xref: /freebsd/sys/vm/vnode_pager.c (revision 6e0da4f753ed6b5d26395001a6194b4fdea70177)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/conf.h>
65 #include <sys/sf_buf.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_pager.h>
71 #include <vm/vm_map.h>
72 #include <vm/vnode_pager.h>
73 #include <vm/vm_extern.h>
74 
75 static void vnode_pager_init(void);
76 static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
77 					 int *run);
78 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
79 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
80 static void vnode_pager_dealloc(vm_object_t);
81 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
82 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
83 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
84 
85 struct pagerops vnodepagerops = {
86 	.pgo_init =	vnode_pager_init,
87 	.pgo_alloc =	vnode_pager_alloc,
88 	.pgo_dealloc =	vnode_pager_dealloc,
89 	.pgo_getpages =	vnode_pager_getpages,
90 	.pgo_putpages =	vnode_pager_putpages,
91 	.pgo_haspage =	vnode_pager_haspage,
92 };
93 
94 int vnode_pbuf_freecnt;
95 
96 static void
97 vnode_pager_init(void)
98 {
99 
100 	vnode_pbuf_freecnt = nswbuf / 2 + 1;
101 }
102 
103 /*
104  * Allocate (or lookup) pager for a vnode.
105  * Handle is a vnode pointer.
106  *
107  * MPSAFE
108  */
109 vm_object_t
110 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
111 		  vm_ooffset_t offset)
112 {
113 	vm_object_t object;
114 	struct vnode *vp;
115 
116 	/*
117 	 * Pageout to vnode, no can do yet.
118 	 */
119 	if (handle == NULL)
120 		return (NULL);
121 
122 	vp = (struct vnode *) handle;
123 
124 	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
125 
126 	/*
127 	 * Prevent race condition when allocating the object. This
128 	 * can happen with NFS vnodes since the nfsnode isn't locked.
129 	 */
130 	VI_LOCK(vp);
131 	while (vp->v_iflag & VI_OLOCK) {
132 		vp->v_iflag |= VI_OWANT;
133 		msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0);
134 	}
135 	vp->v_iflag |= VI_OLOCK;
136 	VI_UNLOCK(vp);
137 
138 	/*
139 	 * If the object is being terminated, wait for it to
140 	 * go away.
141 	 */
142 	while ((object = vp->v_object) != NULL) {
143 		VM_OBJECT_LOCK(object);
144 		if ((object->flags & OBJ_DEAD) == 0)
145 			break;
146 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
147 		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
148 	}
149 
150 	if (vp->v_usecount == 0)
151 		panic("vnode_pager_alloc: no vnode reference");
152 
153 	if (object == NULL) {
154 		/*
155 		 * And an object of the appropriate size
156 		 */
157 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
158 
159 		object->un_pager.vnp.vnp_size = size;
160 
161 		object->handle = handle;
162 		vp->v_object = object;
163 	} else {
164 		object->ref_count++;
165 		VM_OBJECT_UNLOCK(object);
166 	}
167 	VI_LOCK(vp);
168 	vp->v_usecount++;
169 	vp->v_iflag &= ~VI_OLOCK;
170 	if (vp->v_iflag & VI_OWANT) {
171 		vp->v_iflag &= ~VI_OWANT;
172 		wakeup(vp);
173 	}
174 	VI_UNLOCK(vp);
175 	return (object);
176 }
177 
178 /*
179  *	The object must be locked.
180  */
181 static void
182 vnode_pager_dealloc(object)
183 	vm_object_t object;
184 {
185 	struct vnode *vp = object->handle;
186 
187 	if (vp == NULL)
188 		panic("vnode_pager_dealloc: pager already dealloced");
189 
190 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
191 	vm_object_pip_wait(object, "vnpdea");
192 
193 	object->handle = NULL;
194 	object->type = OBJT_DEAD;
195 	if (object->flags & OBJ_DISCONNECTWNT) {
196 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
197 		wakeup(object);
198 	}
199 	ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc");
200 	vp->v_object = NULL;
201 	vp->v_vflag &= ~(VV_TEXT | VV_OBJBUF);
202 }
203 
204 static boolean_t
205 vnode_pager_haspage(object, pindex, before, after)
206 	vm_object_t object;
207 	vm_pindex_t pindex;
208 	int *before;
209 	int *after;
210 {
211 	struct vnode *vp = object->handle;
212 	daddr_t bn;
213 	int err;
214 	daddr_t reqblock;
215 	int poff;
216 	int bsize;
217 	int pagesperblock, blocksperpage;
218 
219 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
220 	/*
221 	 * If no vp or vp is doomed or marked transparent to VM, we do not
222 	 * have the page.
