
361 		}
362 	}
363 	return TRUE;
364 }
365 
366 /*
367  * Lets the VM system know about a change in size for a file.
368  * We adjust our own internal size and flush any cached pages in
369  * the associated object that are affected by the size change.
370  *
371  * Note: this routine may be invoked as a result of a pager put
372  * operation (possibly at object termination time), so we must be careful.
373  */
374 void
375 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
376 {
377 	vm_object_t object;
378 	vm_page_t m;
379 	vm_pindex_t nobjsize;
380 
381 	if ((object = vp->v_object) == NULL)
382 		return;
383 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
384 	VM_OBJECT_WLOCK(object);
385 	if (object->type == OBJT_DEAD) {
386 		VM_OBJECT_WUNLOCK(object);
387 		return;
388 	}
389 	KASSERT(object->type == OBJT_VNODE,
390 	    ("not vnode-backed object %p", object));
391 	if (nsize == object->un_pager.vnp.vnp_size) {
392 		/*
393 		 * Hasn't changed size
394 		 */
395 		VM_OBJECT_WUNLOCK(object);
396 		return;
397 	}
398 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
399 	if (nsize < object->un_pager.vnp.vnp_size) {
400 		/*
401 		 * File has shrunk. Toss any cached pages beyond the new EOF.
402 		 */
403 		if (nobjsize < object->size)
404 			vm_object_page_remove(object, nobjsize, object->size,
405 			    0);
406 		/*
407 		 * this gets rid of garbage at the end of a page that is now
408 		 * only partially backed by the vnode.
409 		 *
410 		 * XXX for some reason (I don't know yet), if we take a
411 		 * completely invalid page and mark it partially valid
412 		 * it can screw up NFS reads, so we don't allow the case.
413 		 */
414 		if ((nsize & PAGE_MASK) &&
415 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
416 		    m->valid != 0) {
417 			int base = (int)nsize & PAGE_MASK;
418 			int size = PAGE_SIZE - base;
419 
420 			/*
421 			 * Clear out partial-page garbage in case
422 			 * the page has been mapped.
423 			 */
424 			pmap_zero_page_area(m, base, size);
425 
426 			/*
427 			 * Update the valid bits to reflect the blocks that
428 			 * have been zeroed.  Some of these valid bits may
429 			 * have already been set.
430 			 */
431 			vm_page_set_valid_range(m, base, size);
432 
433 			/*
434 			 * Round "base" to the next block boundary so that the
435 			 * dirty bit for a partially zeroed block is not
436 			 * cleared.
437 			 */
438 			base = roundup2(base, DEV_BSIZE);
439 
440 			/*
441 			 * Clear out partial-page dirty bits.
442 			 *
443 			 * note that we do not clear out the valid
444 			 * bits.  This would prevent bogus_page
445 			 * replacement from working properly.
446 			 */
447 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
448 		} else if ((nsize & PAGE_MASK) &&
449 		    vm_page_is_cached(object, OFF_TO_IDX(nsize))) {
450 			vm_page_cache_free(object, OFF_TO_IDX(nsize),
451 			    nobjsize);
452 		}
453 	}
454 	object->un_pager.vnp.vnp_size = nsize;
455 	object->size = nobjsize;
456 	VM_OBJECT_WUNLOCK(object);
457 }
458 
459 /*
460  * calculate the linear (byte) disk address of specified virtual
461  * file address
462  */
463 static int
464 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
465     int *run)
466 {
467 	int bsize;
468 	int err;
469 	daddr_t vblock;
470 	daddr_t voffset;
471 
472 	if (address < 0)
473 		return -1;
474 
475 	if (vp->v_iflag & VI_DOOMED)
476 		return -1;
477 
478 	bsize = vp->v_mount->mnt_stat.f_iosize;
479 	vblock = address / bsize;
480 	voffset = address % bsize;
481 
482 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
483 	if (err == 0) {
484 		if (*rtaddress != -1)
485 			*rtaddress += voffset / DEV_BSIZE;
486 		if (run) {
487 			*run += 1;
488 			*run *= bsize/PAGE_SIZE;
489 			*run -= voffset/PAGE_SIZE;
490 		}
491 	}
492 
493 	return (err);
494 }
495 
496 /*
497  * small block filesystem vnode pager input
498  */
499 static int
500 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
501 {
502 	struct vnode *vp;
503 	struct bufobj *bo;
504 	struct buf *bp;
505 	struct sf_buf *sf;
506 	daddr_t fileaddr;
507 	vm_offset_t bsize;
508 	vm_page_bits_t bits;
