xref: /freebsd/sys/vm/vnode_pager.c (revision 6c925b9c81036a86db387f75a32b423420eadf6c)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include "opt_vm.h"
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/vnode.h>
62 #include <sys/mount.h>
63 #include <sys/bio.h>
64 #include <sys/buf.h>
65 #include <sys/vmmeter.h>
66 #include <sys/limits.h>
67 #include <sys/conf.h>
68 #include <sys/rwlock.h>
69 #include <sys/sf_buf.h>
70 
71 #include <machine/atomic.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vm_map.h>
79 #include <vm/vnode_pager.h>
80 #include <vm/vm_extern.h>
81 
82 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
83     daddr_t *rtaddress, int *run);
84 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
85 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
86 static void vnode_pager_dealloc(vm_object_t);
87 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
88 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
89     int *, vop_getpages_iodone_t, void *);
90 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
91 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
92 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
93     vm_ooffset_t, struct ucred *cred);
94 static int vnode_pager_generic_getpages_done(struct buf *);
95 static void vnode_pager_generic_getpages_done_async(struct buf *);
96 
97 struct pagerops vnodepagerops = {
98 	.pgo_alloc =	vnode_pager_alloc,
99 	.pgo_dealloc =	vnode_pager_dealloc,
100 	.pgo_getpages =	vnode_pager_getpages,
101 	.pgo_getpages_async = vnode_pager_getpages_async,
102 	.pgo_putpages =	vnode_pager_putpages,
103 	.pgo_haspage =	vnode_pager_haspage,
104 };
105 
106 int vnode_pbuf_freecnt;
107 int vnode_async_pbuf_freecnt;
108 
109 /* Create the VM system backing object for this vnode */
110 int
111 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
112 {
113 	vm_object_t object;
114 	vm_ooffset_t size = isize;
115 	struct vattr va;
116 
117 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
118 		return (0);
119 
120 	while ((object = vp->v_object) != NULL) {
121 		VM_OBJECT_WLOCK(object);
122 		if (!(object->flags & OBJ_DEAD)) {
123 			VM_OBJECT_WUNLOCK(object);
124 			return (0);
125 		}
126 		VOP_UNLOCK(vp, 0);
127 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
128 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
129 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
130 	}
131 
132 	if (size == 0) {
133 		if (vn_isdisk(vp, NULL)) {
134 			size = IDX_TO_OFF(INT_MAX);
135 		} else {
136 			if (VOP_GETATTR(vp, &va, td->td_ucred))
137 				return (0);
138 			size = va.va_size;
139 		}
140 	}
141 
142 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
143 	/*
144 	 * Dereference the reference we just created.  This assumes
145 	 * that the object is associated with the vp.
146 	 */
147 	VM_OBJECT_WLOCK(object);
148 	object->ref_count--;
149 	VM_OBJECT_WUNLOCK(object);
150 	vrele(vp);
151 
152 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
153 
154 	return (0);
155 }
156 
157 void
158 vnode_destroy_vobject(struct vnode *vp)
159 {
160 	struct vm_object *obj;
161 
162 	obj = vp->v_object;
163 	if (obj == NULL)
164 		return;
165 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
166 	VM_OBJECT_WLOCK(obj);
167 	umtx_shm_object_terminated(obj);
168 	if (obj->ref_count == 0) {
169 		/*
170 		 * don't double-terminate the object
171 		 */
172 		if ((obj->flags & OBJ_DEAD) == 0) {
173 			vm_object_terminate(obj);
174 		} else {
175 			/*
176 			 * Waiters were already handled during object
177 			 * termination.  The exclusive vnode lock hopefully
178 			 * prevented new waiters from referencing the dying
179 			 * object.
180 			 */
181 			KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0,
182 			    ("OBJ_DISCONNECTWNT set obj %p flags %x",
183 			    obj, obj->flags));
184 			vp->v_object = NULL;
185 			VM_OBJECT_WUNLOCK(obj);
186 		}
187 	} else {
188 		/*
189 		 * Woe to the process that tries to page now :-).
