1 /* 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 * $FreeBSD$ 42 */ 43 44 /* 45 * Page to/from files (vnodes). 46 */ 47 48 /* 49 * TODO: 50 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 51 * greatly re-simplify the vnode_pager. 52 */ 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/proc.h> 57 #include <sys/vnode.h> 58 #include <sys/mount.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/vmmeter.h> 62 #include <sys/conf.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_object.h> 66 #include <vm/vm_page.h> 67 #include <vm/vm_pager.h> 68 #include <vm/vm_map.h> 69 #include <vm/vnode_pager.h> 70 #include <vm/vm_extern.h> 71 72 static void vnode_pager_init(void); 73 static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 74 int *run); 75 static void vnode_pager_iodone(struct buf *bp); 76 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 77 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 78 static void vnode_pager_dealloc(vm_object_t); 79 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 80 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 81 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 82 83 struct pagerops vnodepagerops = { 84 vnode_pager_init, 85 vnode_pager_alloc, 86 vnode_pager_dealloc, 87 vnode_pager_getpages, 88 vnode_pager_putpages, 89 vnode_pager_haspage, 90 NULL 91 }; 92 93 int vnode_pbuf_freecnt; 94 95 static void 96 vnode_pager_init(void) 97 { 98 99 vnode_pbuf_freecnt = nswbuf / 2 + 1; 100 } 101 102 /* 103 * Allocate (or lookup) pager for a vnode. 104 * Handle is a vnode pointer. 105 * 106 * MPSAFE 107 */ 108 vm_object_t 109 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 110 vm_ooffset_t offset) 111 { 112 vm_object_t object; 113 struct vnode *vp; 114 115 /* 116 * Pageout to vnode, no can do yet. 117 */ 118 if (handle == NULL) 119 return (NULL); 120 121 vp = (struct vnode *) handle; 122 123 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 124 125 mtx_lock(&Giant); 126 /* 127 * Prevent race condition when allocating the object. This 128 * can happen with NFS vnodes since the nfsnode isn't locked. 129 */ 130 VI_LOCK(vp); 131 while (vp->v_iflag & VI_OLOCK) { 132 vp->v_iflag |= VI_OWANT; 133 msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0); 134 } 135 vp->v_iflag |= VI_OLOCK; 136 VI_UNLOCK(vp); 137 138 /* 139 * If the object is being terminated, wait for it to 140 * go away. 141 */ 142 while ((object = vp->v_object) != NULL) { 143 VM_OBJECT_LOCK(object); 144 if ((object->flags & OBJ_DEAD) == 0) 145 break; 146 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 147 } 148 149 if (vp->v_usecount == 0) 150 panic("vnode_pager_alloc: no vnode reference"); 151 152 if (object == NULL) { 153 /* 154 * And an object of the appropriate size 155 */ 156 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 157 158 object->un_pager.vnp.vnp_size = size; 159 160 object->handle = handle; 161 vp->v_object = object; 162 } else { 163 object->ref_count++; 164 VM_OBJECT_UNLOCK(object); 165 } 166 VI_LOCK(vp); 167 vp->v_usecount++; 168 vp->v_iflag &= ~VI_OLOCK; 169 if (vp->v_iflag & VI_OWANT) { 170 vp->v_iflag &= ~VI_OWANT; 171 wakeup(vp); 172 } 173 VI_UNLOCK(vp); 174 mtx_unlock(&Giant); 175 return (object); 176 } 177 178 static void 179 vnode_pager_dealloc(object) 180 vm_object_t object; 181 { 182 struct vnode *vp = object->handle; 183 184 GIANT_REQUIRED; 185 if (vp == NULL) 186 panic("vnode_pager_dealloc: pager already dealloced"); 187 188 VM_OBJECT_LOCK(object); 