509 	int error, i;
510 
511 	error = 0;
512 	vp = object->handle;
513 	if (vp->v_iflag & VI_DOOMED)
514 		return VM_PAGER_BAD;
515 
516 	bsize = vp->v_mount->mnt_stat.f_iosize;
517 
518 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
519 
520 	sf = sf_buf_alloc(m, 0);
521 
522 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
523 		vm_ooffset_t address;
524 
525 		bits = vm_page_bits(i * bsize, bsize);
526 		if (m->valid & bits)
527 			continue;
528 
529 		address = IDX_TO_OFF(m->pindex) + i * bsize;
530 		if (address >= object->un_pager.vnp.vnp_size) {
531 			fileaddr = -1;
532 		} else {
533 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
534 			if (error)
535 				break;
536 		}
537 		if (fileaddr != -1) {
538 			bp = getpbuf(&vnode_pbuf_freecnt);
539 
540 			/* build a minimal buffer header */
541 			bp->b_iocmd = BIO_READ;
542 			bp->b_iodone = bdone;
543 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
544 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
545 			bp->b_rcred = crhold(curthread->td_ucred);
546 			bp->b_wcred = crhold(curthread->td_ucred);
547 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
548 			bp->b_blkno = fileaddr;
549 			pbgetbo(bo, bp);
550 			bp->b_vp = vp;
551 			bp->b_bcount = bsize;
552 			bp->b_bufsize = bsize;
553 			bp->b_runningbufspace = bp->b_bufsize;
554 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
555 
556 			/* do the input */
557 			bp->b_iooffset = dbtob(bp->b_blkno);
558 			bstrategy(bp);
559 
560 			bwait(bp, PVM, "vnsrd");
561 
562 			if ((bp->b_ioflags & BIO_ERROR) != 0)
563 				error = EIO;
564 
565 			/*
566 			 * free the buffer header back to the swap buffer pool
567 			 */
568 			bp->b_vp = NULL;
569 			pbrelbo(bp);
570 			relpbuf(bp, &vnode_pbuf_freecnt);
571 			if (error)
572 				break;
573 		} else
574 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
575 		KASSERT((m->dirty & bits) == 0,
576 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
577 		VM_OBJECT_WLOCK(object);
578 		m->valid |= bits;
579 		VM_OBJECT_WUNLOCK(object);
580 	}
581 	sf_buf_free(sf);
582 	if (error) {
583 		return VM_PAGER_ERROR;
584 	}
585 	return VM_PAGER_OK;
586 }
587 
588 /*
589  * old style vnode pager input routine
590  */
591 static int
592 vnode_pager_input_old(vm_object_t object, vm_page_t m)
593 {
594 	struct uio auio;
595 	struct iovec aiov;
596 	int error;
597 	int size;
598 	struct sf_buf *sf;
599 	struct vnode *vp;
600 
601 	VM_OBJECT_ASSERT_WLOCKED(object);
602 	error = 0;
603 
604 	/*
605 	 * Return failure if beyond current EOF
606 	 */
607 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
608 		return VM_PAGER_BAD;
609 	} else {
610 		size = PAGE_SIZE;
611 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
612 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
613 		vp = object->handle;
614 		VM_OBJECT_WUNLOCK(object);
615 
616 		/*
617 		 * Allocate a kernel virtual address and initialize so that
618 		 * we can use VOP_READ/WRITE routines.
619 		 */
620 		sf = sf_buf_alloc(m, 0);
621 
622 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
623 		aiov.iov_len = size;
624 		auio.uio_iov = &aiov;
625 		auio.uio_iovcnt = 1;
626 		auio.uio_offset = IDX_TO_OFF(m->pindex);
627 		auio.uio_segflg = UIO_SYSSPACE;
628 		auio.uio_rw = UIO_READ;
629 		auio.uio_resid = size;
630 		auio.uio_td = curthread;
631 
632 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
633 		if (!error) {
634 			int count = size - auio.uio_resid;
635 
636 			if (count == 0)
637 				error = EINVAL;
638 			else if (count != PAGE_SIZE)
639 				bzero((caddr_t)sf_buf_kva(sf) + count,
640 				    PAGE_SIZE - count);
641 		}
642 		sf_buf_free(sf);
643 
644 		VM_OBJECT_WLOCK(object);
645 	}
646 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
647 	if (!error)
648 		m->valid = VM_PAGE_BITS_ALL;
649 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
650 }
651 
652 /*
653  * generic vnode pager input routine
654  */
655 
656 /*
657  * Local media VFS's that do not implement their own VOP_GETPAGES
658  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
659  * to implement the previous behaviour.