190 		 */
191 		vm_pager_deallocate(obj);
192 		VM_OBJECT_WUNLOCK(obj);
193 	}
194 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
195 }
196 
197 
198 /*
199  * Allocate (or lookup) pager for a vnode.
200  * Handle is a vnode pointer.
201  *
202  * MPSAFE
203  */
204 vm_object_t
205 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
206     vm_ooffset_t offset, struct ucred *cred)
207 {
208 	vm_object_t object;
209 	struct vnode *vp;
210 
211 	/*
212 	 * Pageout to vnode, no can do yet.
213 	 */
214 	if (handle == NULL)
215 		return (NULL);
216 
217 	vp = (struct vnode *) handle;
218 
219 	/*
220 	 * If the object is being terminated, wait for it to
221 	 * go away.
222 	 */
223 retry:
224 	while ((object = vp->v_object) != NULL) {
225 		VM_OBJECT_WLOCK(object);
226 		if ((object->flags & OBJ_DEAD) == 0)
227 			break;
228 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
229 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
230 	}
231 
232 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
233 
234 	if (object == NULL) {
235 		/*
236 		 * Add an object of the appropriate size
237 		 */
238 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
239 
240 		object->un_pager.vnp.vnp_size = size;
241 		object->un_pager.vnp.writemappings = 0;
242 
243 		object->handle = handle;
244 		VI_LOCK(vp);
245 		if (vp->v_object != NULL) {
246 			/*
247 			 * Object has been created while we were sleeping
248 			 */
249 			VI_UNLOCK(vp);
250 			VM_OBJECT_WLOCK(object);
251 			KASSERT(object->ref_count == 1,
252 			    ("leaked ref %p %d", object, object->ref_count));
253 			object->type = OBJT_DEAD;
254 			object->ref_count = 0;
255 			VM_OBJECT_WUNLOCK(object);
256 			vm_object_destroy(object);
257 			goto retry;
258 		}
259 		vp->v_object = object;
260 		VI_UNLOCK(vp);
261 	} else {
262 		object->ref_count++;
263 #if VM_NRESERVLEVEL > 0
264 		vm_object_color(object, 0);
265 #endif
266 		VM_OBJECT_WUNLOCK(object);
267 	}
268 	vref(vp);
269 	return (object);
270 }
271 
272 /*
273  *	The object must be locked.
274  */
275 static void
276 vnode_pager_dealloc(vm_object_t object)
277 {
278 	struct vnode *vp;
279 	int refs;
280 
281 	vp = object->handle;
282 	if (vp == NULL)
283 		panic("vnode_pager_dealloc: pager already dealloced");
284 
285 	VM_OBJECT_ASSERT_WLOCKED(object);
286 	vm_object_pip_wait(object, "vnpdea");
287 	refs = object->ref_count;
288 
289 	object->handle = NULL;
290 	object->type = OBJT_DEAD;
291 	if (object->flags & OBJ_DISCONNECTWNT) {
292 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
293 		wakeup(object);
294 	}
295 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
296 	if (object->un_pager.vnp.writemappings > 0) {
297 		object->un_pager.vnp.writemappings = 0;
298 		VOP_ADD_WRITECOUNT(vp, -1);
299 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
300 		    __func__, vp, vp->v_writecount);
301 	}
302 	vp->v_object = NULL;
303 	VOP_UNSET_TEXT(vp);
304 	VM_OBJECT_WUNLOCK(object);
305 	while (refs-- > 0)
306 		vunref(vp);
307 	VM_OBJECT_WLOCK(object);
308 }
309 
310 static boolean_t
311 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
312     int *after)
313 {
314 	struct vnode *vp = object->handle;
315 	daddr_t bn;
316 	int err;
317 	daddr_t reqblock;
318 	int poff;
319 	int bsize;
320 	int pagesperblock, blocksperpage;
321 
322 	VM_OBJECT_ASSERT_WLOCKED(object);
323 	/*
324 	 * If no vp or vp is doomed or marked transparent to VM, we do not
325 	 * have the page.
326 	 */
327 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
328 		return FALSE;
329 	/*
330 	 * If the offset is beyond end of file we do
331 	 * not have the page.