189 vm_object_pip_wait(object, "vnpdea"); 190 VM_OBJECT_UNLOCK(object); 191 192 object->handle = NULL; 193 object->type = OBJT_DEAD; 194 ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc"); 195 vp->v_object = NULL; 196 vp->v_vflag &= ~(VV_TEXT | VV_OBJBUF); 197 } 198 199 static boolean_t 200 vnode_pager_haspage(object, pindex, before, after) 201 vm_object_t object; 202 vm_pindex_t pindex; 203 int *before; 204 int *after; 205 { 206 struct vnode *vp = object->handle; 207 daddr_t bn; 208 int err; 209 daddr_t reqblock; 210 int poff; 211 int bsize; 212 int pagesperblock, blocksperpage; 213 214 GIANT_REQUIRED; 215 /* 216 * If no vp or vp is doomed or marked transparent to VM, we do not 217 * have the page. 218 */ 219 if (vp == NULL) 220 return FALSE; 221 222 VI_LOCK(vp); 223 if (vp->v_iflag & VI_DOOMED) { 224 VI_UNLOCK(vp); 225 return FALSE; 226 } 227 VI_UNLOCK(vp); 228 /* 229 * If filesystem no longer mounted or offset beyond end of file we do 230 * not have the page. 231 */ 232 if ((vp->v_mount == NULL) || 233 (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)) 234 return FALSE; 235 236 bsize = vp->v_mount->mnt_stat.f_iosize; 237 pagesperblock = bsize / PAGE_SIZE; 238 blocksperpage = 0; 239 if (pagesperblock > 0) { 240 reqblock = pindex / pagesperblock; 241 } else { 242 blocksperpage = (PAGE_SIZE / bsize); 243 reqblock = pindex * blocksperpage; 244 } 245 err = VOP_BMAP(vp, reqblock, (struct vnode **) 0, &bn, 246 after, before); 247 if (err) 248 return TRUE; 249 if (bn == -1) 250 return FALSE; 251 if (pagesperblock > 0) { 252 poff = pindex - (reqblock * pagesperblock); 253 if (before) { 254 *before *= pagesperblock; 255 *before += poff; 256 } 257 if (after) { 258 int numafter; 259 *after *= pagesperblock; 260 numafter = pagesperblock - (poff + 1); 261 if (IDX_TO_OFF(pindex + numafter) > 262 object->un_pager.vnp.vnp_size) { 263 numafter = 264 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 265 pindex; 266 } 267 *after += numafter; 268 } 269 } else { 270 if (before) { 271 *before /= blocksperpage; 272 } 273 274 if (after) { 275 *after /= blocksperpage; 276 } 277 } 278 return TRUE; 279 } 280 281 /* 282 * Lets the VM system know about a change in size for a file. 283 * We adjust our own internal size and flush any cached pages in 284 * the associated object that are affected by the size change. 285 * 286 * Note: this routine may be invoked as a result of a pager put 287 * operation (possibly at object termination time), so we must be careful. 288 */ 289 void 290 vnode_pager_setsize(vp, nsize) 291 struct vnode *vp; 292 vm_ooffset_t nsize; 293 { 294 vm_pindex_t nobjsize; 295 vm_object_t object = vp->v_object; 296 297 GIANT_REQUIRED; 298 299 if (object == NULL) 300 return; 301 302 /* 303 * Hasn't changed size 304 */ 305 if (nsize == object->un_pager.vnp.vnp_size) 306 return; 307 308 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 309 310 /* 311 * File has shrunk. Toss any cached pages beyond the new EOF. 312 */ 313 if (nsize < object->un_pager.vnp.vnp_size) { 314 if (nobjsize < object->size) { 315 VM_OBJECT_LOCK(object); 316 vm_object_page_remove(object, nobjsize, object->size, 317 FALSE); 318 VM_OBJECT_UNLOCK(object); 319 } 320 /* 321 * this gets rid of garbage at the end of a page that is now 322 * only partially backed by the vnode. 