660  *
661  * All other FS's should use the bypass to get to the local media
662  * backing vp's VOP_GETPAGES.
663  */
664 static int
665 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
666 {
667 	int rtval;
668 	struct vnode *vp;
669 	int bytes = count * PAGE_SIZE;
670 
671 	vp = object->handle;
672 	VM_OBJECT_WUNLOCK(object);
673 	rtval = VOP_GETPAGES(vp, m, bytes, reqpage);
674 	KASSERT(rtval != EOPNOTSUPP,
675 	    ("vnode_pager: FS getpages not implemented\n"));
676 	VM_OBJECT_WLOCK(object);
677 	return rtval;
678 }
679 
680 static int
681 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
682     int reqpage, vop_getpages_iodone_t iodone, void *arg)
683 {
684 	struct vnode *vp;
685 	int rtval;
686 
687 	vp = object->handle;
688 	VM_OBJECT_WUNLOCK(object);
689 	rtval = VOP_GETPAGES_ASYNC(vp, m, count * PAGE_SIZE, reqpage,
690 	    iodone, arg);
691 	KASSERT(rtval != EOPNOTSUPP,
692 	    ("vnode_pager: FS getpages_async not implemented\n"));
693 	VM_OBJECT_WLOCK(object);
694 	return (rtval);
695 }
696 
697 /*
698  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
699  * local filesystems, where partially valid pages can only occur at
700  * the end of file.
701  */
702 int
703 vnode_pager_local_getpages(struct vop_getpages_args *ap)
704 {
705 
706 	return (vnode_pager_local_getpages0(ap->a_vp, ap->a_m, ap->a_count,
707 	    ap->a_reqpage, NULL, NULL));
708 }
709 
710 int
711 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
712 {
713 
714 	return (vnode_pager_local_getpages0(ap->a_vp, ap->a_m, ap->a_count,
715 	    ap->a_reqpage, ap->a_iodone, ap->a_arg));
716 }
717 
718 static int
719 vnode_pager_local_getpages0(struct vnode *vp, vm_page_t *m, int bytecount,
720     int reqpage, vop_getpages_iodone_t iodone, void *arg)
721 {
722 	vm_page_t mreq;
723 
724 	mreq = m[reqpage];
725 
726 	/*
727 	 * Since the caller has busied the requested page, that page's valid
728 	 * field will not be changed by other threads.
729 	 */
730 	vm_page_assert_xbusied(mreq);
731 
732 	/*
733 	 * The requested page has valid blocks.  Invalid part can only
734 	 * exist at the end of file, and the page is made fully valid
735 	 * by zeroing in vm_pager_get_pages().  Free non-requested
736 	 * pages, since no i/o is done to read its content.
737 	 */
738 	if (mreq->valid != 0) {
739 		vm_pager_free_nonreq(mreq->object, m, reqpage,
740 		    round_page(bytecount) / PAGE_SIZE, FALSE);
741 		if (iodone != NULL)
742 			iodone(arg, m, reqpage, 0);
743 		return (VM_PAGER_OK);
744 	}
745 
746 	return (vnode_pager_generic_getpages(vp, m, bytecount, reqpage,
747 	    iodone, arg));
748 }
749 
750 /*
751  * This is now called from local media FS's to operate against their
752  * own vnodes if they fail to implement VOP_GETPAGES.
753  */
754 int
755 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int bytecount,
756     int reqpage, vop_getpages_iodone_t iodone, void *arg)
757 {
758 	vm_object_t object;
759 	off_t foff;
760 	int i, j, size, bsize, first, *freecnt;
761 	daddr_t firstaddr, reqblock;
762 	struct bufobj *bo;
763 	int runpg;
764 	int runend;
765 	struct buf *bp;
766 	int count;
767 	int error;
768 
769 	object = vp->v_object;
770 	count = bytecount / PAGE_SIZE;
771 
772 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
773 	    ("vnode_pager_generic_getpages does not support devices"));
774 	if (vp->v_iflag & VI_DOOMED)
775 		return VM_PAGER_BAD;
776 
777 	bsize = vp->v_mount->mnt_stat.f_iosize;
778 	foff = IDX_TO_OFF(m[reqpage]->pindex);
779 
780 	/*
781 	 * Synchronous and asynchronous paging operations use different
782 	 * free pbuf counters.  This is done to avoid asynchronous requests
783 	 * to consume all pbufs.
