xref: /freebsd/sys/vm/vnode_pager.c (revision 6e660824a82f590542932de52f128db584029893)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/limits.h>
65 #include <sys/conf.h>
66 #include <sys/rwlock.h>
67 #include <sys/sf_buf.h>
68 
69 #include <machine/atomic.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <vm/vm_object.h>
74 #include <vm/vm_page.h>
75 #include <vm/vm_pager.h>
76 #include <vm/vm_map.h>
77 #include <vm/vnode_pager.h>
78 #include <vm/vm_extern.h>
79 
80 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
81     daddr_t *rtaddress, int *run);
82 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
83 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
84 static void vnode_pager_dealloc(vm_object_t);
85 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
86 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
87 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
88 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
89     vm_ooffset_t, struct ucred *cred);
90 
91 struct pagerops vnodepagerops = {
92 	.pgo_alloc =	vnode_pager_alloc,
93 	.pgo_dealloc =	vnode_pager_dealloc,
94 	.pgo_getpages =	vnode_pager_getpages,
95 	.pgo_putpages =	vnode_pager_putpages,
96 	.pgo_haspage =	vnode_pager_haspage,
97 };
98 
99 int vnode_pbuf_freecnt;
100 
101 /* Create the VM system backing object for this vnode */
102 int
103 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
104 {
105 	vm_object_t object;
106 	vm_ooffset_t size = isize;
107 	struct vattr va;
108 
109 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
110 		return (0);
111 
112 	while ((object = vp->v_object) != NULL) {
113 		VM_OBJECT_WLOCK(object);
114 		if (!(object->flags & OBJ_DEAD)) {
115 			VM_OBJECT_WUNLOCK(object);
116 			return (0);
117 		}
118 		VOP_UNLOCK(vp, 0);
119 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
120 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
121 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
122 	}
123 
124 	if (size == 0) {
125 		if (vn_isdisk(vp, NULL)) {
126 			size = IDX_TO_OFF(INT_MAX);
127 		} else {
128 			if (VOP_GETATTR(vp, &va, td->td_ucred))
129 				return (0);
130 			size = va.va_size;
131 		}
132 	}
133 
134 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
135 	/*
136 	 * Dereference the reference we just created.  This assumes
137 	 * that the object is associated with the vp.
138 	 */
139 	VM_OBJECT_WLOCK(object);
140 	object->ref_count--;
141 	VM_OBJECT_WUNLOCK(object);
142 	vrele(vp);
143 
144 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
145 
146 	return (0);
147 }
148 
149 void
150 vnode_destroy_vobject(struct vnode *vp)
151 {
152 	struct vm_object *obj;
153 
154 	obj = vp->v_object;
155 	if (obj == NULL)
156 		return;
157 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
158 	VM_OBJECT_WLOCK(obj);
159 	if (obj->ref_count == 0) {
160 		/*
161 		 * don't double-terminate the object
162 		 */
163 		if ((obj->flags & OBJ_DEAD) == 0)
164 			vm_object_terminate(obj);
165 		else
166 			VM_OBJECT_WUNLOCK(obj);
167 	} else {
168 		/*
169 		 * Woe to the process that tries to page now :-).
170 		 */
171 		vm_pager_deallocate(obj);
172 		VM_OBJECT_WUNLOCK(obj);
173 	}
174 	vp->v_object = NULL;
175 }
176 
177 
178 /*
179  * Allocate (or lookup) pager for a vnode.
180  * Handle is a vnode pointer.
181  *
182  * MPSAFE
183  */
184 vm_object_t
185 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
186     vm_ooffset_t offset, struct ucred *cred)
187 {
188 	vm_object_t object;
189 	struct vnode *vp;
190 
191 	/*
192 	 * Pageout to vnode, no can do yet.
193 	 */
194 	if (handle == NULL)
195 		return (NULL);
196 
197 	vp = (struct vnode *) handle;
198 
199 	/*
200 	 * If the object is being terminated, wait for it to
201 	 * go away.
202 	 */
203 retry:
204 	while ((object = vp->v_object) != NULL) {
205 		VM_OBJECT_WLOCK(object);
206 		if ((object->flags & OBJ_DEAD) == 0)
207 			break;
208 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
209 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
210 	}
211 
212 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
213 
214 	if (object == NULL) {
215 		/*
216 		 * Add an object of the appropriate size
217 		 */
218 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
219 
220 		object->un_pager.vnp.vnp_size = size;
221 		object->un_pager.vnp.writemappings = 0;
222 
223 		object->handle = handle;
224 		VI_LOCK(vp);
225 		if (vp->v_object != NULL) {
226 			/*
227 			 * Object has been created while we were sleeping
228 			 */
229 			VI_UNLOCK(vp);
230 			vm_object_destroy(object);
231 			goto retry;
232 		}
233 		vp->v_object = object;
234 		VI_UNLOCK(vp);
235 	} else {
236 		object->ref_count++;
237 		VM_OBJECT_WUNLOCK(object);
238 	}
239 	vref(vp);
240 	return (object);
241 }
242 
243 /*
244  *	The object must be locked.