323 * 324 * XXX for some reason (I don't know yet), if we take a 325 * completely invalid page and mark it partially valid 326 * it can screw up NFS reads, so we don't allow the case. 327 */ 328 if (nsize & PAGE_MASK) { 329 vm_page_t m; 330 331 m = vm_page_lookup(object, OFF_TO_IDX(nsize)); 332 if (m && m->valid) { 333 int base = (int)nsize & PAGE_MASK; 334 int size = PAGE_SIZE - base; 335 336 /* 337 * Clear out partial-page garbage in case 338 * the page has been mapped. 339 */ 340 pmap_zero_page_area(m, base, size); 341 342 vm_page_lock_queues(); 343 /* 344 * XXX work around SMP data integrity race 345 * by unmapping the page from user processes. 346 * The garbage we just cleared may be mapped 347 * to a user process running on another cpu 348 * and this code is not running through normal 349 * I/O channels which handle SMP issues for 350 * us, so unmap page to synchronize all cpus. 351 * 352 * XXX should vm_pager_unmap_page() have 353 * dealt with this? 354 */ 355 pmap_remove_all(m); 356 357 /* 358 * Clear out partial-page dirty bits. This 359 * has the side effect of setting the valid 360 * bits, but that is ok. There are a bunch 361 * of places in the VM system where we expected 362 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 363 * case is one of them. If the page is still 364 * partially dirty, make it fully dirty. 365 * 366 * note that we do not clear out the valid 367 * bits. This would prevent bogus_page 368 * replacement from working properly. 369 */ 370 vm_page_set_validclean(m, base, size); 371 if (m->dirty != 0) 372 m->dirty = VM_PAGE_BITS_ALL; 373 vm_page_unlock_queues(); 374 } 375 } 376 } 377 object->un_pager.vnp.vnp_size = nsize; 378 object->size = nobjsize; 379 } 380 381 /* 382 * calculate the linear (byte) disk address of specified virtual 383 * file address 384 */ 385 static vm_offset_t 386 vnode_pager_addr(vp, address, run) 387 struct vnode *vp; 388 vm_ooffset_t address; 389 int *run; 390 { 391 int rtaddress; 392 int bsize; 393 daddr_t block; 394 struct vnode *rtvp; 395 int err; 396 daddr_t vblock; 397 int voffset; 398 399 GIANT_REQUIRED; 400 if ((int) address < 0) 401 return -1; 402 403 if (vp->v_mount == NULL) 404 return -1; 405 406 bsize = vp->v_mount->mnt_stat.f_iosize; 407 vblock = address / bsize; 408 voffset = address % bsize; 409 410 err = VOP_BMAP(vp, vblock, &rtvp, &block, run, NULL); 411 412 if (err || (block == -1)) 413 rtaddress = -1; 414 else { 415 rtaddress = block + voffset / DEV_BSIZE; 416 if (run) { 417 *run += 1; 418 *run *= bsize/PAGE_SIZE; 419 *run -= voffset/PAGE_SIZE; 420 } 421 } 422 423 return rtaddress; 424 } 425 426 /* 427 * interrupt routine for I/O completion 428 */ 429 static void 430 vnode_pager_iodone(bp) 431 struct buf *bp; 432 { 433 bp->b_flags |= B_DONE; 434 wakeup(bp); 435 } 436 437 /* 438 * small block filesystem vnode pager input 439 */ 440 static int 441 vnode_pager_input_smlfs(object, m) 442 vm_object_t object; 443 vm_page_t m; 444 { 445 int i; 446 int s; 447 struct vnode *dp, *vp; 448 struct buf *bp; 449 vm_offset_t kva; 450 int fileaddr; 451 vm_offset_t bsize; 452 int error = 0; 453 454 GIANT_REQUIRED; 455 456 vp = object->handle; 457 if (vp->v_mount == NULL) 458 return VM_PAGER_BAD; 459 460 bsize = vp->v_mount->mnt_stat.f_iosize; 461 462 VOP_BMAP(vp, 0, &dp, 0, NULL, NULL); 463 464 kva = vm_pager_map_page(m); 465 466 for (i = 0; i < PAGE_SIZE / bsize; i++) { 467 vm_ooffset_t address; 468 469 if (vm_page_bits(i * bsize, bsize) & m->valid) 470 continue; 471 472 address = IDX_TO_OFF(m->pindex) + i * bsize; 473 if (address >= object->un_pager.vnp.vnp_size) { 474 fileaddr = -1; 475 } else { 476 fileaddr = vnode_pager_addr(vp, address, NULL); 