332 	 */
333 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
334 		return FALSE;
335 
336 	bsize = vp->v_mount->mnt_stat.f_iosize;
337 	pagesperblock = bsize / PAGE_SIZE;
338 	blocksperpage = 0;
339 	if (pagesperblock > 0) {
340 		reqblock = pindex / pagesperblock;
341 	} else {
342 		blocksperpage = (PAGE_SIZE / bsize);
343 		reqblock = pindex * blocksperpage;
344 	}
345 	VM_OBJECT_WUNLOCK(object);
346 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
347 	VM_OBJECT_WLOCK(object);
348 	if (err)
349 		return TRUE;
350 	if (bn == -1)
351 		return FALSE;
352 	if (pagesperblock > 0) {
353 		poff = pindex - (reqblock * pagesperblock);
354 		if (before) {
355 			*before *= pagesperblock;
356 			*before += poff;
357 		}
358 		if (after) {
359 			/*
360 			 * The BMAP vop can report a partial block in the
361 			 * 'after', but must not report blocks after EOF.
362 			 * Assert the latter, and truncate 'after' in case
363 			 * of the former.
364 			 */
365 			KASSERT((reqblock + *after) * pagesperblock <
366 			    roundup2(object->size, pagesperblock),
367 			    ("%s: reqblock %jd after %d size %ju", __func__,
368 			    (intmax_t )reqblock, *after,
369 			    (uintmax_t )object->size));
370 			*after *= pagesperblock;
371 			*after += pagesperblock - (poff + 1);
372 			if (pindex + *after >= object->size)
373 				*after = object->size - 1 - pindex;
374 		}
375 	} else {
376 		if (before) {
377 			*before /= blocksperpage;
378 		}
379 
380 		if (after) {
381 			*after /= blocksperpage;
382 		}
383 	}
384 	return TRUE;
385 }
386 
387 /*
388  * Lets the VM system know about a change in size for a file.
389  * We adjust our own internal size and flush any cached pages in
390  * the associated object that are affected by the size change.
391  *
392  * Note: this routine may be invoked as a result of a pager put
393  * operation (possibly at object termination time), so we must be careful.
394  */
395 void
396 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
397 {
398 	vm_object_t object;
399 	vm_page_t m;
400 	vm_pindex_t nobjsize;
401 
402 	if ((object = vp->v_object) == NULL)
403 		return;
404 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
405 	VM_OBJECT_WLOCK(object);
406 	if (object->type == OBJT_DEAD) {
407 		VM_OBJECT_WUNLOCK(object);
408 		return;
409 	}
410 	KASSERT(object->type == OBJT_VNODE,
411 	    ("not vnode-backed object %p", object));
412 	if (nsize == object->un_pager.vnp.vnp_size) {
413 		/*
414 		 * Hasn't changed size
415 		 */
416 		VM_OBJECT_WUNLOCK(object);
417 		return;
418 	}
419 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
420 	if (nsize < object->un_pager.vnp.vnp_size) {
421 		/*
422 		 * File has shrunk. Toss any cached pages beyond the new EOF.
423 		 */
424 		if (nobjsize < object->size)
425 			vm_object_page_remove(object, nobjsize, object->size,
426 			    0);
427 		/*
428 		 * this gets rid of garbage at the end of a page that is now
429 		 * only partially backed by the vnode.
430 		 *
431 		 * XXX for some reason (I don't know yet), if we take a
432 		 * completely invalid page and mark it partially valid
433 		 * it can screw up NFS reads, so we don't allow the case.
434 		 */
435 		if ((nsize & PAGE_MASK) &&
436 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
437 		    m->valid != 0) {
438 			int base = (int)nsize & PAGE_MASK;
439 			int size = PAGE_SIZE - base;
440 
441 			/*
442 			 * Clear out partial-page garbage in case
443 			 * the page has been mapped.
444 			 */
445 			pmap_zero_page_area(m, base, size);
446 
447 			/*
448 			 * Update the valid bits to reflect the blocks that
449 			 * have been zeroed.  Some of these valid bits may
450 			 * have already been set.