245  */
246 static void
247 vnode_pager_dealloc(object)
248 	vm_object_t object;
249 {
250 	struct vnode *vp;
251 	int refs;
252 
253 	vp = object->handle;
254 	if (vp == NULL)
255 		panic("vnode_pager_dealloc: pager already dealloced");
256 
257 	VM_OBJECT_ASSERT_WLOCKED(object);
258 	vm_object_pip_wait(object, "vnpdea");
259 	refs = object->ref_count;
260 
261 	object->handle = NULL;
262 	object->type = OBJT_DEAD;
263 	if (object->flags & OBJ_DISCONNECTWNT) {
264 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
265 		wakeup(object);
266 	}
267 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
268 	if (object->un_pager.vnp.writemappings > 0) {
269 		object->un_pager.vnp.writemappings = 0;
270 		VOP_ADD_WRITECOUNT(vp, -1);
271 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
272 		    __func__, vp, vp->v_writecount);
273 	}
274 	vp->v_object = NULL;
275 	VOP_UNSET_TEXT(vp);
276 	VM_OBJECT_WUNLOCK(object);
277 	while (refs-- > 0)
278 		vunref(vp);
279 	VM_OBJECT_WLOCK(object);
280 }
281 
282 static boolean_t
283 vnode_pager_haspage(object, pindex, before, after)
284 	vm_object_t object;
285 	vm_pindex_t pindex;
286 	int *before;
287 	int *after;
288 {
289 	struct vnode *vp = object->handle;
290 	daddr_t bn;
291 	int err;
292 	daddr_t reqblock;
293 	int poff;
294 	int bsize;
295 	int pagesperblock, blocksperpage;
296 
297 	VM_OBJECT_ASSERT_WLOCKED(object);
298 	/*
299 	 * If no vp or vp is doomed or marked transparent to VM, we do not
300 	 * have the page.
301 	 */
302 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
303 		return FALSE;
304 	/*
305 	 * If the offset is beyond end of file we do
306 	 * not have the page.
307 	 */
308 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
309 		return FALSE;
310 
311 	bsize = vp->v_mount->mnt_stat.f_iosize;
312 	pagesperblock = bsize / PAGE_SIZE;
313 	blocksperpage = 0;
314 	if (pagesperblock > 0) {
315 		reqblock = pindex / pagesperblock;
316 	} else {
317 		blocksperpage = (PAGE_SIZE / bsize);
318 		reqblock = pindex * blocksperpage;
319 	}
320 	VM_OBJECT_WUNLOCK(object);
321 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
322 	VM_OBJECT_WLOCK(object);
323 	if (err)
324 		return TRUE;
325 	if (bn == -1)
326 		return FALSE;
327 	if (pagesperblock > 0) {
328 		poff = pindex - (reqblock * pagesperblock);
329 		if (before) {
330 			*before *= pagesperblock;
331 			*before += poff;
332 		}
333 		if (after) {
334 			int numafter;
335 			*after *= pagesperblock;
336 			numafter = pagesperblock - (poff + 1);
337 			if (IDX_TO_OFF(pindex + numafter) >
338 			    object->un_pager.vnp.vnp_size) {
339 				numafter =
340 		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
341 				    pindex;
342 			}
343 			*after += numafter;
344 		}
345 	} else {
346 		if (before) {
347 			*before /= blocksperpage;
348 		}
349 
350 		if (after) {
351 			*after /= blocksperpage;
352 		}
353 	}
354 	return TRUE;
355 }
356 
357 /*
358  * Lets the VM system know about a change in size for a file.
359  * We adjust our own internal size and flush any cached pages in
360  * the associated object that are affected by the size change.
361  *
362  * Note: this routine may be invoked as a result of a pager put
363  * operation (possibly at object termination time), so we must be careful.
364  */
365 void
366 vnode_pager_setsize(vp, nsize)
367 	struct vnode *vp;
368 	vm_ooffset_t nsize;
369 {
370 	vm_object_t object;
371 	vm_page_t m;
372 	vm_pindex_t nobjsize;
373 
374 	if ((object = vp->v_object) == NULL)
375 		return;
376 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
377 	VM_OBJECT_WLOCK(object);
378 	if (object->type == OBJT_DEAD) {
379 		VM_OBJECT_WUNLOCK(object);
380 		return;
381 	}
382 	KASSERT(object->type == OBJT_VNODE,
383 	    ("not vnode-backed object %p", object));
384 	if (nsize == object->un_pager.vnp.vnp_size) {
385 		/*
386 		 * Hasn't changed size
387 		 */
388 		VM_OBJECT_WUNLOCK(object);
389 		return;
390 	}
391 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
392 	if (nsize < object->un_pager.vnp.vnp_size) {
393 		/*
394 		 * File has shrunk. Toss any cached pages beyond the new EOF.
395 		 */
396 		if (nobjsize < object->size)
397 			vm_object_page_remove(object, nobjsize, object->size,
398 			    0);
399 		/*
400 		 * this gets rid of garbage at the end of a page that is now
401 		 * only partially backed by the vnode.