223 	 */
224 	if (vp == NULL)
225 		return FALSE;
226 
227 	VI_LOCK(vp);
228 	if (vp->v_iflag & VI_DOOMED) {
229 		VI_UNLOCK(vp);
230 		return FALSE;
231 	}
232 	VI_UNLOCK(vp);
233 	/*
234 	 * If filesystem no longer mounted or offset beyond end of file we do
235 	 * not have the page.
236 	 */
237 	if ((vp->v_mount == NULL) ||
238 	    (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size))
239 		return FALSE;
240 
241 	bsize = vp->v_mount->mnt_stat.f_iosize;
242 	pagesperblock = bsize / PAGE_SIZE;
243 	blocksperpage = 0;
244 	if (pagesperblock > 0) {
245 		reqblock = pindex / pagesperblock;
246 	} else {
247 		blocksperpage = (PAGE_SIZE / bsize);
248 		reqblock = pindex * blocksperpage;
249 	}
250 	VM_OBJECT_UNLOCK(object);
251 	mtx_lock(&Giant);
252 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
253 	mtx_unlock(&Giant);
254 	VM_OBJECT_LOCK(object);
255 	if (err)
256 		return TRUE;
257 	if (bn == -1)
258 		return FALSE;
259 	if (pagesperblock > 0) {
260 		poff = pindex - (reqblock * pagesperblock);
261 		if (before) {
262 			*before *= pagesperblock;
263 			*before += poff;
264 		}
265 		if (after) {
266 			int numafter;
267 			*after *= pagesperblock;
268 			numafter = pagesperblock - (poff + 1);
269 			if (IDX_TO_OFF(pindex + numafter) >
270 			    object->un_pager.vnp.vnp_size) {
271 				numafter =
272 		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
273 				    pindex;
274 			}
275 			*after += numafter;
276 		}
277 	} else {
278 		if (before) {
279 			*before /= blocksperpage;
280 		}
281 
282 		if (after) {
283 			*after /= blocksperpage;
284 		}
285 	}
286 	return TRUE;
287 }
288 
289 /*
290  * Lets the VM system know about a change in size for a file.
291  * We adjust our own internal size and flush any cached pages in
292  * the associated object that are affected by the size change.
293  *
294  * Note: this routine may be invoked as a result of a pager put
295  * operation (possibly at object termination time), so we must be careful.
296  */
297 void
298 vnode_pager_setsize(vp, nsize)
299 	struct vnode *vp;
300 	vm_ooffset_t nsize;
301 {
302 	vm_object_t object;
303 	vm_page_t m;
304 	vm_pindex_t nobjsize;
305 
306 	if ((object = vp->v_object) == NULL)
307 		return;
308 	VM_OBJECT_LOCK(object);
309 	if (nsize == object->un_pager.vnp.vnp_size) {
310 		/*
311 		 * Hasn't changed size
312 		 */
313 		VM_OBJECT_UNLOCK(object);
314 		return;
315 	}
316 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
317 	if (nsize < object->un_pager.vnp.vnp_size) {
318 		/*
319 		 * File has shrunk. Toss any cached pages beyond the new EOF.
320 		 */
321 		if (nobjsize < object->size)
322 			vm_object_page_remove(object, nobjsize, object->size,
323 			    FALSE);
324 		/*
325 		 * this gets rid of garbage at the end of a page that is now
326 		 * only partially backed by the vnode.
327 		 *
328 		 * XXX for some reason (I don't know yet), if we take a
329 		 * completely invalid page and mark it partially valid
330 		 * it can screw up NFS reads, so we don't allow the case.
331 		 */
332 		if ((nsize & PAGE_MASK) &&
333 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
334 		    m->valid != 0) {
335 			int base = (int)nsize & PAGE_MASK;
336 			int size = PAGE_SIZE - base;
337 
338 			/*
339 			 * Clear out partial-page garbage in case
340 			 * the page has been mapped.
341 			 */
342 			pmap_zero_page_area(m, base, size);
343 
344 			/*
345 			 * XXX work around SMP data integrity race
346 			 * by unmapping the page from user processes.
347 			 * The garbage we just cleared may be mapped
348 			 * to a user process running on another cpu
349 			 * and this code is not running through normal
350 			 * I/O channels which handle SMP issues for
351 			 * us, so unmap page to synchronize all cpus.
