xref: /freebsd/sys/vm/vnode_pager.c (revision 76b28ad6ab6dc8d4a62cb7de7f143595be535813)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/limits.h>
65 #include <sys/conf.h>
66 #include <sys/rwlock.h>
67 #include <sys/sf_buf.h>
68 
69 #include <machine/atomic.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_page.h>
75 #include <vm/vm_pager.h>
76 #include <vm/vm_map.h>
77 #include <vm/vnode_pager.h>
78 #include <vm/vm_extern.h>
79 
80 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
81     daddr_t *rtaddress, int *run);
82 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
83 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
84 static void vnode_pager_dealloc(vm_object_t);
85 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
86 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
87 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
88 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
89     vm_ooffset_t, struct ucred *cred);
90 
91 struct pagerops vnodepagerops = {
92 	.pgo_alloc =	vnode_pager_alloc,
93 	.pgo_dealloc =	vnode_pager_dealloc,
94 	.pgo_getpages =	vnode_pager_getpages,
95 	.pgo_putpages =	vnode_pager_putpages,
96 	.pgo_haspage =	vnode_pager_haspage,
97 };
98 
99 int vnode_pbuf_freecnt;
100 
101 /* Create the VM system backing object for this vnode */
102 int
103 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
104 {
105 	vm_object_t object;
106 	vm_ooffset_t size = isize;
107 	struct vattr va;
108 
109 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
110 		return (0);
111 
112 	while ((object = vp->v_object) != NULL) {
113 		VM_OBJECT_WLOCK(object);
114 		if (!(object->flags & OBJ_DEAD)) {
115 			VM_OBJECT_WUNLOCK(object);
116 			return (0);
117 		}
118 		VOP_UNLOCK(vp, 0);
119 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
120 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
121 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
122 	}
123 
124 	if (size == 0) {
125 		if (vn_isdisk(vp, NULL)) {
126 			size = IDX_TO_OFF(INT_MAX);
127 		} else {
128 			if (VOP_GETATTR(vp, &va, td->td_ucred))
129 				return (0);
130 			size = va.va_size;
131 		}
132 	}
133 
134 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
135 	/*
136 	 * Dereference the reference we just created.  This assumes
137 	 * that the object is associated with the vp.
138 	 */
139 	VM_OBJECT_WLOCK(object);
140 	object->ref_count--;
141 	VM_OBJECT_WUNLOCK(object);
142 	vrele(vp);
143 
144 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
145 
146 	return (0);
147 }
148 
149 void
150 vnode_destroy_vobject(struct vnode *vp)
151 {
152 	struct vm_object *obj;
153 
154 	obj = vp->v_object;
155 	if (obj == NULL)
156 		return;
157 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
158 	VM_OBJECT_WLOCK(obj);
159 	if (obj->ref_count == 0) {
160 		/*
161 		 * don't double-terminate the object
162 		 */
163 		if ((obj->flags & OBJ_DEAD) == 0)
164 			vm_object_terminate(obj);
165 		else
166 			VM_OBJECT_WUNLOCK(obj);
167 	} else {
168 		/*
169 		 * Woe to the process that tries to page now :-).
170 		 */
171 		vm_pager_deallocate(obj);
172 		VM_OBJECT_WUNLOCK(obj);
173 	}
174 	vp->v_object = NULL;
175 }
176 
177 
178 /*
179  * Allocate (or lookup) pager for a vnode.
180  * Handle is a vnode pointer.
181  *
182  * MPSAFE
183  */
184 vm_object_t
185 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
186     vm_ooffset_t offset, struct ucred *cred)
187 {
188 	vm_object_t object;
189 	struct vnode *vp;
190 
191 	/*
192 	 * Pageout to vnode, no can do yet.
193 	 */
194 	if (handle == NULL)
195 		return (NULL);
196 
197 	vp = (struct vnode *) handle;
198 
199 	/*
200 	 * If the object is being terminated, wait for it to
201 	 * go away.
202 	 */
203 retry:
204 	while ((object = vp->v_object) != NULL) {
205 		VM_OBJECT_WLOCK(object);
206 		if ((object->flags & OBJ_DEAD) == 0)
207 			break;
208 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
209 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
210 	}
211 
212 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
213 
214 	if (object == NULL) {
215 		/*
216 		 * Add an object of the appropriate size
217 		 */
218 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
219 
220 		object->un_pager.vnp.vnp_size = size;
221 		object->un_pager.vnp.writemappings = 0;
222 
223 		object->handle = handle;
224 		VI_LOCK(vp);
225 		if (vp->v_object != NULL) {
226 			/*
227 			 * Object has been created while we were sleeping
228 			 */
229 			VI_UNLOCK(vp);
230 			vm_object_destroy(object);
231 			goto retry;
232 		}
233 		vp->v_object = object;
234 		VI_UNLOCK(vp);
235 	} else {
236 		object->ref_count++;
237 		VM_OBJECT_WUNLOCK(object);
238 	}
239 	vref(vp);
240 	return (object);
241 }
242 
243 /*
244  *	The object must be locked.