402 		 *
403 		 * XXX for some reason (I don't know yet), if we take a
404 		 * completely invalid page and mark it partially valid
405 		 * it can screw up NFS reads, so we don't allow the case.
406 		 */
407 		if ((nsize & PAGE_MASK) &&
408 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
409 		    m->valid != 0) {
410 			int base = (int)nsize & PAGE_MASK;
411 			int size = PAGE_SIZE - base;
412 
413 			/*
414 			 * Clear out partial-page garbage in case
415 			 * the page has been mapped.
416 			 */
417 			pmap_zero_page_area(m, base, size);
418 
419 			/*
420 			 * Update the valid bits to reflect the blocks that
421 			 * have been zeroed.  Some of these valid bits may
422 			 * have already been set.
423 			 */
424 			vm_page_set_valid_range(m, base, size);
425 
426 			/*
427 			 * Round "base" to the next block boundary so that the
428 			 * dirty bit for a partially zeroed block is not
429 			 * cleared.
430 			 */
431 			base = roundup2(base, DEV_BSIZE);
432 
433 			/*
434 			 * Clear out partial-page dirty bits.
435 			 *
436 			 * note that we do not clear out the valid
437 			 * bits.  This would prevent bogus_page
438 			 * replacement from working properly.
439 			 */
440 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
441 		} else if ((nsize & PAGE_MASK) &&
442 		    vm_page_is_cached(object, OFF_TO_IDX(nsize))) {
443 			vm_page_cache_free(object, OFF_TO_IDX(nsize),
444 			    nobjsize);
445 		}
446 	}
447 	object->un_pager.vnp.vnp_size = nsize;
448 	object->size = nobjsize;
449 	VM_OBJECT_WUNLOCK(object);
450 }
451 
452 /*
453  * calculate the linear (byte) disk address of specified virtual
454  * file address
455  */
456 static int
457 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
458     int *run)
459 {
460 	int bsize;
461 	int err;
462 	daddr_t vblock;
463 	daddr_t voffset;
464 
465 	if (address < 0)
466 		return -1;
467 
468 	if (vp->v_iflag & VI_DOOMED)
469 		return -1;
470 
471 	bsize = vp->v_mount->mnt_stat.f_iosize;
472 	vblock = address / bsize;
473 	voffset = address % bsize;
474 
475 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
476 	if (err == 0) {
477 		if (*rtaddress != -1)
478 			*rtaddress += voffset / DEV_BSIZE;
479 		if (run) {
480 			*run += 1;
481 			*run *= bsize/PAGE_SIZE;
482 			*run -= voffset/PAGE_SIZE;
483 		}
484 	}
485 
486 	return (err);
487 }
488 
489 /*
490  * small block filesystem vnode pager input
491  */
492 static int
493 vnode_pager_input_smlfs(object, m)
494 	vm_object_t object;
495 	vm_page_t m;
496 {
497 	struct vnode *vp;
498 	struct bufobj *bo;
499 	struct buf *bp;
500 	struct sf_buf *sf;
501 	daddr_t fileaddr;
502 	vm_offset_t bsize;
503 	vm_page_bits_t bits;
504 	int error, i;
505 
506 	error = 0;
507 	vp = object->handle;
508 	if (vp->v_iflag & VI_DOOMED)
509 		return VM_PAGER_BAD;
510 
511 	bsize = vp->v_mount->mnt_stat.f_iosize;
512 
513 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
514 
515 	sf = sf_buf_alloc(m, 0);
516 
517 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
518 		vm_ooffset_t address;
519 
520 		bits = vm_page_bits(i * bsize, bsize);
521 		if (m->valid & bits)
522 			continue;
523 
524 		address = IDX_TO_OFF(m->pindex) + i * bsize;
525 		if (address >= object->un_pager.vnp.vnp_size) {
526 			fileaddr = -1;
527 		} else {
528 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
529 			if (error)
530 				break;
531 		}
532 		if (fileaddr != -1) {
533 			bp = getpbuf(&vnode_pbuf_freecnt);
534 
535 			/* build a minimal buffer header */
536 			bp->b_iocmd = BIO_READ;
537 			bp->b_iodone = bdone;
538 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
539 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
540 			bp->b_rcred = crhold(curthread->td_ucred);
541 			bp->b_wcred = crhold(curthread->td_ucred);
542 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
543 			bp->b_blkno = fileaddr;
544 			pbgetbo(bo, bp);
545 			bp->b_vp = vp;
546 			bp->b_bcount = bsize;
547 			bp->b_bufsize = bsize;
548 			bp->b_runningbufspace = bp->b_bufsize;
549 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
550 
551 			/* do the input */
552 			bp->b_iooffset = dbtob(bp->b_blkno);
553 			bstrategy(bp);
554 
555 			bwait(bp, PVM, "vnsrd");
556 
557 			if ((bp->b_ioflags & BIO_ERROR) != 0)
558 				error = EIO;
559 
560 			/*
561 			 * free the buffer header back to the swap buffer pool
562 			 */
563 			bp->b_vp = NULL;
564 			pbrelbo(bp);
565 			relpbuf(bp, &vnode_pbuf_freecnt);
566 			if (error)
567 				break;
568 		} else
569 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
570 		KASSERT((m->dirty & bits) == 0,
571 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
572 		VM_OBJECT_WLOCK(object);
573 		m->valid |= bits;
574 		VM_OBJECT_WUNLOCK(object);
575 	}
576 	sf_buf_free(sf);
577 	if (error) {
578 		return VM_PAGER_ERROR;
579 	}
580 	return VM_PAGER_OK;
581 }
582 
583 /*
584  * old style vnode pager input routine
585  */
586 static int
587 vnode_pager_input_old(object, m)
588 	vm_object_t object;
589 	vm_page_t m;
590 {
591 	struct uio auio;
592 	struct iovec aiov;
593 	int error;
594 	int size;
595 	struct sf_buf *sf;
596 	struct vnode *vp;
597 
598 	VM_OBJECT_ASSERT_WLOCKED(object);
599 	error = 0;
600 
601 	/*
602 	 * Return failure if beyond current EOF
603 	 */
604 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
605 		return VM_PAGER_BAD;
606 	} else {
607 		size = PAGE_SIZE;
608 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
609 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
610 		vp = object->handle;
611 		VM_OBJECT_WUNLOCK(object);
612 
613 		/*
614 		 * Allocate a kernel virtual address and initialize so that
615 		 * we can use VOP_READ/WRITE routines.