352 			 *
353 			 * XXX should vm_pager_unmap_page() have
354 			 * dealt with this?
355 			 */
356 			vm_page_lock_queues();
357 			pmap_remove_all(m);
358 
359 			/*
360 			 * Clear out partial-page dirty bits.  This
361 			 * has the side effect of setting the valid
362 			 * bits, but that is ok.  There are a bunch
363 			 * of places in the VM system where we expected
364 			 * m->dirty == VM_PAGE_BITS_ALL.  The file EOF
365 			 * case is one of them.  If the page is still
366 			 * partially dirty, make it fully dirty.
367 			 *
368 			 * note that we do not clear out the valid
369 			 * bits.  This would prevent bogus_page
370 			 * replacement from working properly.
371 			 */
372 			vm_page_set_validclean(m, base, size);
373 			if (m->dirty != 0)
374 				m->dirty = VM_PAGE_BITS_ALL;
375 			vm_page_unlock_queues();
376 		}
377 	}
378 	object->un_pager.vnp.vnp_size = nsize;
379 	object->size = nobjsize;
380 	VM_OBJECT_UNLOCK(object);
381 }
382 
383 /*
384  * calculate the linear (byte) disk address of specified virtual
385  * file address
386  */
387 static vm_offset_t
388 vnode_pager_addr(vp, address, run)
389 	struct vnode *vp;
390 	vm_ooffset_t address;
391 	int *run;
392 {
393 	int rtaddress;
394 	int bsize;
395 	daddr_t block;
396 	int err;
397 	daddr_t vblock;
398 	int voffset;
399 
400 	GIANT_REQUIRED;
401 	if (address < 0)
402 		return -1;
403 
404 	if (vp->v_mount == NULL)
405 		return -1;
406 
407 	bsize = vp->v_mount->mnt_stat.f_iosize;
408 	vblock = address / bsize;
409 	voffset = address % bsize;
410 
411 	err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL);
412 
413 	if (err || (block == -1))
414 		rtaddress = -1;
415 	else {
416 		rtaddress = block + voffset / DEV_BSIZE;
417 		if (run) {
418 			*run += 1;
419 			*run *= bsize/PAGE_SIZE;
420 			*run -= voffset/PAGE_SIZE;
421 		}
422 	}
423 
424 	return rtaddress;
425 }
426 
427 /*
428  * small block filesystem vnode pager input
429  */
430 static int
431 vnode_pager_input_smlfs(object, m)
432 	vm_object_t object;
433 	vm_page_t m;
434 {
435 	int i;
436 	struct vnode *vp;
437 	struct bufobj *bo;
438 	struct buf *bp;
439 	struct sf_buf *sf;
440 	int fileaddr;
441 	vm_offset_t bsize;
442 	int error = 0;
443 
444 	GIANT_REQUIRED;
445 
446 	vp = object->handle;
447 	if (vp->v_mount == NULL)
448 		return VM_PAGER_BAD;
449 
450 	bsize = vp->v_mount->mnt_stat.f_iosize;
451 
452 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
453 
454 	sf = sf_buf_alloc(m, 0);
455 
456 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
457 		vm_ooffset_t address;
458 
459 		if (vm_page_bits(i * bsize, bsize) & m->valid)
460 			continue;
461 
462 		address = IDX_TO_OFF(m->pindex) + i * bsize;
463 		if (address >= object->un_pager.vnp.vnp_size) {
464 			fileaddr = -1;
465 		} else {
466 			fileaddr = vnode_pager_addr(vp, address, NULL);
467 		}
468 		if (fileaddr != -1) {
469 			bp = getpbuf(&vnode_pbuf_freecnt);
470 
471 			/* build a minimal buffer header */
472 			bp->b_iocmd = BIO_READ;
473 			bp->b_iodone = bdone;
474 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
475 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
476 			bp->b_rcred = crhold(curthread->td_ucred);
477 			bp->b_wcred = crhold(curthread->td_ucred);
478 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
479 			bp->b_blkno = fileaddr;
480 			pbgetbo(bo, bp);
481 			bp->b_bcount = bsize;
482 			bp->b_bufsize = bsize;
483 			bp->b_runningbufspace = bp->b_bufsize;
484 			runningbufspace += bp->b_runningbufspace;
485 
486 			/* do the input */
487 			bp->b_iooffset = dbtob(bp->b_blkno);
488 			bstrategy(bp);
489 
490 			/* we definitely need to be at splvm here */
491 
492 			bwait(bp, PVM, "vnsrd");
493 
494 			if ((bp->b_ioflags & BIO_ERROR) != 0)