784 	 * Allocate the pbuf at the very beginning of the function, so that
785 	 * if we are low on certain kind of pbufs don't even proceed to BMAP,
786 	 * but sleep.
787 	 */
788 	freecnt = iodone != NULL ?
789 	    &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt;
790 	bp = getpbuf(freecnt);
791 
792 	/*
793 	 * Get the underlying device blocks for the file with VOP_BMAP().
794 	 * If the file system doesn't support VOP_BMAP, use old way of
795 	 * getting pages via VOP_READ.
796 	 */
797 	error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL);
798 	if (error == EOPNOTSUPP) {
799 		relpbuf(bp, freecnt);
800 		VM_OBJECT_WLOCK(object);
801 		for (i = 0; i < count; i++)
802 			if (i != reqpage) {
803 				vm_page_lock(m[i]);
804 				vm_page_free(m[i]);
805 				vm_page_unlock(m[i]);
806 			}
807 		PCPU_INC(cnt.v_vnodein);
808 		PCPU_INC(cnt.v_vnodepgsin);
809 		error = vnode_pager_input_old(object, m[reqpage]);
810 		VM_OBJECT_WUNLOCK(object);
811 		return (error);
812 	} else if (error != 0) {
813 		relpbuf(bp, freecnt);
814 		vm_pager_free_nonreq(object, m, reqpage, count, FALSE);
815 		return (VM_PAGER_ERROR);
816 
817 		/*
818 		 * if the blocksize is smaller than a page size, then use
819 		 * special small filesystem code.  NFS sometimes has a small
820 		 * blocksize, but it can handle large reads itself.
821 		 */
822 	} else if ((PAGE_SIZE / bsize) > 1 &&
823 	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
824 		relpbuf(bp, freecnt);
825 		vm_pager_free_nonreq(object, m, reqpage, count, FALSE);
826 		PCPU_INC(cnt.v_vnodein);
827 		PCPU_INC(cnt.v_vnodepgsin);
828 		return vnode_pager_input_smlfs(object, m[reqpage]);
829 	}
830 
831 	/*
832 	 * Since the caller has busied the requested page, that page's valid
833 	 * field will not be changed by other threads.
834 	 */
835 	vm_page_assert_xbusied(m[reqpage]);
836 
837 	/*
838 	 * If we have a completely valid page available to us, we can
839 	 * clean up and return.  Otherwise we have to re-read the
840 	 * media.
841 	 */
842 	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
843 		relpbuf(bp, freecnt);
844 		vm_pager_free_nonreq(object, m, reqpage, count, FALSE);
845 		return (VM_PAGER_OK);
846 	} else if (reqblock == -1) {
847 		relpbuf(bp, freecnt);
848 		pmap_zero_page(m[reqpage]);
849 		KASSERT(m[reqpage]->dirty == 0,
850 		    ("vnode_pager_generic_getpages: page %p is dirty", m));
851 		VM_OBJECT_WLOCK(object);
852 		m[reqpage]->valid = VM_PAGE_BITS_ALL;
853 		vm_pager_free_nonreq(object, m, reqpage, count, TRUE);
854 		VM_OBJECT_WUNLOCK(object);
855 		return (VM_PAGER_OK);
856 	} else if (m[reqpage]->valid != 0) {
857 		VM_OBJECT_WLOCK(object);
858 		m[reqpage]->valid = 0;
859 		VM_OBJECT_WUNLOCK(object);
860 	}
861 
862 	/*
863 	 * here on direct device I/O
864 	 */
865 	firstaddr = -1;
866 
867 	/*
868 	 * calculate the run that includes the required page
869 	 */
870 	for (first = 0, i = 0; i < count; i = runend) {
871 		if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr,
872 		    &runpg) != 0) {
873 			relpbuf(bp, freecnt);
874 			/* The requested page may be out of range. */
875 			vm_pager_free_nonreq(object, m + i, reqpage - i,
876 			    count - i, FALSE);
877 			return (VM_PAGER_ERROR);
878 		}
879 		if (firstaddr == -1) {
880 			VM_OBJECT_WLOCK(object);
881 			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
882 				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