245  */
246 static void
247 vnode_pager_dealloc(vm_object_t object)
248 {
249 	struct vnode *vp;
250 	int refs;
251 
252 	vp = object->handle;
253 	if (vp == NULL)
254 		panic("vnode_pager_dealloc: pager already dealloced");
255 
256 	VM_OBJECT_ASSERT_WLOCKED(object);
257 	vm_object_pip_wait(object, "vnpdea");
258 	refs = object->ref_count;
259 
260 	object->handle = NULL;
261 	object->type = OBJT_DEAD;
262 	if (object->flags & OBJ_DISCONNECTWNT) {
263 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
264 		wakeup(object);
265 	}
266 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
267 	if (object->un_pager.vnp.writemappings > 0) {
268 		object->un_pager.vnp.writemappings = 0;
269 		VOP_ADD_WRITECOUNT(vp, -1);
270 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
271 		    __func__, vp, vp->v_writecount);
272 	}
273 	vp->v_object = NULL;
274 	VOP_UNSET_TEXT(vp);
275 	VM_OBJECT_WUNLOCK(object);
276 	while (refs-- > 0)
277 		vunref(vp);
278 	VM_OBJECT_WLOCK(object);
279 }
280 
281 static boolean_t
282 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
283     int *after)
284 {
285 	struct vnode *vp = object->handle;
286 	daddr_t bn;
287 	int err;
288 	daddr_t reqblock;
289 	int poff;
290 	int bsize;
291 	int pagesperblock, blocksperpage;
292 
293 	VM_OBJECT_ASSERT_WLOCKED(object);
294 	/*
295 	 * If no vp or vp is doomed or marked transparent to VM, we do not
296 	 * have the page.
297 	 */
298 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
299 		return FALSE;
300 	/*
301 	 * If the offset is beyond end of file we do
302 	 * not have the page.
303 	 */
304 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
305 		return FALSE;
306 
307 	bsize = vp->v_mount->mnt_stat.f_iosize;
308 	pagesperblock = bsize / PAGE_SIZE;
309 	blocksperpage = 0;
310 	if (pagesperblock > 0) {
311 		reqblock = pindex / pagesperblock;
312 	} else {
313 		blocksperpage = (PAGE_SIZE / bsize);
314 		reqblock = pindex * blocksperpage;
315 	}
316 	VM_OBJECT_WUNLOCK(object);
317 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
318 	VM_OBJECT_WLOCK(object);
319 	if (err)
320 		return TRUE;
321 	if (bn == -1)
322 		return FALSE;
323 	if (pagesperblock > 0) {
324 		poff = pindex - (reqblock * pagesperblock);
325 		if (before) {
326 			*before *= pagesperblock;
327 			*before += poff;
328 		}
329 		if (after) {
330 			int numafter;
331 			*after *= pagesperblock;
332 			numafter = pagesperblock - (poff + 1);
333 			if (IDX_TO_OFF(pindex + numafter) >
334 			    object->un_pager.vnp.vnp_size) {
335 				numafter =
336 		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
337 				    pindex;
338 			}
339 			*after += numafter;
340 		}
341 	} else {
342 		if (before) {
343 			*before /= blocksperpage;
344 		}
345 
346 		if (after) {
347 			*after /= blocksperpage;
348 		}
349 	}
350 	return TRUE;
351 }
352 
353 /*
354  * Lets the VM system know about a change in size for a file.
355  * We adjust our own internal size and flush any cached pages in
356  * the associated object that are affected by the size change.
357  *
358  * Note: this routine may be invoked as a result of a pager put
359  * operation (possibly at object termination time), so we must be careful.
360  */
361 void
362 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
363 {
364 	vm_object_t object;
365 	vm_page_t m;
366 	vm_pindex_t nobjsize;
367 
368 	if ((object = vp->v_object) == NULL)
369 		return;
370 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
371 	VM_OBJECT_WLOCK(object);
372 	if (object->type == OBJT_DEAD) {
373 		VM_OBJECT_WUNLOCK(object);
374 		return;
375 	}
376 	KASSERT(object->type == OBJT_VNODE,
377 	    ("not vnode-backed object %p", object));
378 	if (nsize == object->un_pager.vnp.vnp_size) {
379 		/*
380 		 * Hasn't changed size
381 		 */
382 		VM_OBJECT_WUNLOCK(object);
383 		return;
384 	}
385 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
386 	if (nsize < object->un_pager.vnp.vnp_size) {
387 		/*
388 		 * File has shrunk. Toss any cached pages beyond the new EOF.
389 		 */
390 		if (nobjsize < object->size)
391 			vm_object_page_remove(object, nobjsize, object->size,
392 			    0);
393 		/*
394 		 * this gets rid of garbage at the end of a page that is now
395 		 * only partially backed by the vnode.