616 		 */
617 		sf = sf_buf_alloc(m, 0);
618 
619 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
620 		aiov.iov_len = size;
621 		auio.uio_iov = &aiov;
622 		auio.uio_iovcnt = 1;
623 		auio.uio_offset = IDX_TO_OFF(m->pindex);
624 		auio.uio_segflg = UIO_SYSSPACE;
625 		auio.uio_rw = UIO_READ;
626 		auio.uio_resid = size;
627 		auio.uio_td = curthread;
628 
629 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
630 		if (!error) {
631 			int count = size - auio.uio_resid;
632 
633 			if (count == 0)
634 				error = EINVAL;
635 			else if (count != PAGE_SIZE)
636 				bzero((caddr_t)sf_buf_kva(sf) + count,
637 				    PAGE_SIZE - count);
638 		}
639 		sf_buf_free(sf);
640 
641 		VM_OBJECT_WLOCK(object);
642 	}
643 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
644 	if (!error)
645 		m->valid = VM_PAGE_BITS_ALL;
646 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
647 }
648 
649 /*
650  * generic vnode pager input routine
651  */
652 
653 /*
654  * Local media VFS's that do not implement their own VOP_GETPAGES
655  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
656  * to implement the previous behaviour.
657  *
658  * All other FS's should use the bypass to get to the local media
659  * backing vp's VOP_GETPAGES.
660  */
661 static int
662 vnode_pager_getpages(object, m, count, reqpage)
663 	vm_object_t object;
664 	vm_page_t *m;
665 	int count;
666 	int reqpage;
667 {
668 	int rtval;
669 	struct vnode *vp;
670 	int bytes = count * PAGE_SIZE;
671 
672 	vp = object->handle;
673 	VM_OBJECT_WUNLOCK(object);
674 	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
675 	KASSERT(rtval != EOPNOTSUPP,
676 	    ("vnode_pager: FS getpages not implemented\n"));
677 	VM_OBJECT_WLOCK(object);
678 	return rtval;
679 }
680 
681 /*
682  * This is now called from local media FS's to operate against their
683  * own vnodes if they fail to implement VOP_GETPAGES.
684  */
685 int
686 vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
687 	struct vnode *vp;
688 	vm_page_t *m;
689 	int bytecount;
690 	int reqpage;
691 {
692 	vm_object_t object;
693 	vm_offset_t kva;
694 	off_t foff, tfoff, nextoff;
695 	int i, j, size, bsize, first;
696 	daddr_t firstaddr, reqblock;
697 	struct bufobj *bo;
698 	int runpg;
699 	int runend;
700 	struct buf *bp;
701 	struct mount *mp;
702 	int count;
703 	int error;
704 
705 	object = vp->v_object;
706 	count = bytecount / PAGE_SIZE;
707 
708 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
709 	    ("vnode_pager_generic_getpages does not support devices"));
710 	if (vp->v_iflag & VI_DOOMED)
711 		return VM_PAGER_BAD;
712 
713 	bsize = vp->v_mount->mnt_stat.f_iosize;
714 
715 	/* get the UNDERLYING device for the file with VOP_BMAP() */
716 
717 	/*
718 	 * originally, we did not check for an error return value -- assuming
719 	 * an fs always has a bmap entry point -- that assumption is wrong!!!