883 				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
884 				    (uintmax_t)foff,
885 				    (uintmax_t)
886 				    (object->un_pager.vnp.vnp_size >> 32),
887 				    (uintmax_t)object->un_pager.vnp.vnp_size);
888 			}
889 			vm_page_lock(m[i]);
890 			vm_page_free(m[i]);
891 			vm_page_unlock(m[i]);
892 			VM_OBJECT_WUNLOCK(object);
893 			runend = i + 1;
894 			first = runend;
895 			continue;
896 		}
897 		runend = i + runpg;
898 		if (runend <= reqpage) {
899 			VM_OBJECT_WLOCK(object);
900 			for (j = i; j < runend; j++) {
901 				vm_page_lock(m[j]);
902 				vm_page_free(m[j]);
903 				vm_page_unlock(m[j]);
904 			}
905 			VM_OBJECT_WUNLOCK(object);
906 		} else {
907 			if (runpg < (count - first)) {
908 				VM_OBJECT_WLOCK(object);
909 				for (i = first + runpg; i < count; i++) {
910 					vm_page_lock(m[i]);
911 					vm_page_free(m[i]);
912 					vm_page_unlock(m[i]);
913 				}
914 				VM_OBJECT_WUNLOCK(object);
915 				count = first + runpg;
916 			}
917 			break;
918 		}
919 		first = runend;
920 	}
921 
922 	/*
923 	 * the first and last page have been calculated now, move input pages
924 	 * to be zero based...
925 	 */
926 	if (first != 0) {
927 		m += first;
928 		count -= first;
929 		reqpage -= first;
930 	}
931 
932 	/*
933 	 * calculate the file virtual address for the transfer
934 	 */
935 	foff = IDX_TO_OFF(m[0]->pindex);
936 
937 	/*
938 	 * calculate the size of the transfer
939 	 */
940 	size = count * PAGE_SIZE;
941 	KASSERT(count > 0, ("zero count"));
942 	if ((foff + size) > object->un_pager.vnp.vnp_size)
943 		size = object->un_pager.vnp.vnp_size - foff;
944 	KASSERT(size > 0, ("zero size"));
945 
946 	/*
947 	 * round up physical size for real devices.
948 	 */
949 	if (1) {
950 		int secmask = bo->bo_bsize - 1;
951 		KASSERT(secmask < PAGE_SIZE && secmask > 0,
952 		    ("vnode_pager_generic_getpages: sector size %d too large",
953 		    secmask + 1));
954 		size = (size + secmask) & ~secmask;
955 	}
956 
957 	bp->b_kvaalloc = bp->b_data;
958 
959 	/*
960 	 * and map the pages to be read into the kva, if the filesystem
961 	 * requires mapped buffers.
962 	 */
963 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
964 	    unmapped_buf_allowed) {
965 		bp->b_data = unmapped_buf;
966 		bp->b_kvabase = unmapped_buf;
967 		bp->b_offset = 0;
968 		bp->b_flags |= B_UNMAPPED;
969 	} else
970 		pmap_qenter((vm_offset_t)bp->b_kvaalloc, m, count);
971 
972 	/* build a minimal buffer header */
973 	bp->b_iocmd = BIO_READ;
974 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
975 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
976 	bp->b_rcred = crhold(curthread->td_ucred);
977 	bp->b_wcred = crhold(curthread->td_ucred);
978 	bp->b_blkno = firstaddr;
979 	pbgetbo(bo, bp);
980 	bp->b_vp = vp;
981 	bp->b_bcount = size;
982 	bp->b_bufsize = size;
983 	bp->b_runningbufspace = bp->b_bufsize;
984 	for (i = 0; i < count; i++)
985 		bp->b_pages[i] = m[i];
986 	bp->b_npages = count;
987 	bp->b_pager.pg_reqpage = reqpage;
988 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
989 
990 	PCPU_INC(cnt.v_vnodein);
991 	PCPU_ADD(cnt.v_vnodepgsin, count);
992 
993 	/* do the input */
994 	bp->b_iooffset = dbtob(bp->b_blkno);
995 
996 	if (iodone != NULL) { /* async */
997 		bp->b_pager.pg_iodone = iodone;
998 		bp->b_caller1 = arg;
999 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1000 		bp->b_flags |= B_ASYNC;