396 		 *
397 		 * XXX for some reason (I don't know yet), if we take a
398 		 * completely invalid page and mark it partially valid
399 		 * it can screw up NFS reads, so we don't allow the case.
400 		 */
401 		if ((nsize & PAGE_MASK) &&
402 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
403 		    m->valid != 0) {
404 			int base = (int)nsize & PAGE_MASK;
405 			int size = PAGE_SIZE - base;
406 
407 			/*
408 			 * Clear out partial-page garbage in case
409 			 * the page has been mapped.
410 			 */
411 			pmap_zero_page_area(m, base, size);
412 
413 			/*
414 			 * Update the valid bits to reflect the blocks that
415 			 * have been zeroed.  Some of these valid bits may
416 			 * have already been set.
417 			 */
418 			vm_page_set_valid_range(m, base, size);
419 
420 			/*
421 			 * Round "base" to the next block boundary so that the
422 			 * dirty bit for a partially zeroed block is not
423 			 * cleared.
424 			 */
425 			base = roundup2(base, DEV_BSIZE);
426 
427 			/*
428 			 * Clear out partial-page dirty bits.
429 			 *
430 			 * note that we do not clear out the valid
431 			 * bits.  This would prevent bogus_page
432 			 * replacement from working properly.
433 			 */
434 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
435 		} else if ((nsize & PAGE_MASK) &&
436 		    vm_page_is_cached(object, OFF_TO_IDX(nsize))) {
437 			vm_page_cache_free(object, OFF_TO_IDX(nsize),
438 			    nobjsize);
439 		}
440 	}
441 	object->un_pager.vnp.vnp_size = nsize;
442 	object->size = nobjsize;
443 	VM_OBJECT_WUNLOCK(object);
444 }
445 
446 /*
447  * calculate the linear (byte) disk address of specified virtual
448  * file address
449  */
450 static int
451 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
452     int *run)
453 {
454 	int bsize;
455 	int err;
456 	daddr_t vblock;
457 	daddr_t voffset;
458 
459 	if (address < 0)
460 		return -1;
461 
462 	if (vp->v_iflag & VI_DOOMED)
463 		return -1;
464 
465 	bsize = vp->v_mount->mnt_stat.f_iosize;
466 	vblock = address / bsize;
467 	voffset = address % bsize;
468 
469 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
470 	if (err == 0) {
471 		if (*rtaddress != -1)
472 			*rtaddress += voffset / DEV_BSIZE;
473 		if (run) {
474 			*run += 1;
475 			*run *= bsize/PAGE_SIZE;
476 			*run -= voffset/PAGE_SIZE;
477 		}
478 	}
479 
480 	return (err);
481 }
482 
483 /*
484  * small block filesystem vnode pager input
485  */
486 static int
487 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
488 {
489 	struct vnode *vp;
490 	struct bufobj *bo;
491 	struct buf *bp;
492 	struct sf_buf *sf;
493 	daddr_t fileaddr;
494 	vm_offset_t bsize;
495 	vm_page_bits_t bits;
496 	int error, i;
497 
498 	error = 0;
499 	vp = object->handle;
500 	if (vp->v_iflag & VI_DOOMED)
501 		return VM_PAGER_BAD;
502 
503 	bsize = vp->v_mount->mnt_stat.f_iosize;
504 
505 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
506 
507 	sf = sf_buf_alloc(m, 0);
508 
509 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
510 		vm_ooffset_t address;
511 
512 		bits = vm_page_bits(i * bsize, bsize);
513 		if (m->valid & bits)
514 			continue;
515 
516 		address = IDX_TO_OFF(m->pindex) + i * bsize;
517 		if (address >= object->un_pager.vnp.vnp_size) {
518 			fileaddr = -1;
519 		} else {
520 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
521 			if (error)
522 				break;
523 		}
524 		if (fileaddr != -1) {
525 			bp = getpbuf(&vnode_pbuf_freecnt);
526 
527 			/* build a minimal buffer header */
528 			bp->b_iocmd = BIO_READ;
529 			bp->b_iodone = bdone;
530 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
531 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
532 			bp->b_rcred = crhold(curthread->td_ucred);
533 			bp->b_wcred = crhold(curthread->td_ucred);
534 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
535 			bp->b_blkno = fileaddr;
536 			pbgetbo(bo, bp);
537 			bp->b_vp = vp;
538 			bp->b_bcount = bsize;
539 			bp->b_bufsize = bsize;
540 			bp->b_runningbufspace = bp->b_bufsize;
541 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
542 
543 			/* do the input */
544 			bp->b_iooffset = dbtob(bp->b_blkno);
545 			bstrategy(bp);
546 
547 			bwait(bp, PVM, "vnsrd");
548 
549 			if ((bp->b_ioflags & BIO_ERROR) != 0)
550 				error = EIO;
551 
552 			/*
553 			 * free the buffer header back to the swap buffer pool
554 			 */
555 			bp->b_vp = NULL;
556 			pbrelbo(bp);
557 			relpbuf(bp, &vnode_pbuf_freecnt);
558 			if (error)
559 				break;
560 		} else
561 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
562 		KASSERT((m->dirty & bits) == 0,
563 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
564 		VM_OBJECT_WLOCK(object);
565 		m->valid |= bits;
566 		VM_OBJECT_WUNLOCK(object);
567 	}
568 	sf_buf_free(sf);
569 	if (error) {
570 		return VM_PAGER_ERROR;
571 	}
572 	return VM_PAGER_OK;
573 }
574 
575 /*
576  * old style vnode pager input routine
577  */
578 static int
579 vnode_pager_input_old(vm_object_t object, vm_page_t m)
580 {
581 	struct uio auio;
582 	struct iovec aiov;
583 	int error;
584 	int size;
585 	struct sf_buf *sf;
586 	struct vnode *vp;
587 
588 	VM_OBJECT_ASSERT_WLOCKED(object);
589 	error = 0;
590 
591 	/*
592 	 * Return failure if beyond current EOF
593 	 */
594 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
595 		return VM_PAGER_BAD;
596 	} else {
597 		size = PAGE_SIZE;
598 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
599 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
600 		vp = object->handle;
601 		VM_OBJECT_WUNLOCK(object);
602 
603 		/*
604 		 * Allocate a kernel virtual address and initialize so that
605 		 * we can use VOP_READ/WRITE routines.