720 	 */
721 	foff = IDX_TO_OFF(m[reqpage]->pindex);
722 
723 	/*
724 	 * if we can't bmap, use old VOP code
725 	 */
726 	error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL);
727 	if (error == EOPNOTSUPP) {
728 		VM_OBJECT_WLOCK(object);
729 
730 		for (i = 0; i < count; i++)
731 			if (i != reqpage) {
732 				vm_page_lock(m[i]);
733 				vm_page_free(m[i]);
734 				vm_page_unlock(m[i]);
735 			}
736 		PCPU_INC(cnt.v_vnodein);
737 		PCPU_INC(cnt.v_vnodepgsin);
738 		error = vnode_pager_input_old(object, m[reqpage]);
739 		VM_OBJECT_WUNLOCK(object);
740 		return (error);
741 	} else if (error != 0) {
742 		VM_OBJECT_WLOCK(object);
743 		for (i = 0; i < count; i++)
744 			if (i != reqpage) {
745 				vm_page_lock(m[i]);
746 				vm_page_free(m[i]);
747 				vm_page_unlock(m[i]);
748 			}
749 		VM_OBJECT_WUNLOCK(object);
750 		return (VM_PAGER_ERROR);
751 
752 		/*
753 		 * if the blocksize is smaller than a page size, then use
754 		 * special small filesystem code.  NFS sometimes has a small
755 		 * blocksize, but it can handle large reads itself.
756 		 */
757 	} else if ((PAGE_SIZE / bsize) > 1 &&
758 	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
759 		VM_OBJECT_WLOCK(object);
760 		for (i = 0; i < count; i++)
761 			if (i != reqpage) {
762 				vm_page_lock(m[i]);
763 				vm_page_free(m[i]);
764 				vm_page_unlock(m[i]);
765 			}
766 		VM_OBJECT_WUNLOCK(object);
767 		PCPU_INC(cnt.v_vnodein);
768 		PCPU_INC(cnt.v_vnodepgsin);
769 		return vnode_pager_input_smlfs(object, m[reqpage]);
770 	}
771 
772 	/*
773 	 * If we have a completely valid page available to us, we can
774 	 * clean up and return.  Otherwise we have to re-read the
775 	 * media.
776 	 */
777 	VM_OBJECT_WLOCK(object);
778 	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
779 		for (i = 0; i < count; i++)
780 			if (i != reqpage) {
781 				vm_page_lock(m[i]);
782 				vm_page_free(m[i]);
783 				vm_page_unlock(m[i]);
784 			}
785 		VM_OBJECT_WUNLOCK(object);
786 		return VM_PAGER_OK;
787 	} else if (reqblock == -1) {
788 		pmap_zero_page(m[reqpage]);
789 		KASSERT(m[reqpage]->dirty == 0,
790 		    ("vnode_pager_generic_getpages: page %p is dirty", m));
791 		m[reqpage]->valid = VM_PAGE_BITS_ALL;
792 		for (i = 0; i < count; i++)
793 			if (i != reqpage) {
794 				vm_page_lock(m[i]);
795 				vm_page_free(m[i]);
796 				vm_page_unlock(m[i]);
797 			}
798 		VM_OBJECT_WUNLOCK(object);
799 		return (VM_PAGER_OK);
800 	}
801 	m[reqpage]->valid = 0;
802 	VM_OBJECT_WUNLOCK(object);
803 
804 	/*
805 	 * here on direct device I/O
806 	 */
807 	firstaddr = -1;
808 
809 	/*
810 	 * calculate the run that includes the required page
811 	 */
812 	for (first = 0, i = 0; i < count; i = runend) {
813 		if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr,
814 		    &runpg) != 0) {
815 			VM_OBJECT_WLOCK(object);
816 			for (; i < count; i++)
817 				if (i != reqpage) {
818 					vm_page_lock(m[i]);
819 					vm_page_free(m[i]);
820 					vm_page_unlock(m[i]);
821 				}
822 			VM_OBJECT_WUNLOCK(object);
823 			return (VM_PAGER_ERROR);
824 		}
825 		if (firstaddr == -1) {
826 			VM_OBJECT_WLOCK(object);
827 			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
828 				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
829 				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
830 				    (uintmax_t)foff,
831 				    (uintmax_t)
832 				    (object->un_pager.vnp.vnp_size >> 32),
833 				    (uintmax_t)object->un_pager.vnp.vnp_size);
834 			}
835 			vm_page_lock(m[i]);
836 			vm_page_free(m[i]);
837 			vm_page_unlock(m[i]);
838 			VM_OBJECT_WUNLOCK(object);
839 			runend = i + 1;
840 			first = runend;
841 			continue;
842 		}
843 		runend = i + runpg;
844 		if (runend <= reqpage) {
845 			VM_OBJECT_WLOCK(object);
846 			for (j = i; j < runend; j++) {
847 				vm_page_lock(m[j]);
848 				vm_page_free(m[j]);
849 				vm_page_unlock(m[j]);
850 			}
851 			VM_OBJECT_WUNLOCK(object);
852 		} else {
853 			if (runpg < (count - first)) {
854 				VM_OBJECT_WLOCK(object);
855 				for (i = first + runpg; i < count; i++) {
856 					vm_page_lock(m[i]);
857 					vm_page_free(m[i]);
858 					vm_page_unlock(m[i]);
859 				}
860 				VM_OBJECT_WUNLOCK(object);
861 				count = first + runpg;
862 			}
863 			break;
864 		}
865 		first = runend;
866 	}
867 
868 	/*
869 	 * the first and last page have been calculated now, move input pages
870 	 * to be zero based...