477 } 478 if (fileaddr != -1) { 479 bp = getpbuf(&vnode_pbuf_freecnt); 480 481 /* build a minimal buffer header */ 482 bp->b_iocmd = BIO_READ; 483 bp->b_iodone = vnode_pager_iodone; 484 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 485 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 486 bp->b_rcred = crhold(curthread->td_ucred); 487 bp->b_wcred = crhold(curthread->td_ucred); 488 bp->b_data = (caddr_t) kva + i * bsize; 489 bp->b_blkno = fileaddr; 490 pbgetvp(dp, bp); 491 bp->b_bcount = bsize; 492 bp->b_bufsize = bsize; 493 bp->b_runningbufspace = bp->b_bufsize; 494 runningbufspace += bp->b_runningbufspace; 495 496 /* do the input */ 497 VOP_SPECSTRATEGY(bp->b_vp, bp); 498 499 /* we definitely need to be at splvm here */ 500 501 s = splvm(); 502 while ((bp->b_flags & B_DONE) == 0) { 503 tsleep(bp, PVM, "vnsrd", 0); 504 } 505 splx(s); 506 if ((bp->b_ioflags & BIO_ERROR) != 0) 507 error = EIO; 508 509 /* 510 * free the buffer header back to the swap buffer pool 511 */ 512 relpbuf(bp, &vnode_pbuf_freecnt); 513 if (error) 514 break; 515 516 vm_page_lock_queues(); 517 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 518 vm_page_unlock_queues(); 519 } else { 520 vm_page_lock_queues(); 521 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 522 vm_page_unlock_queues(); 523 bzero((caddr_t) kva + i * bsize, bsize); 524 } 525 } 526 vm_pager_unmap_page(kva); 527 vm_page_lock_queues(); 528 pmap_clear_modify(m); 529 vm_page_flag_clear(m, PG_ZERO); 530 vm_page_unlock_queues(); 531 if (error) { 532 return VM_PAGER_ERROR; 533 } 534 return VM_PAGER_OK; 535 536 } 537 538 539 /* 540 * old style vnode pager output routine 541 */ 542 static int 543 vnode_pager_input_old(object, m) 544 vm_object_t object; 545 vm_page_t m; 546 { 547 struct uio auio; 548 struct iovec aiov; 549 int error; 550 int size; 551 vm_offset_t kva; 552 struct vnode *vp; 553 554 GIANT_REQUIRED; 555 error = 0; 556 557 /* 558 * Return failure if beyond current EOF 559 */ 560 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 561 return VM_PAGER_BAD; 562 } else { 563 size = PAGE_SIZE; 564 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 565 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 566 567 /* 568 * Allocate a kernel virtual address and initialize so that 569 * we can use VOP_READ/WRITE routines. 570 */ 571 kva = vm_pager_map_page(m); 572 573 vp = object->handle; 574 aiov.iov_base = (caddr_t) kva; 575 aiov.iov_len = size; 576 auio.uio_iov = &aiov; 577 auio.uio_iovcnt = 1; 578 auio.uio_offset = IDX_TO_OFF(m->pindex); 579 auio.uio_segflg = UIO_SYSSPACE; 580 auio.uio_rw = UIO_READ; 581 auio.uio_resid = size; 582 auio.uio_td = curthread; 583 584 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 585 if (!error) { 586 int count = size - auio.uio_resid; 587 588 if (count == 0) 589 error = EINVAL; 590 else if (count != PAGE_SIZE) 591 bzero((caddr_t) kva + count, PAGE_SIZE - count); 592 } 593 vm_pager_unmap_page(kva); 594 } 595 vm_page_lock_queues(); 596 pmap_clear_modify(m); 597 vm_page_undirty(m); 598 vm_page_flag_clear(m, PG_ZERO); 599 if (!error) 600 m->valid = VM_PAGE_BITS_ALL; 601 vm_page_unlock_queues(); 602 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 603 } 604 605 /* 606 * generic vnode pager input routine 607 */ 608 609 /* 610 * Local media VFS's that do not implement their own VOP_GETPAGES 611 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 612 * to implement the previous behaviour. 