606 		 */
607 		sf = sf_buf_alloc(m, 0);
608 
609 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
610 		aiov.iov_len = size;
611 		auio.uio_iov = &aiov;
612 		auio.uio_iovcnt = 1;
613 		auio.uio_offset = IDX_TO_OFF(m->pindex);
614 		auio.uio_segflg = UIO_SYSSPACE;
615 		auio.uio_rw = UIO_READ;
616 		auio.uio_resid = size;
617 		auio.uio_td = curthread;
618 
619 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
620 		if (!error) {
621 			int count = size - auio.uio_resid;
622 
623 			if (count == 0)
624 				error = EINVAL;
625 			else if (count != PAGE_SIZE)
626 				bzero((caddr_t)sf_buf_kva(sf) + count,
627 				    PAGE_SIZE - count);
628 		}
629 		sf_buf_free(sf);
630 
631 		VM_OBJECT_WLOCK(object);
632 	}
633 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
634 	if (!error)
635 		m->valid = VM_PAGE_BITS_ALL;
636 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
637 }
638 
639 /*
640  * generic vnode pager input routine
641  */
642 
643 /*
644  * Local media VFS's that do not implement their own VOP_GETPAGES
645  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
646  * to implement the previous behaviour.
647  *
648  * All other FS's should use the bypass to get to the local media
649  * backing vp's VOP_GETPAGES.
650  */
651 static int
652 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
653 {
654 	int rtval;
655 	struct vnode *vp;
656 	int bytes = count * PAGE_SIZE;
657 
658 	vp = object->handle;
659 	VM_OBJECT_WUNLOCK(object);
660 	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
661 	KASSERT(rtval != EOPNOTSUPP,
662 	    ("vnode_pager: FS getpages not implemented\n"));
663 	VM_OBJECT_WLOCK(object);
664 	return rtval;
665 }
666 
667 /*
668  * This is now called from local media FS's to operate against their
669  * own vnodes if they fail to implement VOP_GETPAGES.
670  */
671 int
672 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int bytecount,
673     int reqpage)
674 {
675 	vm_object_t object;
676 	vm_offset_t kva;
677 	off_t foff, tfoff, nextoff;
678 	int i, j, size, bsize, first;
679 	daddr_t firstaddr, reqblock;
680 	struct bufobj *bo;
681 	int runpg;
682 	int runend;
683 	struct buf *bp;
684 	struct mount *mp;
685 	int count;
686 	int error;
687 
688 	object = vp->v_object;
689 	count = bytecount / PAGE_SIZE;
690 
691 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
692 	    ("vnode_pager_generic_getpages does not support devices"));
693 	if (vp->v_iflag & VI_DOOMED)
694 		return VM_PAGER_BAD;
695 
696 	bsize = vp->v_mount->mnt_stat.f_iosize;
697 
698 	/* get the UNDERLYING device for the file with VOP_BMAP() */
699 
700 	/*
701 	 * originally, we did not check for an error return value -- assuming
702 	 * an fs always has a bmap entry point -- that assumption is wrong!!!