495 				error = EIO;
496 
497 			/*
498 			 * free the buffer header back to the swap buffer pool
499 			 */
500 			pbrelbo(bp);
501 			relpbuf(bp, &vnode_pbuf_freecnt);
502 			if (error)
503 				break;
504 
505 			VM_OBJECT_LOCK(object);
506 			vm_page_lock_queues();
507 			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
508 			vm_page_unlock_queues();
509 			VM_OBJECT_UNLOCK(object);
510 		} else {
511 			VM_OBJECT_LOCK(object);
512 			vm_page_lock_queues();
513 			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
514 			vm_page_unlock_queues();
515 			VM_OBJECT_UNLOCK(object);
516 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
517 		}
518 	}
519 	sf_buf_free(sf);
520 	vm_page_lock_queues();
521 	pmap_clear_modify(m);
522 	vm_page_unlock_queues();
523 	if (error) {
524 		return VM_PAGER_ERROR;
525 	}
526 	return VM_PAGER_OK;
527 
528 }
529 
530 
531 /*
532  * old style vnode pager input routine
533  */
534 static int
535 vnode_pager_input_old(object, m)
536 	vm_object_t object;
537 	vm_page_t m;
538 {
539 	struct uio auio;
540 	struct iovec aiov;
541 	int error;
542 	int size;
543 	struct sf_buf *sf;
544 	struct vnode *vp;
545 
546 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
547 	error = 0;
548 
549 	/*
550 	 * Return failure if beyond current EOF
551 	 */
552 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
553 		return VM_PAGER_BAD;
554 	} else {
555 		size = PAGE_SIZE;
556 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
557 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
558 		vp = object->handle;
559 		VM_OBJECT_UNLOCK(object);
560 
561 		/*
562 		 * Allocate a kernel virtual address and initialize so that
563 		 * we can use VOP_READ/WRITE routines.
564 		 */
565 		sf = sf_buf_alloc(m, 0);
566 
567 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
568 		aiov.iov_len = size;
569 		auio.uio_iov = &aiov;
570 		auio.uio_iovcnt = 1;
571 		auio.uio_offset = IDX_TO_OFF(m->pindex);
572 		auio.uio_segflg = UIO_SYSSPACE;
573 		auio.uio_rw = UIO_READ;
574 		auio.uio_resid = size;
575 		auio.uio_td = curthread;
576 
577 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
578 		if (!error) {
579 			int count = size - auio.uio_resid;
580 
581 			if (count == 0)
582 				error = EINVAL;
583 			else if (count != PAGE_SIZE)
584 				bzero((caddr_t)sf_buf_kva(sf) + count,
585 				    PAGE_SIZE - count);
586 		}
587 		sf_buf_free(sf);
588 
589 		VM_OBJECT_LOCK(object);
590 	}
591 	vm_page_lock_queues();
592 	pmap_clear_modify(m);
593 	vm_page_undirty(m);
594 	vm_page_unlock_queues();
595 	if (!error)
596 		m->valid = VM_PAGE_BITS_ALL;
597 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
598 }
599 
600 /*
601  * generic vnode pager input routine
602  */
603 
604 /*
605  * Local media VFS's that do not implement their own VOP_GETPAGES
606  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
607  * to implement the previous behaviour.
608  *
609  * All other FS's should use the bypass to get to the local media
610  * backing vp's VOP_GETPAGES.
611  */
612 static int
613 vnode_pager_getpages(object, m, count, reqpage)
614 	vm_object_t object;
615 	vm_page_t *m;
616 	int count;
617 	int reqpage;
618 {
619 	int rtval;
620 	struct vnode *vp;
621 	int bytes = count * PAGE_SIZE;
622 
623 	vp = object->handle;
624 	VM_OBJECT_UNLOCK(object);
625 	mtx_lock(&Giant);
626 	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
627 	KASSERT(rtval != EOPNOTSUPP,
628 	    ("vnode_pager: FS getpages not implemented\n"));
629 	mtx_unlock(&Giant);
630 	VM_OBJECT_LOCK(object);
631 	return rtval;
632 }
633 
634 /*
635  * This is now called from local media FS's to operate against their
636  * own vnodes if they fail to implement VOP_GETPAGES.