613 * 614 * All other FS's should use the bypass to get to the local media 615 * backing vp's VOP_GETPAGES. 616 */ 617 static int 618 vnode_pager_getpages(object, m, count, reqpage) 619 vm_object_t object; 620 vm_page_t *m; 621 int count; 622 int reqpage; 623 { 624 int rtval; 625 struct vnode *vp; 626 int bytes = count * PAGE_SIZE; 627 628 GIANT_REQUIRED; 629 vp = object->handle; 630 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 631 KASSERT(rtval != EOPNOTSUPP, 632 ("vnode_pager: FS getpages not implemented\n")); 633 return rtval; 634 } 635 636 /* 637 * This is now called from local media FS's to operate against their 638 * own vnodes if they fail to implement VOP_GETPAGES. 639 */ 640 int 641 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 642 struct vnode *vp; 643 vm_page_t *m; 644 int bytecount; 645 int reqpage; 646 { 647 vm_object_t object; 648 vm_offset_t kva; 649 off_t foff, tfoff, nextoff; 650 int i, j, size, bsize, first, firstaddr; 651 struct vnode *dp; 652 int runpg; 653 int runend; 654 struct buf *bp; 655 int s; 656 int count; 657 int error = 0; 658 659 GIANT_REQUIRED; 660 object = vp->v_object; 661 count = bytecount / PAGE_SIZE; 662 663 if (vp->v_mount == NULL) 664 return VM_PAGER_BAD; 665 666 bsize = vp->v_mount->mnt_stat.f_iosize; 667 668 /* get the UNDERLYING device for the file with VOP_BMAP() */ 669 670 /* 671 * originally, we did not check for an error return value -- assuming 672 * an fs always has a bmap entry point -- that assumption is wrong!!! 673 */ 674 foff = IDX_TO_OFF(m[reqpage]->pindex); 675 676 /* 677 * if we can't bmap, use old VOP code 678 */ 679 if (VOP_BMAP(vp, 0, &dp, 0, NULL, NULL)) { 680 vm_page_lock_queues(); 681 for (i = 0; i < count; i++) 682 if (i != reqpage) 683 vm_page_free(m[i]); 684 vm_page_unlock_queues(); 685 cnt.v_vnodein++; 686 cnt.v_vnodepgsin++; 687 return vnode_pager_input_old(object, m[reqpage]); 688 689 /* 690 * if the blocksize is smaller than a page size, then use 691 * special small filesystem code. NFS sometimes has a small 692 * blocksize, but it can handle large reads itself. 693 */ 694 } else if ((PAGE_SIZE / bsize) > 1 && 695 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 696 vm_page_lock_queues(); 697 for (i = 0; i < count; i++) 698 if (i != reqpage) 699 vm_page_free(m[i]); 700 vm_page_unlock_queues(); 701 cnt.v_vnodein++; 702 cnt.v_vnodepgsin++; 703 return vnode_pager_input_smlfs(object, m[reqpage]); 704 } 705 706 /* 707 * If we have a completely valid page available to us, we can 708 * clean up and return. Otherwise we have to re-read the 709 * media. 710 */ 711 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 712 vm_page_lock_queues(); 713 for (i = 0; i < count; i++) 714 if (i != reqpage) 715 vm_page_free(m[i]); 716 vm_page_unlock_queues(); 717 return VM_PAGER_OK; 718 } 719 m[reqpage]->valid = 0; 720 721 /* 722 * here on direct device I/O 723 */ 724 firstaddr = -1; 725 726 /* 727 * calculate the run that includes the required page 728 */ 729 for (first = 0, i = 0; i < count; i = runend) { 730 firstaddr = vnode_pager_addr(vp, 731 IDX_TO_OFF(m[i]->pindex), &runpg); 732 if (firstaddr == -1) { 733 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 734 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 735 firstaddr, (uintmax_t)(foff >> 32), 736 (uintmax_t)foff, 737 (uintmax_t) 738 (object->un_pager.vnp.vnp_size >> 32), 739 (uintmax_t)object->un_pager.vnp.vnp_size); 740 } 741 vm_page_lock_queues(); 742 vm_page_free(m[i]); 743 vm_page_unlock_queues(); 