703 	 */
704 	foff = IDX_TO_OFF(m[reqpage]->pindex);
705 
706 	/*
707 	 * if we can't bmap, use old VOP code
708 	 */
709 	error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL);
710 	if (error == EOPNOTSUPP) {
711 		VM_OBJECT_WLOCK(object);
712 
713 		for (i = 0; i < count; i++)
714 			if (i != reqpage) {
715 				vm_page_lock(m[i]);
716 				vm_page_free(m[i]);
717 				vm_page_unlock(m[i]);
718 			}
719 		PCPU_INC(cnt.v_vnodein);
720 		PCPU_INC(cnt.v_vnodepgsin);
721 		error = vnode_pager_input_old(object, m[reqpage]);
722 		VM_OBJECT_WUNLOCK(object);
723 		return (error);
724 	} else if (error != 0) {
725 		VM_OBJECT_WLOCK(object);
726 		for (i = 0; i < count; i++)
727 			if (i != reqpage) {
728 				vm_page_lock(m[i]);
729 				vm_page_free(m[i]);
730 				vm_page_unlock(m[i]);
731 			}
732 		VM_OBJECT_WUNLOCK(object);
733 		return (VM_PAGER_ERROR);
734 
735 		/*
736 		 * if the blocksize is smaller than a page size, then use
737 		 * special small filesystem code.  NFS sometimes has a small
738 		 * blocksize, but it can handle large reads itself.
739 		 */
740 	} else if ((PAGE_SIZE / bsize) > 1 &&
741 	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
742 		VM_OBJECT_WLOCK(object);
743 		for (i = 0; i < count; i++)
744 			if (i != reqpage) {
745 				vm_page_lock(m[i]);
746 				vm_page_free(m[i]);
747 				vm_page_unlock(m[i]);
748 			}
749 		VM_OBJECT_WUNLOCK(object);
750 		PCPU_INC(cnt.v_vnodein);
751 		PCPU_INC(cnt.v_vnodepgsin);
752 		return vnode_pager_input_smlfs(object, m[reqpage]);
753 	}
754 
755 	/*
756 	 * If we have a completely valid page available to us, we can
757 	 * clean up and return.  Otherwise we have to re-read the
758 	 * media.
759 	 */
760 	VM_OBJECT_WLOCK(object);
761 	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
762 		for (i = 0; i < count; i++)
763 			if (i != reqpage) {
764 				vm_page_lock(m[i]);
765 				vm_page_free(m[i]);
766 				vm_page_unlock(m[i]);
767 			}
768 		VM_OBJECT_WUNLOCK(object);
769 		return VM_PAGER_OK;
770 	} else if (reqblock == -1) {
771 		pmap_zero_page(m[reqpage]);
772 		KASSERT(m[reqpage]->dirty == 0,
773 		    ("vnode_pager_generic_getpages: page %p is dirty", m));
774 		m[reqpage]->valid = VM_PAGE_BITS_ALL;
775 		for (i = 0; i < count; i++)
776 			if (i != reqpage) {
777 				vm_page_lock(m[i]);
778 				vm_page_free(m[i]);
779 				vm_page_unlock(m[i]);
780 			}
781 		VM_OBJECT_WUNLOCK(object);
782 		return (VM_PAGER_OK);
783 	}
784 	m[reqpage]->valid = 0;
785 	VM_OBJECT_WUNLOCK(object);
786 
787 	/*
788 	 * here on direct device I/O
789 	 */
790 	firstaddr = -1;
791 
792 	/*
793 	 * calculate the run that includes the required page
794 	 */
795 	for (first = 0, i = 0; i < count; i = runend) {
796 		if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr,
797 		    &runpg) != 0) {
798 			VM_OBJECT_WLOCK(object);
799 			for (; i < count; i++)
800 				if (i != reqpage) {
801 					vm_page_lock(m[i]);
802 					vm_page_free(m[i]);
803 					vm_page_unlock(m[i]);
804 				}
805 			VM_OBJECT_WUNLOCK(object);
806 			return (VM_PAGER_ERROR);
807 		}
808 		if (firstaddr == -1) {
809 			VM_OBJECT_WLOCK(object);
810 			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
811 				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
812 				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
813 				    (uintmax_t)foff,
814 				    (uintmax_t)
815 				    (object->un_pager.vnp.vnp_size >> 32),
816 				    (uintmax_t)object->un_pager.vnp.vnp_size);
817 			}
818 			vm_page_lock(m[i]);
819 			vm_page_free(m[i]);
820 			vm_page_unlock(m[i]);
821 			VM_OBJECT_WUNLOCK(object);
822 			runend = i + 1;
823 			first = runend;
824 			continue;
825 		}
826 		runend = i + runpg;
827 		if (runend <= reqpage) {
828 			VM_OBJECT_WLOCK(object);
829 			for (j = i; j < runend; j++) {
830 				vm_page_lock(m[j]);
831 				vm_page_free(m[j]);
832 				vm_page_unlock(m[j]);
833 			}
834 			VM_OBJECT_WUNLOCK(object);
835 		} else {
836 			if (runpg < (count - first)) {
837 				VM_OBJECT_WLOCK(object);
838 				for (i = first + runpg; i < count; i++) {
839 					vm_page_lock(m[i]);
840 					vm_page_free(m[i]);
841 					vm_page_unlock(m[i]);
842 				}
843 				VM_OBJECT_WUNLOCK(object);
844 				count = first + runpg;
845 			}
846 			break;
847 		}
848 		first = runend;
849 	}
850 
851 	/*
852 	 * the first and last page have been calculated now, move input pages
853 	 * to be zero based...