637  */
638 int
639 vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
640 	struct vnode *vp;
641 	vm_page_t *m;
642 	int bytecount;
643 	int reqpage;
644 {
645 	vm_object_t object;
646 	vm_offset_t kva;
647 	off_t foff, tfoff, nextoff;
648 	int i, j, size, bsize, first, firstaddr;
649 	struct bufobj *bo;
650 	int runpg;
651 	int runend;
652 	struct buf *bp;
653 	int count;
654 	int error = 0;
655 
656 	GIANT_REQUIRED;
657 	object = vp->v_object;
658 	count = bytecount / PAGE_SIZE;
659 
660 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
661 	    ("vnode_pager_generic_getpages does not support devices"));
662 	if (vp->v_mount == NULL)
663 		return VM_PAGER_BAD;
664 
665 	bsize = vp->v_mount->mnt_stat.f_iosize;
666 
667 	/* get the UNDERLYING device for the file with VOP_BMAP() */
668 
669 	/*
670 	 * originally, we did not check for an error return value -- assuming
671 	 * an fs always has a bmap entry point -- that assumption is wrong!!!
672 	 */
673 	foff = IDX_TO_OFF(m[reqpage]->pindex);
674 
675 	/*
676 	 * if we can't bmap, use old VOP code
677 	 */
678 	if (VOP_BMAP(vp, 0, &bo, 0, NULL, NULL)) {
679 		VM_OBJECT_LOCK(object);
680 		vm_page_lock_queues();
681 		for (i = 0; i < count; i++)
682 			if (i != reqpage)
683 				vm_page_free(m[i]);
684 		vm_page_unlock_queues();
685 		cnt.v_vnodein++;
686 		cnt.v_vnodepgsin++;
687 		error = vnode_pager_input_old(object, m[reqpage]);
688 		VM_OBJECT_UNLOCK(object);
689 		return (error);
690 
691 		/*
692 		 * if the blocksize is smaller than a page size, then use
693 		 * special small filesystem code.  NFS sometimes has a small
694 		 * blocksize, but it can handle large reads itself.
695 		 */
696 	} else if ((PAGE_SIZE / bsize) > 1 &&
697 	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
698 		VM_OBJECT_LOCK(object);
699 		vm_page_lock_queues();
700 		for (i = 0; i < count; i++)
701 			if (i != reqpage)
702 				vm_page_free(m[i]);
703 		vm_page_unlock_queues();
704 		VM_OBJECT_UNLOCK(object);
705 		cnt.v_vnodein++;
706 		cnt.v_vnodepgsin++;
707 		return vnode_pager_input_smlfs(object, m[reqpage]);
708 	}
709 
710 	/*
711 	 * If we have a completely valid page available to us, we can
712 	 * clean up and return.  Otherwise we have to re-read the
713 	 * media.
714 	 */
715 	VM_OBJECT_LOCK(object);
716 	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
717 		vm_page_lock_queues();
718 		for (i = 0; i < count; i++)
719 			if (i != reqpage)
720 				vm_page_free(m[i]);
721 		vm_page_unlock_queues();
722 		VM_OBJECT_UNLOCK(object);
723 		return VM_PAGER_OK;
724 	}
725 	m[reqpage]->valid = 0;
726 	VM_OBJECT_UNLOCK(object);
727 
728 	/*
729 	 * here on direct device I/O
730 	 */
731 	firstaddr = -1;
732 
733 	/*
734 	 * calculate the run that includes the required page
735 	 */
736 	for (first = 0, i = 0; i < count; i = runend) {
737 		firstaddr = vnode_pager_addr(vp,
738 			IDX_TO_OFF(m[i]->pindex), &runpg);
739 		if (firstaddr == -1) {
740 			VM_OBJECT_LOCK(object);
741 			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
742 				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
743 				    firstaddr, (uintmax_t)(foff >> 32),
744 				    (uintmax_t)foff,
745 				    (uintmax_t)
746 				    (object->un_pager.vnp.vnp_size >> 32),
747 				    (uintmax_t)object->un_pager.vnp.vnp_size);
748 			}
749 			vm_page_lock_queues();
750 			vm_page_free(m[i]);
751 			vm_page_unlock_queues();
752 			VM_OBJECT_UNLOCK(object);
753 			runend = i + 1;
754 			first = runend;
755 			continue;
756 		}
757 		runend = i + runpg;
758 		if (runend <= reqpage) {
759 			VM_OBJECT_LOCK(object);
760 			vm_page_lock_queues();
761 			for (j = i; j < runend; j++)
762 				vm_page_free(m[j]);
763 			vm_page_unlock_queues();
764 			VM_OBJECT_UNLOCK(object);
765 		} else {
766 			if (runpg < (count - first)) {
767 				VM_OBJECT_LOCK(object);
768 				vm_page_lock_queues();
769 				for (i = first + runpg; i < count; i++)
770 					vm_page_free(m[i]);
771 				vm_page_unlock_queues();
772 				VM_OBJECT_UNLOCK(object);
773 				count = first + runpg;
774 			}
775 			break;
776 		}
777 		first = runend;
778 	}
779 
780 	/*
781 	 * the first and last page have been calculated now, move input pages
782 	 * to be zero based...