744 runend = i + 1; 745 first = runend; 746 continue; 747 } 748 runend = i + runpg; 749 if (runend <= reqpage) { 750 vm_page_lock_queues(); 751 for (j = i; j < runend; j++) 752 vm_page_free(m[j]); 753 vm_page_unlock_queues(); 754 } else { 755 if (runpg < (count - first)) { 756 vm_page_lock_queues(); 757 for (i = first + runpg; i < count; i++) 758 vm_page_free(m[i]); 759 vm_page_unlock_queues(); 760 count = first + runpg; 761 } 762 break; 763 } 764 first = runend; 765 } 766 767 /* 768 * the first and last page have been calculated now, move input pages 769 * to be zero based... 770 */ 771 if (first != 0) { 772 for (i = first; i < count; i++) { 773 m[i - first] = m[i]; 774 } 775 count -= first; 776 reqpage -= first; 777 } 778 779 /* 780 * calculate the file virtual address for the transfer 781 */ 782 foff = IDX_TO_OFF(m[0]->pindex); 783 784 /* 785 * calculate the size of the transfer 786 */ 787 size = count * PAGE_SIZE; 788 if ((foff + size) > object->un_pager.vnp.vnp_size) 789 size = object->un_pager.vnp.vnp_size - foff; 790 791 /* 792 * round up physical size for real devices. 793 */ 794 if (dp->v_type == VBLK || dp->v_type == VCHR) { 795 int secmask = dp->v_rdev->si_bsize_phys - 1; 796 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1)); 797 size = (size + secmask) & ~secmask; 798 } 799 800 bp = getpbuf(&vnode_pbuf_freecnt); 801 kva = (vm_offset_t) bp->b_data; 802 803 /* 804 * and map the pages to be read into the kva 805 */ 806 pmap_qenter(kva, m, count); 807 808 /* build a minimal buffer header */ 809 bp->b_iocmd = BIO_READ; 810 bp->b_iodone = vnode_pager_iodone; 811 /* B_PHYS is not set, but it is nice to fill this in */ 812 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 813 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 814 bp->b_rcred = crhold(curthread->td_ucred); 815 bp->b_wcred = crhold(curthread->td_ucred); 816 bp->b_blkno = firstaddr; 817 pbgetvp(dp, bp); 818 bp->b_bcount = size; 819 bp->b_bufsize = size; 820 bp->b_runningbufspace = bp->b_bufsize; 821 runningbufspace += bp->b_runningbufspace; 822 823 cnt.v_vnodein++; 824 cnt.v_vnodepgsin += count; 825 826 /* do the input */ 827 if (dp->v_type == VCHR) 828 VOP_SPECSTRATEGY(bp->b_vp, bp); 829 else 830 VOP_STRATEGY(bp->b_vp, bp); 831 832 s = splvm(); 833 /* we definitely need to be at splvm here */ 834 835 while ((bp->b_flags & B_DONE) == 0) { 836 tsleep(bp, PVM, "vnread", 0); 837 } 838 splx(s); 839 if ((bp->b_ioflags & BIO_ERROR) != 0) 840 error = EIO; 841 842 if (!error) { 843 if (size != count * PAGE_SIZE) 844 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 845 } 846 pmap_qremove(kva, count); 847 848 /* 849 * free the buffer header back to the swap buffer pool 850 */ 851 relpbuf(bp, &vnode_pbuf_freecnt); 852 853 vm_page_lock_queues(); 854 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 855 vm_page_t mt; 856 857 nextoff = tfoff + PAGE_SIZE; 858 mt = m[i]; 859 860 if (nextoff <= object->un_pager.vnp.vnp_size) { 861 /* 862 * Read filled up entire page. 863 */ 864 mt->valid = VM_PAGE_BITS_ALL; 865 vm_page_undirty(mt); /* should be an assert? XXX */ 866 pmap_clear_modify(mt); 867 } else { 868 /* 869 * Read did not fill up entire page. Since this 870 * is getpages, the page may be mapped, so we have 871 * to zero the invalid portions of the page even 872 * though we aren't setting them valid. 