1001 		BUF_KERNPROC(bp);
1002 		bstrategy(bp);
1003 		/* Good bye! */
1004 	} else {
1005 		bp->b_iodone = bdone;
1006 		bstrategy(bp);
1007 		bwait(bp, PVM, "vnread");
1008 		error = vnode_pager_generic_getpages_done(bp);
1009 		for (i = 0; i < bp->b_npages; i++)
1010 			bp->b_pages[i] = NULL;
1011 		bp->b_vp = NULL;
1012 		pbrelbo(bp);
1013 		relpbuf(bp, &vnode_pbuf_freecnt);
1014 	}
1015 
1016 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1017 }
1018 
1019 static void
1020 vnode_pager_generic_getpages_done_async(struct buf *bp)
1021 {
1022 	int error;
1023 
1024 	error = vnode_pager_generic_getpages_done(bp);
1025 	bp->b_pager.pg_iodone(bp->b_caller1, bp->b_pages,
1026 	  bp->b_pager.pg_reqpage, error);
1027 	for (int i = 0; i < bp->b_npages; i++)
1028 		bp->b_pages[i] = NULL;
1029 	bp->b_vp = NULL;
1030 	pbrelbo(bp);
1031 	relpbuf(bp, &vnode_async_pbuf_freecnt);
1032 }
1033 
1034 static int
1035 vnode_pager_generic_getpages_done(struct buf *bp)
1036 {
1037 	vm_object_t object;
1038 	off_t tfoff, nextoff;
1039 	int i, error;
1040 
1041 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1042 	object = bp->b_vp->v_object;
1043 
1044 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1045 		if ((bp->b_flags & B_UNMAPPED) != 0) {
1046 			bp->b_flags &= ~B_UNMAPPED;
1047 			pmap_qenter((vm_offset_t)bp->b_kvaalloc, bp->b_pages,
1048 			    bp->b_npages);
1049 		}
1050 		bzero(bp->b_kvaalloc + bp->b_bcount,
1051 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1052 	}
1053 	if ((bp->b_flags & B_UNMAPPED) == 0)
1054 		pmap_qremove((vm_offset_t)bp->b_kvaalloc, bp->b_npages);
1055 	if ((bp->b_vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0) {
1056 		bp->b_data = bp->b_kvaalloc;
1057 		bp->b_kvabase = bp->b_kvaalloc;
1058 		bp->b_flags &= ~B_UNMAPPED;
1059 	}
1060 
1061 	VM_OBJECT_WLOCK(object);
1062 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1063 	    i < bp->b_npages; i++, tfoff = nextoff) {
1064 		vm_page_t mt;
1065 
1066 		nextoff = tfoff + PAGE_SIZE;
1067 		mt = bp->b_pages[i];
1068 
1069 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1070 			/*
1071 			 * Read filled up entire page.
1072 			 */
1073 			mt->valid = VM_PAGE_BITS_ALL;
1074 			KASSERT(mt->dirty == 0,
1075 			    ("%s: page %p is dirty", __func__, mt));
1076 			KASSERT(!pmap_page_is_mapped(mt),
1077 			    ("%s: page %p is mapped", __func__, mt));
1078 		} else {
1079 			/*
1080 			 * Read did not fill up entire page.
1081 			 *
1082 			 * Currently we do not set the entire page valid,
1083 			 * we just try to clear the piece that we couldn't
1084 			 * read.
1085 			 */
1086 			vm_page_set_valid_range(mt, 0,
1087 			    object->un_pager.vnp.vnp_size - tfoff);
1088 			KASSERT((mt->dirty & vm_page_bits(0,
1089 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1090 			    ("%s: page %p is dirty", __func__, mt));
1091 		}
1092 
1093 		if (i != bp->b_pager.pg_reqpage)
1094 			vm_page_readahead_finish(mt);
1095 	}
1096 	VM_OBJECT_WUNLOCK(object);
1097 	if (error != 0)
1098 		printf("%s: I/O read error %d\n", __func__, error);
1099 
1100 	return (error);
1101 }
1102 
1103 /*
1104  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1105  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1106  * vnode_pager_generic_putpages() to implement the previous behaviour.
1107  *
1108  * All other FS's should use the bypass to get to the local media
1109  * backing vp's VOP_PUTPAGES.