783 	 */
784 	if (first != 0) {
785 		for (i = first; i < count; i++) {
786 			m[i - first] = m[i];
787 		}
788 		count -= first;
789 		reqpage -= first;
790 	}
791 
792 	/*
793 	 * calculate the file virtual address for the transfer
794 	 */
795 	foff = IDX_TO_OFF(m[0]->pindex);
796 
797 	/*
798 	 * calculate the size of the transfer
799 	 */
800 	size = count * PAGE_SIZE;
801 	KASSERT(count > 0, ("zero count"));
802 	if ((foff + size) > object->un_pager.vnp.vnp_size)
803 		size = object->un_pager.vnp.vnp_size - foff;
804 	KASSERT(size > 0, ("zero size"));
805 
806 	/*
807 	 * round up physical size for real devices.
808 	 */
809 	if (1) {
810 		int secmask = bo->bo_bsize - 1;
811 		KASSERT(secmask < PAGE_SIZE && secmask > 0,
812 		    ("vnode_pager_generic_getpages: sector size %d too large",
813 		    secmask + 1));
814 		size = (size + secmask) & ~secmask;
815 	}
816 
817 	bp = getpbuf(&vnode_pbuf_freecnt);
818 	kva = (vm_offset_t) bp->b_data;
819 
820 	/*
821 	 * and map the pages to be read into the kva
822 	 */
823 	pmap_qenter(kva, m, count);
824 
825 	/* build a minimal buffer header */
826 	bp->b_iocmd = BIO_READ;
827 	bp->b_iodone = bdone;
828 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
829 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
830 	bp->b_rcred = crhold(curthread->td_ucred);
831 	bp->b_wcred = crhold(curthread->td_ucred);
832 	bp->b_blkno = firstaddr;
833 	pbgetbo(bo, bp);
834 	bp->b_bcount = size;
835 	bp->b_bufsize = size;
836 	bp->b_runningbufspace = bp->b_bufsize;
837 	runningbufspace += bp->b_runningbufspace;
838 
839 	cnt.v_vnodein++;
840 	cnt.v_vnodepgsin += count;
841 
842 	/* do the input */
843 	bp->b_iooffset = dbtob(bp->b_blkno);
844 	bstrategy(bp);
845 
846 	bwait(bp, PVM, "vnread");
847 
848 	if ((bp->b_ioflags & BIO_ERROR) != 0)
849 		error = EIO;
850 
851 	if (!error) {
852 		if (size != count * PAGE_SIZE)
853 			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
854 	}
855 	pmap_qremove(kva, count);
856 
857 	/*
858 	 * free the buffer header back to the swap buffer pool
859 	 */
860 	pbrelbo(bp);
861 	relpbuf(bp, &vnode_pbuf_freecnt);
862 
863 	VM_OBJECT_LOCK(object);
864 	vm_page_lock_queues();
865 	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
866 		vm_page_t mt;
867 
868 		nextoff = tfoff + PAGE_SIZE;
869 		mt = m[i];
870 
871 		if (nextoff <= object->un_pager.vnp.vnp_size) {
872 			/*
873 			 * Read filled up entire page.
874 			 */
875 			mt->valid = VM_PAGE_BITS_ALL;
876 			vm_page_undirty(mt);	/* should be an assert? XXX */
877 			pmap_clear_modify(mt);
878 		} else {
879 			/*
880 			 * Read did not fill up entire page.  Since this
881 			 * is getpages, the page may be mapped, so we have
882 			 * to zero the invalid portions of the page even
883 			 * though we aren't setting them valid.
884 			 *
885 			 * Currently we do not set the entire page valid,
886 			 * we just try to clear the piece that we couldn't
887 			 * read.