873 * 874 * Currently we do not set the entire page valid, 875 * we just try to clear the piece that we couldn't 876 * read. 877 */ 878 vm_page_set_validclean(mt, 0, 879 object->un_pager.vnp.vnp_size - tfoff); 880 /* handled by vm_fault now */ 881 /* vm_page_zero_invalid(mt, FALSE); */ 882 } 883 884 vm_page_flag_clear(mt, PG_ZERO); 885 if (i != reqpage) { 886 887 /* 888 * whether or not to leave the page activated is up in 889 * the air, but we should put the page on a page queue 890 * somewhere. (it already is in the object). Result: 891 * It appears that empirical results show that 892 * deactivating pages is best. 893 */ 894 895 /* 896 * just in case someone was asking for this page we 897 * now tell them that it is ok to use 898 */ 899 if (!error) { 900 if (mt->flags & PG_WANTED) 901 vm_page_activate(mt); 902 else 903 vm_page_deactivate(mt); 904 vm_page_wakeup(mt); 905 } else { 906 vm_page_free(mt); 907 } 908 } 909 } 910 vm_page_unlock_queues(); 911 if (error) { 912 printf("vnode_pager_getpages: I/O read error\n"); 913 } 914 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 915 } 916 917 /* 918 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 919 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 920 * vnode_pager_generic_putpages() to implement the previous behaviour. 921 * 922 * All other FS's should use the bypass to get to the local media 923 * backing vp's VOP_PUTPAGES. 924 */ 925 static void 926 vnode_pager_putpages(object, m, count, sync, rtvals) 927 vm_object_t object; 928 vm_page_t *m; 929 int count; 930 boolean_t sync; 931 int *rtvals; 932 { 933 int rtval; 934 struct vnode *vp; 935 struct mount *mp; 936 int bytes = count * PAGE_SIZE; 937 938 GIANT_REQUIRED; 939 /* 940 * Force synchronous operation if we are extremely low on memory 941 * to prevent a low-memory deadlock. VOP operations often need to 942 * allocate more memory to initiate the I/O ( i.e. do a BMAP 943 * operation ). The swapper handles the case by limiting the amount 944 * of asynchronous I/O, but that sort of solution doesn't scale well 945 * for the vnode pager without a lot of work. 946 * 947 * Also, the backing vnode's iodone routine may not wake the pageout 948 * daemon up. This should be probably be addressed XXX. 949 */ 950 951 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 952 sync |= OBJPC_SYNC; 953 954 /* 955 * Call device-specific putpages function 956 */ 957 vp = object->handle; 958 if (vp->v_type != VREG) 959 mp = NULL; 960 (void)vn_start_write(vp, &mp, V_WAIT); 961 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 962 KASSERT(rtval != EOPNOTSUPP, 963 ("vnode_pager: stale FS putpages\n")); 964 vn_finished_write(mp); 965 } 966 967 968 /* 969 * This is now called from local media FS's to operate against their 970 * own vnodes if they fail to implement VOP_PUTPAGES. 971 * 972 * This is typically called indirectly via the pageout daemon and 973 * clustering has already typically occured, so in general we ask the 974 * underlying filesystem to write the data out asynchronously rather 975 * then delayed. 976 */ 977 int 978 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 979 struct vnode *vp; 980 vm_page_t *m; 981 int bytecount; 982 int flags; 983 int *rtvals; 984 { 985 int i; 986 vm_object_t object; 987 int count; 988 989 int maxsize, ncount; 990 vm_ooffset_t poffset; 991 struct uio auio; 992 struct iovec aiov; 993 int error; 994 int ioflags; 995 996 GIANT_REQUIRED; 997 object = vp->v_object; 998 count = bytecount / PAGE_SIZE; 999 1000 for (i = 0; i < count; i++) 1001 rtvals[i] = VM_PAGER_AGAIN; 1002 1003 if ((int) m[0]->pindex < 0) { 1004 