451 			 */
452 			vm_page_set_valid_range(m, base, size);
453 
454 			/*
455 			 * Round "base" to the next block boundary so that the
456 			 * dirty bit for a partially zeroed block is not
457 			 * cleared.
458 			 */
459 			base = roundup2(base, DEV_BSIZE);
460 
461 			/*
462 			 * Clear out partial-page dirty bits.
463 			 *
464 			 * note that we do not clear out the valid
465 			 * bits.  This would prevent bogus_page
466 			 * replacement from working properly.
467 			 */
468 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
469 		}
470 	}
471 	object->un_pager.vnp.vnp_size = nsize;
472 	object->size = nobjsize;
473 	VM_OBJECT_WUNLOCK(object);
474 }
475 
476 /*
477  * calculate the linear (byte) disk address of specified virtual
478  * file address
479  */
480 static int
481 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
482     int *run)
483 {
484 	int bsize;
485 	int err;
486 	daddr_t vblock;
487 	daddr_t voffset;
488 
489 	if (address < 0)
490 		return -1;
491 
492 	if (vp->v_iflag & VI_DOOMED)
493 		return -1;
494 
495 	bsize = vp->v_mount->mnt_stat.f_iosize;
496 	vblock = address / bsize;
497 	voffset = address % bsize;
498 
499 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
500 	if (err == 0) {
501 		if (*rtaddress != -1)
502 			*rtaddress += voffset / DEV_BSIZE;
503 		if (run) {
504 			*run += 1;
505 			*run *= bsize/PAGE_SIZE;
506 			*run -= voffset/PAGE_SIZE;
507 		}
508 	}
509 
510 	return (err);
511 }
512 
513 /*
514  * small block filesystem vnode pager input
515  */
516 static int
517 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
518 {
519 	struct vnode *vp;
520 	struct bufobj *bo;
521 	struct buf *bp;
522 	struct sf_buf *sf;
523 	daddr_t fileaddr;
524 	vm_offset_t bsize;
525 	vm_page_bits_t bits;
526 	int error, i;
527 
528 	error = 0;
529 	vp = object->handle;
530 	if (vp->v_iflag & VI_DOOMED)
531 		return VM_PAGER_BAD;
532 
533 	bsize = vp->v_mount->mnt_stat.f_iosize;
534 
535 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
536 
537 	sf = sf_buf_alloc(m, 0);
538 
539 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
540 		vm_ooffset_t address;
541 
542 		bits = vm_page_bits(i * bsize, bsize);
543 		if (m->valid & bits)
544 			continue;
545 
546 		address = IDX_TO_OFF(m->pindex) + i * bsize;
547 		if (address >= object->un_pager.vnp.vnp_size) {
548 			fileaddr = -1;
549 		} else {
550 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
551 			if (error)
552 				break;
553 		}
554 		if (fileaddr != -1) {
555 			bp = getpbuf(&vnode_pbuf_freecnt);
556 
557 			/* build a minimal buffer header */
558 			bp->b_iocmd = BIO_READ;
559 			bp->b_iodone = bdone;
560 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
561 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
562 			bp->b_rcred = crhold(curthread->td_ucred);
563 			bp->b_wcred = crhold(curthread->td_ucred);
564 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
565 			bp->b_blkno = fileaddr;
566 			pbgetbo(bo, bp);
567 			bp->b_vp = vp;
568 			bp->b_bcount = bsize;
569 			bp->b_bufsize = bsize;
570 			bp->b_runningbufspace = bp->b_bufsize;
571 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
572 
573 			/* do the input */
574 			bp->b_iooffset = dbtob(bp->b_blkno);
575 			bstrategy(bp);
576 
577 			bwait(bp, PVM, "vnsrd");
578 
579 			if ((bp->b_ioflags & BIO_ERROR) != 0)
580 				error = EIO;
581 
582 			/*
583 			 * free the buffer header back to the swap buffer pool
584 			 */
585 			bp->b_vp = NULL;
586 			pbrelbo(bp);
587 			relpbuf(bp, &vnode_pbuf_freecnt);
588 			if (error)
589 				break;
590 		} else
591 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
592 		KASSERT((m->dirty & bits) == 0,
593 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
594 		VM_OBJECT_WLOCK(object);
595 		m->valid |= bits;
596 		VM_OBJECT_WUNLOCK(object);
597 	}
598 	sf_buf_free(sf);
599 	if (error) {
600 		return VM_PAGER_ERROR;
601 	}
602 	return VM_PAGER_OK;
603 }
604 
605 /*
606  * old style vnode pager input routine
607  */
608 static int
609 vnode_pager_input_old(vm_object_t object, vm_page_t m)
610 {
611 	struct uio auio;
612 	struct iovec aiov;
613 	int error;
614 	int size;
615 	struct sf_buf *sf;
616 	struct vnode *vp;
617 
618 	VM_OBJECT_ASSERT_WLOCKED(object);
619 	error = 0;
620 
621 	/*
622 	 * Return failure if beyond current EOF
623 	 */
624 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
625 		return VM_PAGER_BAD;
626 	} else {
627 		size = PAGE_SIZE;
628 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
629 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
630 		vp = object->handle;
631 		VM_OBJECT_WUNLOCK(object);
632 
633 		/*
634 		 * Allocate a kernel virtual address and initialize so that
635 		 * we can use VOP_READ/WRITE routines.