888 			 */
889 			vm_page_set_validclean(mt, 0,
890 			    object->un_pager.vnp.vnp_size - tfoff);
891 			/* handled by vm_fault now */
892 			/* vm_page_zero_invalid(mt, FALSE); */
893 		}
894 
895 		if (i != reqpage) {
896 
897 			/*
898 			 * whether or not to leave the page activated is up in
899 			 * the air, but we should put the page on a page queue
900 			 * somewhere. (it already is in the object). Result:
901 			 * It appears that empirical results show that
902 			 * deactivating pages is best.
903 			 */
904 
905 			/*
906 			 * just in case someone was asking for this page we
907 			 * now tell them that it is ok to use
908 			 */
909 			if (!error) {
910 				if (mt->flags & PG_WANTED)
911 					vm_page_activate(mt);
912 				else
913 					vm_page_deactivate(mt);
914 				vm_page_wakeup(mt);
915 			} else {
916 				vm_page_free(mt);
917 			}
918 		}
919 	}
920 	vm_page_unlock_queues();
921 	VM_OBJECT_UNLOCK(object);
922 	if (error) {
923 		printf("vnode_pager_getpages: I/O read error\n");
924 	}
925 	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
926 }
927 
928 /*
929  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
930  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
931  * vnode_pager_generic_putpages() to implement the previous behaviour.
932  *
933  * All other FS's should use the bypass to get to the local media
934  * backing vp's VOP_PUTPAGES.
935  */
936 static void
937 vnode_pager_putpages(object, m, count, sync, rtvals)
938 	vm_object_t object;
939 	vm_page_t *m;
940 	int count;
941 	boolean_t sync;
942 	int *rtvals;
943 {
944 	int rtval;
945 	struct vnode *vp;
946 	struct mount *mp;
947 	int bytes = count * PAGE_SIZE;
948 
949 	GIANT_REQUIRED;
950 	/*
951 	 * Force synchronous operation if we are extremely low on memory
952 	 * to prevent a low-memory deadlock.  VOP operations often need to
953 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
954 	 * operation ).  The swapper handles the case by limiting the amount
955 	 * of asynchronous I/O, but that sort of solution doesn't scale well
956 	 * for the vnode pager without a lot of work.
957 	 *
958 	 * Also, the backing vnode's iodone routine may not wake the pageout
959 	 * daemon up.  This should be probably be addressed XXX.
960 	 */
961 
962 	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
963 		sync |= OBJPC_SYNC;
964 
965 	/*
966 	 * Call device-specific putpages function
967 	 */
968 	vp = object->handle;
969 	VM_OBJECT_UNLOCK(object);
970 	if (vp->v_type != VREG)
971 		mp = NULL;
972 	(void)vn_start_write(vp, &mp, V_WAIT);
973 	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
974 	KASSERT(rtval != EOPNOTSUPP,
975 	    ("vnode_pager: stale FS putpages\n"));
976 	vn_finished_write(mp);
977 	VM_OBJECT_LOCK(object);
978 }
979 
980 
981 /*
982  * This is now called from local media FS's to operate against their
983  * own vnodes if they fail to implement VOP_PUTPAGES.
984  *
985  * This is typically called indirectly via the pageout daemon and
986  * clustering has already typically occured, so in general we ask the
987  * underlying filesystem to write the data out asynchronously rather
988  * then delayed.
989  */
990 int
991 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals)
992 	struct vnode *vp;
993 	vm_page_t *m;
994 	int bytecount;
995 	int flags;
996 	int *rtvals;
997 {
998 	int i;
999 	vm_object_t object;
1000 	int count;
1001 
1002 	int maxsize, ncount;
1003 	vm_ooffset_t poffset;
1004 	struct uio auio;
1005 	struct iovec aiov;
1006 	int error;
1007 	int ioflags;
1008 
1009 	GIANT_REQUIRED;
1010 	object = vp->v_object;
1011 	count = bytecount / PAGE_SIZE;
1012 
1013 	for (i = 0; i < count; i++)
1014 		rtvals[i] = VM_PAGER_AGAIN;
1015 
1016 	if ((int64_t)m[0]->pindex < 0) {
1017 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1018 			(long)m[0]->pindex, (u_long)m[0]->dirty);
1019 		rtvals[0] = VM_PAGER_BAD;
1020 		return VM_PAGER_BAD;
1021 	}
1022 
1023 	maxsize = count * PAGE_SIZE;
1024 	ncount = count;
1025 
1026 	poffset = IDX_TO_OFF(m[0]->pindex);
1027 
1028 	/*
1029 	 * If the page-aligned write is larger then the actual file we
1030 	 * have to invalidate pages occuring beyond the file EOF.  However,
1031 	 * there is an edge case where a file may not be page-aligned where
1032 	 * the last page is partially invalid.  In this case the filesystem
1033 	 * may not properly clear the dirty bits for the entire page (which
1034 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1035 	 * With the page locked we are free to fix-up the dirty bits here.