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n", 1005 (long)m[0]->pindex, m[0]->dirty); 1006 rtvals[0] = VM_PAGER_BAD; 1007 return VM_PAGER_BAD; 1008 } 1009 1010 maxsize = count * PAGE_SIZE; 1011 ncount = count; 1012 1013 poffset = IDX_TO_OFF(m[0]->pindex); 1014 1015 /* 1016 * If the page-aligned write is larger then the actual file we 1017 * have to invalidate pages occuring beyond the file EOF. However, 1018 * there is an edge case where a file may not be page-aligned where 1019 * the last page is partially invalid. In this case the filesystem 1020 * may not properly clear the dirty bits for the entire page (which 1021 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1022 * With the page locked we are free to fix-up the dirty bits here. 1023 * 1024 * We do not under any circumstances truncate the valid bits, as 1025 * this will screw up bogus page replacement. 1026 */ 1027 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1028 if (object->un_pager.vnp.vnp_size > poffset) { 1029 int pgoff; 1030 1031 maxsize = object->un_pager.vnp.vnp_size - poffset; 1032 ncount = btoc(maxsize); 1033 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1034 vm_page_clear_dirty(m[ncount - 1], pgoff, 1035 PAGE_SIZE - pgoff); 1036 } 1037 } else { 1038 maxsize = 0; 1039 ncount = 0; 1040 } 1041 if (ncount < count) { 1042 for (i = ncount; i < count; i++) { 1043 rtvals[i] = VM_PAGER_BAD; 1044 } 1045 } 1046 } 1047 1048 /* 1049 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 1050 * rather then a bdwrite() to prevent paging I/O from saturating 1051 * the buffer cache. Dummy-up the sequential heuristic to cause 1052 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1053 * the system decides how to cluster. 1054 */ 1055 ioflags = IO_VMIO; 1056 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1057 ioflags |= IO_SYNC; 1058 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1059 ioflags |= IO_ASYNC; 1060 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1061 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1062 1063 aiov.iov_base = (caddr_t) 0; 1064 aiov.iov_len = maxsize; 1065 auio.uio_iov = &aiov; 1066 auio.uio_iovcnt = 1; 1067 auio.uio_offset = poffset; 1068 auio.uio_segflg = UIO_NOCOPY; 1069 auio.uio_rw = UIO_WRITE; 1070 auio.uio_resid = maxsize; 1071 auio.uio_td = (struct thread *) 0; 1072 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1073 cnt.v_vnodeout++; 1074 cnt.v_vnodepgsout += ncount; 1075 1076 if (error) { 1077 printf("vnode_pager_putpages: I/O error %d\n", error); 1078 } 1079 if (auio.uio_resid) { 1080 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1081 auio.uio_resid, (u_long)m[0]->pindex); 1082 } 1083 for (i = 0; i < ncount; i++) { 1084 rtvals[i] = VM_PAGER_OK; 1085 } 1086 return rtvals[0]; 1087 } 1088 1089 struct vnode * 1090 vnode_pager_lock(object) 1091 vm_object_t object; 1092 { 1093 struct thread *td = curthread; /* XXX */ 1094 1095 GIANT_REQUIRED; 1096 1097 for (; object != NULL; object = object->backing_object) { 1098 if (object->type != OBJT_VNODE) 1099 continue; 1100 if (object->flags & OBJ_DEAD) { 1101 return NULL; 1102 } 1103 1104 /* XXX; If object->handle can change, we need to cache it. */ 1105 while (vget(object->handle, 1106 LK_NOPAUSE | LK_SHARED | LK_RETRY | LK_CANRECURSE, td)){ 1107 if ((object->flags & OBJ_DEAD) || (object->type != OBJT_VNODE)) 1108 return NULL; 1109 printf("vnode_pager_lock: retrying\n"); 1110 } 1111 return object->handle; 1112 } 1113 return NULL; 1114 } 1115