854 	 */
855 	if (first != 0) {
856 		m += first;
857 		count -= first;
858 		reqpage -= first;
859 	}
860 
861 	/*
862 	 * calculate the file virtual address for the transfer
863 	 */
864 	foff = IDX_TO_OFF(m[0]->pindex);
865 
866 	/*
867 	 * calculate the size of the transfer
868 	 */
869 	size = count * PAGE_SIZE;
870 	KASSERT(count > 0, ("zero count"));
871 	if ((foff + size) > object->un_pager.vnp.vnp_size)
872 		size = object->un_pager.vnp.vnp_size - foff;
873 	KASSERT(size > 0, ("zero size"));
874 
875 	/*
876 	 * round up physical size for real devices.
877 	 */
878 	if (1) {
879 		int secmask = bo->bo_bsize - 1;
880 		KASSERT(secmask < PAGE_SIZE && secmask > 0,
881 		    ("vnode_pager_generic_getpages: sector size %d too large",
882 		    secmask + 1));
883 		size = (size + secmask) & ~secmask;
884 	}
885 
886 	bp = getpbuf(&vnode_pbuf_freecnt);
887 	kva = (vm_offset_t)bp->b_data;
888 
889 	/*
890 	 * and map the pages to be read into the kva, if the filesystem
891 	 * requires mapped buffers.
892 	 */
893 	mp = vp->v_mount;
894 	if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
895 	    unmapped_buf_allowed) {
896 		bp->b_data = unmapped_buf;
897 		bp->b_kvabase = unmapped_buf;
898 		bp->b_offset = 0;
899 		bp->b_flags |= B_UNMAPPED;
900 		bp->b_npages = count;
901 		for (i = 0; i < count; i++)
902 			bp->b_pages[i] = m[i];
903 	} else
904 		pmap_qenter(kva, m, count);
905 
906 	/* build a minimal buffer header */
907 	bp->b_iocmd = BIO_READ;
908 	bp->b_iodone = bdone;
909 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
910 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
911 	bp->b_rcred = crhold(curthread->td_ucred);
912 	bp->b_wcred = crhold(curthread->td_ucred);
913 	bp->b_blkno = firstaddr;
914 	pbgetbo(bo, bp);
915 	bp->b_vp = vp;
916 	bp->b_bcount = size;
917 	bp->b_bufsize = size;
918 	bp->b_runningbufspace = bp->b_bufsize;
919 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
920 
921 	PCPU_INC(cnt.v_vnodein);
922 	PCPU_ADD(cnt.v_vnodepgsin, count);
923 
924 	/* do the input */
925 	bp->b_iooffset = dbtob(bp->b_blkno);
926 	bstrategy(bp);
927 
928 	bwait(bp, PVM, "vnread");
929 
930 	if ((bp->b_ioflags & BIO_ERROR) != 0)
931 		error = EIO;
932 
933 	if (error == 0 && size != count * PAGE_SIZE) {
934 		if ((bp->b_flags & B_UNMAPPED) != 0) {
935 			bp->b_flags &= ~B_UNMAPPED;
936 			pmap_qenter(kva, m, count);
937 		}
938 		bzero((caddr_t)kva + size, PAGE_SIZE * count - size);
939 	}
940 	if ((bp->b_flags & B_UNMAPPED) == 0)
941 		pmap_qremove(kva, count);
942 	if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0) {
943 		bp->b_data = (caddr_t)kva;
944 		bp->b_kvabase = (caddr_t)kva;
945 		bp->b_flags &= ~B_UNMAPPED;
946 		for (i = 0; i < count; i++)
947 			bp->b_pages[i] = NULL;
948 	}
949 
950 	/*
951 	 * free the buffer header back to the swap buffer pool
952 	 */
953 	bp->b_vp = NULL;
954 	pbrelbo(bp);
955 	relpbuf(bp, &vnode_pbuf_freecnt);
956 
957 	VM_OBJECT_WLOCK(object);
958 	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
959 		vm_page_t mt;
960 
961 		nextoff = tfoff + PAGE_SIZE;
962 		mt = m[i];
963 
964 		if (nextoff <= object->un_pager.vnp.vnp_size) {
965 			/*
966 			 * Read filled up entire page.
967 			 */
968 			mt->valid = VM_PAGE_BITS_ALL;
969 			KASSERT(mt->dirty == 0,
970 			    ("vnode_pager_generic_getpages: page %p is dirty",
971 			    mt));
972 			KASSERT(!pmap_page_is_mapped(mt),
973 			    ("vnode_pager_generic_getpages: page %p is mapped",
974 			    mt));
975 		} else {
976 			/*
977 			 * Read did not fill up entire page.
978 			 *
979 			 * Currently we do not set the entire page valid,
980 			 * we just try to clear the piece that we couldn't
981 			 * read.