1110  */
1111 static void
1112 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1113     int flags, int *rtvals)
1114 {
1115 	int rtval;
1116 	struct vnode *vp;
1117 	int bytes = count * PAGE_SIZE;
1118 
1119 	/*
1120 	 * Force synchronous operation if we are extremely low on memory
1121 	 * to prevent a low-memory deadlock.  VOP operations often need to
1122 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1123 	 * operation ).  The swapper handles the case by limiting the amount
1124 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1125 	 * for the vnode pager without a lot of work.
1126 	 *
1127 	 * Also, the backing vnode's iodone routine may not wake the pageout
1128 	 * daemon up.  This should be probably be addressed XXX.
1129 	 */
1130 
1131 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count <
1132 	    vm_cnt.v_pageout_free_min)
1133 		flags |= VM_PAGER_PUT_SYNC;
1134 
1135 	/*
1136 	 * Call device-specific putpages function
1137 	 */
1138 	vp = object->handle;
1139 	VM_OBJECT_WUNLOCK(object);
1140 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1141 	KASSERT(rtval != EOPNOTSUPP,
1142 	    ("vnode_pager: stale FS putpages\n"));
1143 	VM_OBJECT_WLOCK(object);
1144 }
1145 
1146 
1147 /*
1148  * This is now called from local media FS's to operate against their
1149  * own vnodes if they fail to implement VOP_PUTPAGES.
1150  *
1151  * This is typically called indirectly via the pageout daemon and
1152  * clustering has already typically occured, so in general we ask the
1153  * underlying filesystem to write the data out asynchronously rather
1154  * then delayed.
1155  */
1156 int
1157 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1158     int flags, int *rtvals)
1159 {
1160 	int i;
1161 	vm_object_t object;
1162 	vm_page_t m;
1163 	int count;
1164 
1165 	int maxsize, ncount;
1166 	vm_ooffset_t poffset;
1167 	struct uio auio;
1168 	struct iovec aiov;
1169 	int error;
1170 	int ioflags;
1171 	int ppscheck = 0;
1172 	static struct timeval lastfail;
1173 	static int curfail;
1174 
1175 	object = vp->v_object;
1176 	count = bytecount / PAGE_SIZE;
1177 
1178 	for (i = 0; i < count; i++)
1179 		rtvals[i] = VM_PAGER_ERROR;
1180 
1181 	if ((int64_t)ma[0]->pindex < 0) {
1182 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1183 		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1184 		rtvals[0] = VM_PAGER_BAD;
1185 		return VM_PAGER_BAD;
1186 	}
1187 
1188 	maxsize = count * PAGE_SIZE;
1189 	ncount = count;
1190 
1191 	poffset = IDX_TO_OFF(ma[0]->pindex);
1192 
1193 	/*
1194 	 * If the page-aligned write is larger then the actual file we
1195 	 * have to invalidate pages occuring beyond the file EOF.  However,
1196 	 * there is an edge case where a file may not be page-aligned where
1197 	 * the last page is partially invalid.  In this case the filesystem
1198 	 * may not properly clear the dirty bits for the entire page (which
1199 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1200 	 * With the page locked we are free to fix-up the dirty bits here.
1201 	 *
1202 	 * We do not under any circumstances truncate the valid bits, as
1203 	 * this will screw up bogus page replacement.
1204 	 */
1205 	VM_OBJECT_WLOCK(object);
1206 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1207 		if (object->un_pager.vnp.vnp_size > poffset) {
1208 			int pgoff;
1209 
1210 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1211 			ncount = btoc(maxsize);
1212 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1213 				/*
1214 				 * If the object is locked and the following
1215 				 * conditions hold, then the page's dirty
1216 				 * field cannot be concurrently changed by a
1217 				 * pmap operation.
1218 				 */
1219 				m = ma[ncount - 1];
1220 				vm_page_assert_sbusied(m);
1221 				KASSERT(!pmap_page_is_write_mapped(m),
1222 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1223 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1224 				    pgoff);
1225 			}
1226 		} else {
1227 			maxsize = 0;
1228 			ncount = 0;
1229 		}
1230 		if (ncount < count) {
1231 			for (i = ncount; i < count; i++) {
1232 				rtvals[i] = VM_PAGER_BAD;
1233 			}
1234 		}
1235 	}
1236 	VM_OBJECT_WUNLOCK(object);
1237 
1238 	/*
1239 	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1240 	 * rather then a bdwrite() to prevent paging I/O from saturating
1241 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1242 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1243 	 * the system decides how to cluster.