871 	 */
872 	if (first != 0) {
873 		m += first;
874 		count -= first;
875 		reqpage -= first;
876 	}
877 
878 	/*
879 	 * calculate the file virtual address for the transfer
880 	 */
881 	foff = IDX_TO_OFF(m[0]->pindex);
882 
883 	/*
884 	 * calculate the size of the transfer
885 	 */
886 	size = count * PAGE_SIZE;
887 	KASSERT(count > 0, ("zero count"));
888 	if ((foff + size) > object->un_pager.vnp.vnp_size)
889 		size = object->un_pager.vnp.vnp_size - foff;
890 	KASSERT(size > 0, ("zero size"));
891 
892 	/*
893 	 * round up physical size for real devices.
894 	 */
895 	if (1) {
896 		int secmask = bo->bo_bsize - 1;
897 		KASSERT(secmask < PAGE_SIZE && secmask > 0,
898 		    ("vnode_pager_generic_getpages: sector size %d too large",
899 		    secmask + 1));
900 		size = (size + secmask) & ~secmask;
901 	}
902 
903 	bp = getpbuf(&vnode_pbuf_freecnt);
904 	kva = (vm_offset_t)bp->b_data;
905 
906 	/*
907 	 * and map the pages to be read into the kva, if the filesystem
908 	 * requires mapped buffers.
909 	 */
910 	mp = vp->v_mount;
911 	if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
912 	    unmapped_buf_allowed) {
913 		bp->b_data = unmapped_buf;
914 		bp->b_kvabase = unmapped_buf;
915 		bp->b_offset = 0;
916 		bp->b_flags |= B_UNMAPPED;
917 		bp->b_npages = count;
918 		for (i = 0; i < count; i++)
919 			bp->b_pages[i] = m[i];
920 	} else
921 		pmap_qenter(kva, m, count);
922 
923 	/* build a minimal buffer header */
924 	bp->b_iocmd = BIO_READ;
925 	bp->b_iodone = bdone;
926 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
927 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
928 	bp->b_rcred = crhold(curthread->td_ucred);
929 	bp->b_wcred = crhold(curthread->td_ucred);
930 	bp->b_blkno = firstaddr;
931 	pbgetbo(bo, bp);
932 	bp->b_vp = vp;
933 	bp->b_bcount = size;
934 	bp->b_bufsize = size;
935 	bp->b_runningbufspace = bp->b_bufsize;
936 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
937 
938 	PCPU_INC(cnt.v_vnodein);
939 	PCPU_ADD(cnt.v_vnodepgsin, count);
940 
941 	/* do the input */
942 	bp->b_iooffset = dbtob(bp->b_blkno);
943 	bstrategy(bp);
944 
945 	bwait(bp, PVM, "vnread");
946 
947 	if ((bp->b_ioflags & BIO_ERROR) != 0)
948 		error = EIO;
949 
950 	if (error == 0 && size != count * PAGE_SIZE) {
951 		if ((bp->b_flags & B_UNMAPPED) != 0) {
952 			bp->b_flags &= ~B_UNMAPPED;
953 			pmap_qenter(kva, m, count);
954 		}
955 		bzero((caddr_t)kva + size, PAGE_SIZE * count - size);
956 	}
957 	if ((bp->b_flags & B_UNMAPPED) == 0)
958 		pmap_qremove(kva, count);
959 	if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0) {
960 		bp->b_data = (caddr_t)kva;
961 		bp->b_kvabase = (caddr_t)kva;
962 		bp->b_flags &= ~B_UNMAPPED;
963 		for (i = 0; i < count; i++)
964 			bp->b_pages[i] = NULL;
965 	}
966 
967 	/*
968 	 * free the buffer header back to the swap buffer pool
969 	 */
970 	bp->b_vp = NULL;
971 	pbrelbo(bp);
972 	relpbuf(bp, &vnode_pbuf_freecnt);
973 
974 	VM_OBJECT_WLOCK(object);
975 	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
976 		vm_page_t mt;
977 
978 		nextoff = tfoff + PAGE_SIZE;
979 		mt = m[i];
980 
981 		if (nextoff <= object->un_pager.vnp.vnp_size) {
982 			/*
983 			 * Read filled up entire page.
984 			 */
985 			mt->valid = VM_PAGE_BITS_ALL;
986 			KASSERT(mt->dirty == 0,
987 			    ("vnode_pager_generic_getpages: page %p is dirty",
988 			    mt));
989 			KASSERT(!pmap_page_is_mapped(mt),
990 			    ("vnode_pager_generic_getpages: page %p is mapped",
991 			    mt));
992 		} else {
993 			/*
994 			 * Read did not fill up entire page.
995 			 *
996 			 * Currently we do not set the entire page valid,
997 			 * we just try to clear the piece that we couldn't
998 			 * read.