636 		 */
637 		sf = sf_buf_alloc(m, 0);
638 
639 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
640 		aiov.iov_len = size;
641 		auio.uio_iov = &aiov;
642 		auio.uio_iovcnt = 1;
643 		auio.uio_offset = IDX_TO_OFF(m->pindex);
644 		auio.uio_segflg = UIO_SYSSPACE;
645 		auio.uio_rw = UIO_READ;
646 		auio.uio_resid = size;
647 		auio.uio_td = curthread;
648 
649 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
650 		if (!error) {
651 			int count = size - auio.uio_resid;
652 
653 			if (count == 0)
654 				error = EINVAL;
655 			else if (count != PAGE_SIZE)
656 				bzero((caddr_t)sf_buf_kva(sf) + count,
657 				    PAGE_SIZE - count);
658 		}
659 		sf_buf_free(sf);
660 
661 		VM_OBJECT_WLOCK(object);
662 	}
663 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
664 	if (!error)
665 		m->valid = VM_PAGE_BITS_ALL;
666 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
667 }
668 
669 /*
670  * generic vnode pager input routine
671  */
672 
673 /*
674  * Local media VFS's that do not implement their own VOP_GETPAGES
675  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
676  * to implement the previous behaviour.
677  *
678  * All other FS's should use the bypass to get to the local media
679  * backing vp's VOP_GETPAGES.
680  */
681 static int
682 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
683     int *rahead)
684 {
685 	struct vnode *vp;
686 	int rtval;
687 
688 	vp = object->handle;
689 	VM_OBJECT_WUNLOCK(object);
690 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
691 	KASSERT(rtval != EOPNOTSUPP,
692 	    ("vnode_pager: FS getpages not implemented\n"));
693 	VM_OBJECT_WLOCK(object);
694 	return rtval;
695 }
696 
697 static int
698 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
699     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
700 {
701 	struct vnode *vp;
702 	int rtval;
703 
704 	vp = object->handle;
705 	VM_OBJECT_WUNLOCK(object);
706 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
707 	KASSERT(rtval != EOPNOTSUPP,
708 	    ("vnode_pager: FS getpages_async not implemented\n"));
709 	VM_OBJECT_WLOCK(object);
710 	return (rtval);
711 }
712 
713 /*
714  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
715  * local filesystems, where partially valid pages can only occur at
716  * the end of file.
717  */
718 int
719 vnode_pager_local_getpages(struct vop_getpages_args *ap)
720 {
721 
722 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
723 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
724 }
725 
726 int
727 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
728 {
729 
730 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
731 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
732 }
733 
734 /*
735  * This is now called from local media FS's to operate against their
736  * own vnodes if they fail to implement VOP_GETPAGES.