1244 	 */
1245 	ioflags = IO_VMIO;
1246 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1247 		ioflags |= IO_SYNC;
1248 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1249 		ioflags |= IO_ASYNC;
1250 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1251 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1252 
1253 	aiov.iov_base = (caddr_t) 0;
1254 	aiov.iov_len = maxsize;
1255 	auio.uio_iov = &aiov;
1256 	auio.uio_iovcnt = 1;
1257 	auio.uio_offset = poffset;
1258 	auio.uio_segflg = UIO_NOCOPY;
1259 	auio.uio_rw = UIO_WRITE;
1260 	auio.uio_resid = maxsize;
1261 	auio.uio_td = (struct thread *) 0;
1262 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1263 	PCPU_INC(cnt.v_vnodeout);
1264 	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1265 
1266 	if (error) {
1267 		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1268 			printf("vnode_pager_putpages: I/O error %d\n", error);
1269 	}
1270 	if (auio.uio_resid) {
1271 		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1272 			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1273 			    auio.uio_resid, (u_long)ma[0]->pindex);
1274 	}
1275 	for (i = 0; i < ncount; i++) {
1276 		rtvals[i] = VM_PAGER_OK;
1277 	}
1278 	return rtvals[0];
1279 }
1280 
1281 void
1282 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1283 {
1284 	vm_object_t obj;
1285 	int i, pos;
1286 
1287 	if (written == 0)
1288 		return;
1289 	obj = ma[0]->object;
1290 	VM_OBJECT_WLOCK(obj);
1291 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1292 		if (pos < trunc_page(written)) {
1293 			rtvals[i] = VM_PAGER_OK;
1294 			vm_page_undirty(ma[i]);
1295 		} else {
1296 			/* Partially written page. */
1297 			rtvals[i] = VM_PAGER_AGAIN;
1298 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1299 		}
1300 	}
1301 	VM_OBJECT_WUNLOCK(obj);
1302 }
1303 
1304 void
1305 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1306     vm_offset_t end)
1307 {
1308 	struct vnode *vp;
1309 	vm_ooffset_t old_wm;
1310 
1311 	VM_OBJECT_WLOCK(object);
1312 	if (object->type != OBJT_VNODE) {
1313 		VM_OBJECT_WUNLOCK(object);
1314 		return;
1315 	}
1316 	old_wm = object->un_pager.vnp.writemappings;
1317 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1318 	vp = object->handle;
1319 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1320 		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1321 		VOP_ADD_WRITECOUNT(vp, 1);
1322 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1323 		    __func__, vp, vp->v_writecount);
1324 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1325 		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1326 		VOP_ADD_WRITECOUNT(vp, -1);
1327 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1328 		    __func__, vp, vp->v_writecount);
1329 	}
1330 	VM_OBJECT_WUNLOCK(object);
1331 }
1332 
1333 void
1334 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1335     vm_offset_t end)
1336 {
1337 	struct vnode *vp;
1338 	struct mount *mp;
1339 	vm_offset_t inc;
1340 
1341 	VM_OBJECT_WLOCK(object);
1342 
1343 	/*
1344 	 * First, recheck the object type to account for the race when
1345 	 * the vnode is reclaimed.
1346 	 */
1347 	if (object->type != OBJT_VNODE) {
1348 		VM_OBJECT_WUNLOCK(object);
1349 		return;
1350 	}
1351 
1352 	/*
1353 	 * Optimize for the case when writemappings is not going to
1354 	 * zero.
1355 	 */
1356 	inc = end - start;
1357 	if (object->un_pager.vnp.writemappings != inc) {
1358 		object->un_pager.vnp.writemappings -= inc;
1359 		VM_OBJECT_WUNLOCK(object);
1360 		return;
1361 	}
1362 
1363 	vp = object->handle;
1364 	vhold(vp);
1365 	VM_OBJECT_WUNLOCK(object);
1366 	mp = NULL;
1367 	vn_start_write(vp, &mp, V_WAIT);
1368 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1369 
1370 	/*
1371 	 * Decrement the object's writemappings, by swapping the start
1372 	 * and end arguments for vnode_pager_update_writecount().  If
1373 	 * there was not a race with vnode reclaimation, then the
1374 	 * vnode's v_writecount is decremented.
1375 	 */
1376 	vnode_pager_update_writecount(object, end, start);
1377 	VOP_UNLOCK(vp, 0);
1378 	vdrop(vp);
1379 	if (mp != NULL)
1380 		vn_finished_write(mp);
1381 }
1382