999 			 */
1000 			vm_page_set_valid_range(mt, 0,
1001 			    object->un_pager.vnp.vnp_size - tfoff);
1002 			KASSERT((mt->dirty & vm_page_bits(0,
1003 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1004 			    ("vnode_pager_generic_getpages: page %p is dirty",
1005 			    mt));
1006 		}
1007 
1008 		if (i != reqpage)
1009 			vm_page_readahead_finish(mt);
1010 	}
1011 	VM_OBJECT_WUNLOCK(object);
1012 	if (error) {
1013 		printf("vnode_pager_getpages: I/O read error\n");
1014 	}
1015 	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
1016 }
1017 
1018 /*
1019  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1020  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1021  * vnode_pager_generic_putpages() to implement the previous behaviour.
1022  *
1023  * All other FS's should use the bypass to get to the local media
1024  * backing vp's VOP_PUTPAGES.
1025  */
1026 static void
1027 vnode_pager_putpages(object, m, count, sync, rtvals)
1028 	vm_object_t object;
1029 	vm_page_t *m;
1030 	int count;
1031 	boolean_t sync;
1032 	int *rtvals;
1033 {
1034 	int rtval;
1035 	struct vnode *vp;
1036 	int bytes = count * PAGE_SIZE;
1037 
1038 	/*
1039 	 * Force synchronous operation if we are extremely low on memory
1040 	 * to prevent a low-memory deadlock.  VOP operations often need to
1041 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1042 	 * operation ).  The swapper handles the case by limiting the amount
1043 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1044 	 * for the vnode pager without a lot of work.
1045 	 *
1046 	 * Also, the backing vnode's iodone routine may not wake the pageout
1047 	 * daemon up.  This should be probably be addressed XXX.
1048 	 */
1049 
1050 	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
1051 		sync |= OBJPC_SYNC;
1052 
1053 	/*
1054 	 * Call device-specific putpages function
1055 	 */
1056 	vp = object->handle;
1057 	VM_OBJECT_WUNLOCK(object);
1058 	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
1059 	KASSERT(rtval != EOPNOTSUPP,
1060 	    ("vnode_pager: stale FS putpages\n"));
1061 	VM_OBJECT_WLOCK(object);
1062 }
1063 
1064 
1065 /*
1066  * This is now called from local media FS's to operate against their
1067  * own vnodes if they fail to implement VOP_PUTPAGES.
1068  *
1069  * This is typically called indirectly via the pageout daemon and
1070  * clustering has already typically occured, so in general we ask the
1071  * underlying filesystem to write the data out asynchronously rather
1072  * then delayed.
1073  */
1074 int
1075 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1076     int flags, int *rtvals)
1077 {
1078 	int i;
1079 	vm_object_t object;
1080 	vm_page_t m;
1081 	int count;
1082 
1083 	int maxsize, ncount;
1084 	vm_ooffset_t poffset;
1085 	struct uio auio;
1086 	struct iovec aiov;
1087 	int error;
1088 	int ioflags;
1089 	int ppscheck = 0;
1090 	static struct timeval lastfail;
1091 	static int curfail;
1092 
1093 	object = vp->v_object;
1094 	count = bytecount / PAGE_SIZE;
1095 
1096 	for (i = 0; i < count; i++)
1097 		rtvals[i] = VM_PAGER_ERROR;
1098 
1099 	if ((int64_t)ma[0]->pindex < 0) {
1100 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1101 		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1102 		rtvals[0] = VM_PAGER_BAD;
1103 		return VM_PAGER_BAD;
1104 	}
1105 
1106 	maxsize = count * PAGE_SIZE;
1107 	ncount = count;
1108 
1109 	poffset = IDX_TO_OFF(ma[0]->pindex);
1110 
1111 	/*
1112 	 * If the page-aligned write is larger then the actual file we
1113 	 * have to invalidate pages occuring beyond the file EOF.  However,
1114 	 * there is an edge case where a file may not be page-aligned where
1115 	 * the last page is partially invalid.  In this case the filesystem
1116 	 * may not properly clear the dirty bits for the entire page (which
1117 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1118 	 * With the page locked we are free to fix-up the dirty bits here.
1119 	 *
1120 	 * We do not under any circumstances truncate the valid bits, as
1121 	 * this will screw up bogus page replacement.
1122 	 */
1123 	VM_OBJECT_WLOCK(object);
1124 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1125 		if (object->un_pager.vnp.vnp_size > poffset) {
1126 			int pgoff;
1127 
1128 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1129 			ncount = btoc(maxsize);
1130 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1131 				/*
1132 				 * If the object is locked and the following
1133 				 * conditions hold, then the page's dirty
1134 				 * field cannot be concurrently changed by a
1135 				 * pmap operation.