737  */
738 int
739 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
740     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
741 {
742 	vm_object_t object;
743 	struct bufobj *bo;
744 	struct buf *bp;
745 	off_t foff;
746 #ifdef INVARIANTS
747 	off_t blkno0;
748 #endif
749 	int bsize, pagesperblock, *freecnt;
750 	int error, before, after, rbehind, rahead, poff, i;
751 	int bytecount, secmask;
752 
753 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
754 	    ("%s does not support devices", __func__));
755 
756 	if (vp->v_iflag & VI_DOOMED)
757 		return (VM_PAGER_BAD);
758 
759 	object = vp->v_object;
760 	foff = IDX_TO_OFF(m[0]->pindex);
761 	bsize = vp->v_mount->mnt_stat.f_iosize;
762 	pagesperblock = bsize / PAGE_SIZE;
763 
764 	KASSERT(foff < object->un_pager.vnp.vnp_size,
765 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
766 	KASSERT(count <= sizeof(bp->b_pages),
767 	    ("%s: requested %d pages", __func__, count));
768 
769 	/*
770 	 * The last page has valid blocks.  Invalid part can only
771 	 * exist at the end of file, and the page is made fully valid
772 	 * by zeroing in vm_pager_get_pages().
773 	 */
774 	if (m[count - 1]->valid != 0 && --count == 0) {
775 		if (iodone != NULL)
776 			iodone(arg, m, 1, 0);
777 		return (VM_PAGER_OK);
778 	}
779 
780 	/*
781 	 * Synchronous and asynchronous paging operations use different
782 	 * free pbuf counters.  This is done to avoid asynchronous requests
783 	 * to consume all pbufs.
784 	 * Allocate the pbuf at the very beginning of the function, so that
785 	 * if we are low on certain kind of pbufs don't even proceed to BMAP,
786 	 * but sleep.
787 	 */
788 	freecnt = iodone != NULL ?
789 	    &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt;
790 	bp = getpbuf(freecnt);
791 
792 	/*
793 	 * Get the underlying device blocks for the file with VOP_BMAP().
794 	 * If the file system doesn't support VOP_BMAP, use old way of
795 	 * getting pages via VOP_READ.
796 	 */
797 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
798 	if (error == EOPNOTSUPP) {
799 		relpbuf(bp, freecnt);
800 		VM_OBJECT_WLOCK(object);
801 		for (i = 0; i < count; i++) {
802 			PCPU_INC(cnt.v_vnodein);
803 			PCPU_INC(cnt.v_vnodepgsin);
804 			error = vnode_pager_input_old(object, m[i]);
805 			if (error)
806 				break;
807 		}
808 		VM_OBJECT_WUNLOCK(object);
809 		return (error);
810 	} else if (error != 0) {
811 		relpbuf(bp, freecnt);
812 		return (VM_PAGER_ERROR);
813 	}
814 
815 	/*
816 	 * If the file system supports BMAP, but blocksize is smaller
817 	 * than a page size, then use special small filesystem code.
818 	 */
819 	if (pagesperblock == 0) {
820 		relpbuf(bp, freecnt);
821 		for (i = 0; i < count; i++) {
822 			PCPU_INC(cnt.v_vnodein);
823 			PCPU_INC(cnt.v_vnodepgsin);
824 			error = vnode_pager_input_smlfs(object, m[i]);
825 			if (error)
826 				break;
827 		}
828 		return (error);
829 	}
830 
831 	/*
832 	 * A sparse file can be encountered only for a single page request,
833 	 * which may not be preceded by call to vm_pager_haspage().