982 			 */
983 			vm_page_set_valid_range(mt, 0,
984 			    object->un_pager.vnp.vnp_size - tfoff);
985 			KASSERT((mt->dirty & vm_page_bits(0,
986 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
987 			    ("vnode_pager_generic_getpages: page %p is dirty",
988 			    mt));
989 		}
990 
991 		if (i != reqpage)
992 			vm_page_readahead_finish(mt);
993 	}
994 	VM_OBJECT_WUNLOCK(object);
995 	if (error) {
996 		printf("vnode_pager_getpages: I/O read error\n");
997 	}
998 	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
999 }
1000 
1001 /*
1002  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1003  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1004  * vnode_pager_generic_putpages() to implement the previous behaviour.
1005  *
1006  * All other FS's should use the bypass to get to the local media
1007  * backing vp's VOP_PUTPAGES.
1008  */
1009 static void
1010 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1011     boolean_t sync, int *rtvals)
1012 {
1013 	int rtval;
1014 	struct vnode *vp;
1015 	int bytes = count * PAGE_SIZE;
1016 
1017 	/*
1018 	 * Force synchronous operation if we are extremely low on memory
1019 	 * to prevent a low-memory deadlock.  VOP operations often need to
1020 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1021 	 * operation ).  The swapper handles the case by limiting the amount
1022 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1023 	 * for the vnode pager without a lot of work.
1024 	 *
1025 	 * Also, the backing vnode's iodone routine may not wake the pageout
1026 	 * daemon up.  This should be probably be addressed XXX.
1027 	 */
1028 
1029 	if ((vm_cnt.v_free_count + vm_cnt.v_cache_count) <
1030 	    vm_cnt.v_pageout_free_min)
1031 		sync |= OBJPC_SYNC;
1032 
1033 	/*
1034 	 * Call device-specific putpages function
1035 	 */
1036 	vp = object->handle;
1037 	VM_OBJECT_WUNLOCK(object);
1038 	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
1039 	KASSERT(rtval != EOPNOTSUPP,
1040 	    ("vnode_pager: stale FS putpages\n"));
1041 	VM_OBJECT_WLOCK(object);
1042 }
1043 
1044 
1045 /*
1046  * This is now called from local media FS's to operate against their
1047  * own vnodes if they fail to implement VOP_PUTPAGES.
1048  *
1049  * This is typically called indirectly via the pageout daemon and
1050  * clustering has already typically occured, so in general we ask the
1051  * underlying filesystem to write the data out asynchronously rather
1052  * then delayed.
1053  */
1054 int
1055 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1056     int flags, int *rtvals)
1057 {
1058 	int i;
1059 	vm_object_t object;
1060 	vm_page_t m;
1061 	int count;
1062 
1063 	int maxsize, ncount;
1064 	vm_ooffset_t poffset;
1065 	struct uio auio;
1066 	struct iovec aiov;
1067 	int error;
1068 	int ioflags;
1069 	int ppscheck = 0;
1070 	static struct timeval lastfail;
1071 	static int curfail;
1072 
1073 	object = vp->v_object;
1074 	count = bytecount / PAGE_SIZE;
1075 
1076 	for (i = 0; i < count; i++)
1077 		rtvals[i] = VM_PAGER_ERROR;
1078 
1079 	if ((int64_t)ma[0]->pindex < 0) {
1080 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1081 		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1082 		rtvals[0] = VM_PAGER_BAD;
1083 		return VM_PAGER_BAD;
1084 	}
1085 
1086 	maxsize = count * PAGE_SIZE;
1087 	ncount = count;
1088 
1089 	poffset = IDX_TO_OFF(ma[0]->pindex);
1090 
1091 	/*
1092 	 * If the page-aligned write is larger then the actual file we
1093 	 * have to invalidate pages occuring beyond the file EOF.  However,
1094 	 * there is an edge case where a file may not be page-aligned where
1095 	 * the last page is partially invalid.  In this case the filesystem
1096 	 * may not properly clear the dirty bits for the entire page (which
1097 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1098 	 * With the page locked we are free to fix-up the dirty bits here.
1099 	 *
1100 	 * We do not under any circumstances truncate the valid bits, as
1101 	 * this will screw up bogus page replacement.
1102 	 */
1103 	VM_OBJECT_WLOCK(object);
1104 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1105 		if (object->un_pager.vnp.vnp_size > poffset) {
1106 			int pgoff;
1107 
1108 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1109 			ncount = btoc(maxsize);
1110 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1111 				/*
1112 				 * If the object is locked and the following
1113 				 * conditions hold, then the page's dirty
1114 				 * field cannot be concurrently changed by a
1115 				 * pmap operation.