1136 				 */
1137 				m = ma[ncount - 1];
1138 				KASSERT(m->busy > 0,
1139 		("vnode_pager_generic_putpages: page %p is not busy", m));
1140 				KASSERT(!pmap_page_is_write_mapped(m),
1141 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1142 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1143 				    pgoff);
1144 			}
1145 		} else {
1146 			maxsize = 0;
1147 			ncount = 0;
1148 		}
1149 		if (ncount < count) {
1150 			for (i = ncount; i < count; i++) {
1151 				rtvals[i] = VM_PAGER_BAD;
1152 			}
1153 		}
1154 	}
1155 	VM_OBJECT_WUNLOCK(object);
1156 
1157 	/*
1158 	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1159 	 * rather then a bdwrite() to prevent paging I/O from saturating
1160 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1161 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1162 	 * the system decides how to cluster.
1163 	 */
1164 	ioflags = IO_VMIO;
1165 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1166 		ioflags |= IO_SYNC;
1167 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1168 		ioflags |= IO_ASYNC;
1169 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1170 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1171 
1172 	aiov.iov_base = (caddr_t) 0;
1173 	aiov.iov_len = maxsize;
1174 	auio.uio_iov = &aiov;
1175 	auio.uio_iovcnt = 1;
1176 	auio.uio_offset = poffset;
1177 	auio.uio_segflg = UIO_NOCOPY;
1178 	auio.uio_rw = UIO_WRITE;
1179 	auio.uio_resid = maxsize;
1180 	auio.uio_td = (struct thread *) 0;
1181 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1182 	PCPU_INC(cnt.v_vnodeout);
1183 	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1184 
1185 	if (error) {
1186 		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1187 			printf("vnode_pager_putpages: I/O error %d\n", error);
1188 	}
1189 	if (auio.uio_resid) {
1190 		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1191 			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1192 			    auio.uio_resid, (u_long)ma[0]->pindex);
1193 	}
1194 	for (i = 0; i < ncount; i++) {
1195 		rtvals[i] = VM_PAGER_OK;
1196 	}
1197 	return rtvals[0];
1198 }
1199 
1200 void
1201 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1202 {
1203 	vm_object_t obj;
1204 	int i, pos;
1205 
1206 	if (written == 0)
1207 		return;
1208 	obj = ma[0]->object;
1209 	VM_OBJECT_WLOCK(obj);
1210 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1211 		if (pos < trunc_page(written)) {
1212 			rtvals[i] = VM_PAGER_OK;
1213 			vm_page_undirty(ma[i]);
1214 		} else {
1215 			/* Partially written page. */
1216 			rtvals[i] = VM_PAGER_AGAIN;
1217 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1218 		}
1219 	}
1220 	VM_OBJECT_WUNLOCK(obj);
1221 }
1222 
1223 void
1224 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1225     vm_offset_t end)
1226 {
1227 	struct vnode *vp;
1228 	vm_ooffset_t old_wm;
1229 
1230 	VM_OBJECT_WLOCK(object);
1231 	if (object->type != OBJT_VNODE) {
1232 		VM_OBJECT_WUNLOCK(object);
1233 		return;
1234 	}
1235 	old_wm = object->un_pager.vnp.writemappings;
1236 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1237 	vp = object->handle;
1238 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1239 		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1240 		VOP_ADD_WRITECOUNT(vp, 1);
1241 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1242 		    __func__, vp, vp->v_writecount);
1243 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1244 		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1245 		VOP_ADD_WRITECOUNT(vp, -1);
1246 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1247 		    __func__, vp, vp->v_writecount);
1248 	}
1249 	VM_OBJECT_WUNLOCK(object);
1250 }
1251 
1252 void
1253 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1254     vm_offset_t end)
1255 {
1256 	struct vnode *vp;
1257 	struct mount *mp;
1258 	vm_offset_t inc;
1259 
1260 	VM_OBJECT_WLOCK(object);
1261 
1262 	/*
1263 	 * First, recheck the object type to account for the race when
1264 	 * the vnode is reclaimed.
1265 	 */
1266 	if (object->type != OBJT_VNODE) {
1267 		VM_OBJECT_WUNLOCK(object);
1268 		return;
1269 	}
1270 
1271 	/*
1272 	 * Optimize for the case when writemappings is not going to
1273 	 * zero.
1274 	 */
1275 	inc = end - start;
1276 	if (object->un_pager.vnp.writemappings != inc) {
1277 		object->un_pager.vnp.writemappings -= inc;
1278 		VM_OBJECT_WUNLOCK(object);
1279 		return;
1280 	}
1281 
1282 	vp = object->handle;
1283 	vhold(vp);
1284 	VM_OBJECT_WUNLOCK(object);
1285 	mp = NULL;
1286 	vn_start_write(vp, &mp, V_WAIT);
1287 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1288 
1289 	/*
1290 	 * Decrement the object's writemappings, by swapping the start
1291 	 * and end arguments for vnode_pager_update_writecount().  If
1292 	 * there was not a race with vnode reclaimation, then the
1293 	 * vnode's v_writecount is decremented.
1294 	 */
1295 	vnode_pager_update_writecount(object, end, start);
1296 	VOP_UNLOCK(vp, 0);
1297 	vdrop(vp);
1298 	if (mp != NULL)
1299 		vn_finished_write(mp);
1300 }
1301