834 	 */
835 	if (bp->b_blkno == -1) {
836 		KASSERT(count == 1,
837 		    ("%s: array[%d] request to a sparse file %p", __func__,
838 		    count, vp));
839 		relpbuf(bp, freecnt);
840 		pmap_zero_page(m[0]);
841 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
842 		    __func__, m[0]));
843 		VM_OBJECT_WLOCK(object);
844 		m[0]->valid = VM_PAGE_BITS_ALL;
845 		VM_OBJECT_WUNLOCK(object);
846 		return (VM_PAGER_OK);
847 	}
848 
849 #ifdef INVARIANTS
850 	blkno0 = bp->b_blkno;
851 #endif
852 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
853 
854 	/* Recalculate blocks available after/before to pages. */
855 	poff = (foff % bsize) / PAGE_SIZE;
856 	before *= pagesperblock;
857 	before += poff;
858 	after *= pagesperblock;
859 	after += pagesperblock - (poff + 1);
860 	if (m[0]->pindex + after >= object->size)
861 		after = object->size - 1 - m[0]->pindex;
862 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
863 	    __func__, count, after + 1));
864 	after -= count - 1;
865 
866 	/* Trim requested rbehind/rahead to possible values. */
867 	rbehind = a_rbehind ? *a_rbehind : 0;
868 	rahead = a_rahead ? *a_rahead : 0;
869 	rbehind = min(rbehind, before);
870 	rbehind = min(rbehind, m[0]->pindex);
871 	rahead = min(rahead, after);
872 	rahead = min(rahead, object->size - m[count - 1]->pindex);
873 	/*
874 	 * Check that total amount of pages fit into buf.  Trim rbehind and
875 	 * rahead evenly if not.
876 	 */
877 	if (rbehind + rahead + count > nitems(bp->b_pages)) {
878 		int trim, sum;
879 
880 		trim = rbehind + rahead + count - nitems(bp->b_pages) + 1;
881 		sum = rbehind + rahead;
882 		if (rbehind == before) {
883 			/* Roundup rbehind trim to block size. */
884 			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
885 			if (rbehind < 0)
886 				rbehind = 0;
887 		} else
888 			rbehind -= trim * rbehind / sum;
889 		rahead -= trim * rahead / sum;
890 	}
891 	KASSERT(rbehind + rahead + count <= nitems(bp->b_pages),
892 	    ("%s: behind %d ahead %d count %d", __func__,
893 	    rbehind, rahead, count));
894 
895 	/*
896 	 * Fill in the bp->b_pages[] array with requested and optional
897 	 * read behind or read ahead pages.  Read behind pages are looked
898 	 * up in a backward direction, down to a first cached page.  Same
899 	 * for read ahead pages, but there is no need to shift the array
900 	 * in case of encountering a cached page.
901 	 */
902 	i = bp->b_npages = 0;
903 	if (rbehind) {
904 		vm_pindex_t startpindex, tpindex;
905 		vm_page_t p;
906 
907 		VM_OBJECT_WLOCK(object);
908 		startpindex = m[0]->pindex - rbehind;
909 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
910 		    p->pindex >= startpindex)
911 			startpindex = p->pindex + 1;
912 
913 		/* tpindex is unsigned; beware of numeric underflow. */
914 		for (tpindex = m[0]->pindex - 1;
915 		    tpindex >= startpindex && tpindex < m[0]->pindex;
916 		    tpindex--, i++) {
917 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
918 			if (p == NULL) {
919 				/* Shift the array. */
920 				for (int j = 0; j < i; j++)
921 					bp->b_pages[j] = bp->b_pages[j +
922 					    tpindex + 1 - startpindex];
923 				break;
924 			}
925 			bp->b_pages[tpindex - startpindex] = p;
926 		}
927 
928 		bp->b_pgbefore = i;
929 		bp->b_npages += i;
930 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
931 	} else
932 		bp->b_pgbefore = 0;
933 
934 	/* Requested pages. */
935 	for (int j = 0; j < count; j++, i++)
936 		bp->b_pages[i] = m[j];
937 	bp->b_npages += count;
938 
939 	if (rahead) {
940 		vm_pindex_t endpindex, tpindex;
941 		vm_page_t p;
942 
943 		if (!VM_OBJECT_WOWNED(object))
944 			VM_OBJECT_WLOCK(object);
945 		endpindex = m[count - 1]->pindex + rahead + 1;
946 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
947 		    p->pindex < endpindex)
948 			endpindex = p->pindex;
949 		if (endpindex > object->size)
950 			endpindex = object->size;
951 
952 		for (tpindex = m[count - 1]->pindex + 1;
953 		    tpindex < endpindex; i++, tpindex++) {
954 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
955 			if (p == NULL)
956 				break;
957 			bp->b_pages[i] = p;
958 		}
959 
960 		bp->b_pgafter = i - bp->b_npages;
961 		bp->b_npages = i;
962 	} else
963 		bp->b_pgafter = 0;
964 
965 	if (VM_OBJECT_WOWNED(object))
966 		VM_OBJECT_WUNLOCK(object);
967 
968 	/* Report back actual behind/ahead read. */
969 	if (a_rbehind)
970 		*a_rbehind = bp->b_pgbefore;
971 	if (a_rahead)
972 		*a_rahead = bp->b_pgafter;
973 
974 #ifdef INVARIANTS
975 	KASSERT(bp->b_npages <= nitems(bp->b_pages),
976 	    ("%s: buf %p overflowed", __func__, bp));
977 	for (int j = 1; j < bp->b_npages; j++)
978 		KASSERT(bp->b_pages[j]->pindex - 1 ==
979 		    bp->b_pages[j - 1]->pindex,
980 		    ("%s: pages array not consecutive, bp %p", __func__, bp));
981 #endif
982 
983 	/*
984 	 * Recalculate first offset and bytecount with regards to read behind.