1116 				 */
1117 				m = ma[ncount - 1];
1118 				vm_page_assert_sbusied(m);
1119 				KASSERT(!pmap_page_is_write_mapped(m),
1120 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1121 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1122 				    pgoff);
1123 			}
1124 		} else {
1125 			maxsize = 0;
1126 			ncount = 0;
1127 		}
1128 		if (ncount < count) {
1129 			for (i = ncount; i < count; i++) {
1130 				rtvals[i] = VM_PAGER_BAD;
1131 			}
1132 		}
1133 	}
1134 	VM_OBJECT_WUNLOCK(object);
1135 
1136 	/*
1137 	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1138 	 * rather then a bdwrite() to prevent paging I/O from saturating
1139 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1140 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1141 	 * the system decides how to cluster.
1142 	 */
1143 	ioflags = IO_VMIO;
1144 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1145 		ioflags |= IO_SYNC;
1146 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1147 		ioflags |= IO_ASYNC;
1148 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1149 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1150 
1151 	aiov.iov_base = (caddr_t) 0;
1152 	aiov.iov_len = maxsize;
1153 	auio.uio_iov = &aiov;
1154 	auio.uio_iovcnt = 1;
1155 	auio.uio_offset = poffset;
1156 	auio.uio_segflg = UIO_NOCOPY;
1157 	auio.uio_rw = UIO_WRITE;
1158 	auio.uio_resid = maxsize;
1159 	auio.uio_td = (struct thread *) 0;
1160 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1161 	PCPU_INC(cnt.v_vnodeout);
1162 	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1163 
1164 	if (error) {
1165 		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1166 			printf("vnode_pager_putpages: I/O error %d\n", error);
1167 	}
1168 	if (auio.uio_resid) {
1169 		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1170 			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1171 			    auio.uio_resid, (u_long)ma[0]->pindex);
1172 	}
1173 	for (i = 0; i < ncount; i++) {
1174 		rtvals[i] = VM_PAGER_OK;
1175 	}
1176 	return rtvals[0];
1177 }
1178 
1179 void
1180 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1181 {
1182 	vm_object_t obj;
1183 	int i, pos;
1184 
1185 	if (written == 0)
1186 		return;
1187 	obj = ma[0]->object;
1188 	VM_OBJECT_WLOCK(obj);
1189 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1190 		if (pos < trunc_page(written)) {
1191 			rtvals[i] = VM_PAGER_OK;
1192 			vm_page_undirty(ma[i]);
1193 		} else {
1194 			/* Partially written page. */
1195 			rtvals[i] = VM_PAGER_AGAIN;
1196 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1197 		}
1198 	}
1199 	VM_OBJECT_WUNLOCK(obj);
1200 }
1201 
1202 void
1203 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1204     vm_offset_t end)
1205 {
1206 	struct vnode *vp;
1207 	vm_ooffset_t old_wm;
1208 
1209 	VM_OBJECT_WLOCK(object);
1210 	if (object->type != OBJT_VNODE) {
1211 		VM_OBJECT_WUNLOCK(object);
1212 		return;
1213 	}
1214 	old_wm = object->un_pager.vnp.writemappings;
1215 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1216 	vp = object->handle;
1217 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1218 		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1219 		VOP_ADD_WRITECOUNT(vp, 1);
1220 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1221 		    __func__, vp, vp->v_writecount);
1222 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1223 		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1224 		VOP_ADD_WRITECOUNT(vp, -1);
1225 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1226 		    __func__, vp, vp->v_writecount);
1227 	}
1228 	VM_OBJECT_WUNLOCK(object);
1229 }
1230 
1231 void
1232 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1233     vm_offset_t end)
1234 {
1235 	struct vnode *vp;
1236 	struct mount *mp;
1237 	vm_offset_t inc;
1238 
1239 	VM_OBJECT_WLOCK(object);
1240 
1241 	/*
1242 	 * First, recheck the object type to account for the race when
1243 	 * the vnode is reclaimed.
1244 	 */
1245 	if (object->type != OBJT_VNODE) {
1246 		VM_OBJECT_WUNLOCK(object);
1247 		return;
1248 	}
1249 
1250 	/*
1251 	 * Optimize for the case when writemappings is not going to
1252 	 * zero.
1253 	 */
1254 	inc = end - start;
1255 	if (object->un_pager.vnp.writemappings != inc) {
1256 		object->un_pager.vnp.writemappings -= inc;
1257 		VM_OBJECT_WUNLOCK(object);
1258 		return;
1259 	}
1260 
1261 	vp = object->handle;
1262 	vhold(vp);
1263 	VM_OBJECT_WUNLOCK(object);
1264 	mp = NULL;
1265 	vn_start_write(vp, &mp, V_WAIT);
1266 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1267 
1268 	/*
1269 	 * Decrement the object's writemappings, by swapping the start
1270 	 * and end arguments for vnode_pager_update_writecount().  If
1271 	 * there was not a race with vnode reclaimation, then the
1272 	 * vnode's v_writecount is decremented.
1273 	 */
1274 	vnode_pager_update_writecount(object, end, start);
1275 	VOP_UNLOCK(vp, 0);
1276 	vdrop(vp);
1277 	if (mp != NULL)
1278 		vn_finished_write(mp);
1279 }
1280