1036 	 *
1037 	 * We do not under any circumstances truncate the valid bits, as
1038 	 * this will screw up bogus page replacement.
1039 	 */
1040 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1041 		if (object->un_pager.vnp.vnp_size > poffset) {
1042 			int pgoff;
1043 
1044 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1045 			ncount = btoc(maxsize);
1046 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1047 				vm_page_lock_queues();
1048 				vm_page_clear_dirty(m[ncount - 1], pgoff,
1049 					PAGE_SIZE - pgoff);
1050 				vm_page_unlock_queues();
1051 			}
1052 		} else {
1053 			maxsize = 0;
1054 			ncount = 0;
1055 		}
1056 		if (ncount < count) {
1057 			for (i = ncount; i < count; i++) {
1058 				rtvals[i] = VM_PAGER_BAD;
1059 			}
1060 		}
1061 	}
1062 
1063 	/*
1064 	 * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
1065 	 * rather then a bdwrite() to prevent paging I/O from saturating
1066 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1067 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1068 	 * the system decides how to cluster.
1069 	 */
1070 	ioflags = IO_VMIO;
1071 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1072 		ioflags |= IO_SYNC;
1073 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1074 		ioflags |= IO_ASYNC;
1075 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1076 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1077 
1078 	aiov.iov_base = (caddr_t) 0;
1079 	aiov.iov_len = maxsize;
1080 	auio.uio_iov = &aiov;
1081 	auio.uio_iovcnt = 1;
1082 	auio.uio_offset = poffset;
1083 	auio.uio_segflg = UIO_NOCOPY;
1084 	auio.uio_rw = UIO_WRITE;
1085 	auio.uio_resid = maxsize;
1086 	auio.uio_td = (struct thread *) 0;
1087 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1088 	cnt.v_vnodeout++;
1089 	cnt.v_vnodepgsout += ncount;
1090 
1091 	if (error) {
1092 		printf("vnode_pager_putpages: I/O error %d\n", error);
1093 	}
1094 	if (auio.uio_resid) {
1095 		printf("vnode_pager_putpages: residual I/O %d at %lu\n",
1096 		    auio.uio_resid, (u_long)m[0]->pindex);
1097 	}
1098 	for (i = 0; i < ncount; i++) {
1099 		rtvals[i] = VM_PAGER_OK;
1100 	}
1101 	return rtvals[0];
1102 }
1103 
1104 struct vnode *
1105 vnode_pager_lock(vm_object_t first_object)
1106 {
1107 	struct vnode *vp;
1108 	vm_object_t backing_object, object;
1109 
1110 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
1111 	for (object = first_object; object != NULL; object = backing_object) {
1112 		if (object->type != OBJT_VNODE) {
1113 			if ((backing_object = object->backing_object) != NULL)
1114 				VM_OBJECT_LOCK(backing_object);
1115 			if (object != first_object)
1116 				VM_OBJECT_UNLOCK(object);
1117 			continue;
1118 		}
1119 	retry:
1120 		if (object->flags & OBJ_DEAD) {
1121 			if (object != first_object)
1122 				VM_OBJECT_UNLOCK(object);
1123 			return NULL;
1124 		}
1125 		vp = object->handle;
1126 		VI_LOCK(vp);
1127 		VM_OBJECT_UNLOCK(object);
1128 		if (first_object != object)
1129 			VM_OBJECT_UNLOCK(first_object);
1130 		if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | LK_NOPAUSE |
1131 		    LK_RETRY | LK_SHARED, curthread)) {
1132 			VM_OBJECT_LOCK(first_object);
1133 			if (object != first_object)
1134 				VM_OBJECT_LOCK(object);
1135 			if (object->type != OBJT_VNODE) {
1136 				if (object != first_object)
1137 					VM_OBJECT_UNLOCK(object);
1138 				return NULL;
1139 			}
1140 			printf("vnode_pager_lock: retrying\n");
1141 			goto retry;
1142 		}
1143 		VM_OBJECT_LOCK(first_object);
1144 		return (vp);
1145 	}
1146 	return NULL;
1147 }
1148