985 	 * Truncate bytecount to vnode real size and round up physical size
986 	 * for real devices.
987 	 */
988 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
989 	bytecount = bp->b_npages << PAGE_SHIFT;
990 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
991 		bytecount = object->un_pager.vnp.vnp_size - foff;
992 	secmask = bo->bo_bsize - 1;
993 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
994 	    ("%s: sector size %d too large", __func__, secmask + 1));
995 	bytecount = (bytecount + secmask) & ~secmask;
996 
997 	/*
998 	 * And map the pages to be read into the kva, if the filesystem
999 	 * requires mapped buffers.
1000 	 */
1001 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1002 	    unmapped_buf_allowed) {
1003 		bp->b_data = unmapped_buf;
1004 		bp->b_offset = 0;
1005 	} else {
1006 		bp->b_data = bp->b_kvabase;
1007 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1008 	}
1009 
1010 	/* Build a minimal buffer header. */
1011 	bp->b_iocmd = BIO_READ;
1012 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1013 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1014 	bp->b_rcred = crhold(curthread->td_ucred);
1015 	bp->b_wcred = crhold(curthread->td_ucred);
1016 	pbgetbo(bo, bp);
1017 	bp->b_vp = vp;
1018 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1019 	bp->b_iooffset = dbtob(bp->b_blkno);
1020 	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1021 	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1022 	    IDX_TO_OFF(m[0]->pindex) % bsize,
1023 	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1024 	    "blkno0 %ju b_blkno %ju", bsize,
1025 	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1026 	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1027 
1028 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1029 	PCPU_INC(cnt.v_vnodein);
1030 	PCPU_ADD(cnt.v_vnodepgsin, bp->b_npages);
1031 
1032 	if (iodone != NULL) { /* async */
1033 		bp->b_pgiodone = iodone;
1034 		bp->b_caller1 = arg;
1035 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1036 		bp->b_flags |= B_ASYNC;
1037 		BUF_KERNPROC(bp);
1038 		bstrategy(bp);
1039 		return (VM_PAGER_OK);
1040 	} else {
1041 		bp->b_iodone = bdone;
1042 		bstrategy(bp);
1043 		bwait(bp, PVM, "vnread");
1044 		error = vnode_pager_generic_getpages_done(bp);
1045 		for (i = 0; i < bp->b_npages; i++)
1046 			bp->b_pages[i] = NULL;
1047 		bp->b_vp = NULL;
1048 		pbrelbo(bp);
1049 		relpbuf(bp, &vnode_pbuf_freecnt);
1050 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1051 	}
1052 }
1053 
1054 static void
1055 vnode_pager_generic_getpages_done_async(struct buf *bp)
1056 {
1057 	int error;
1058 
1059 	error = vnode_pager_generic_getpages_done(bp);
1060 	/* Run the iodone upon the requested range. */
1061 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1062 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1063 	for (int i = 0; i < bp->b_npages; i++)
1064 		bp->b_pages[i] = NULL;
1065 	bp->b_vp = NULL;
1066 	pbrelbo(bp);
1067 	relpbuf(bp, &vnode_async_pbuf_freecnt);
1068 }
1069 
1070 static int
1071 vnode_pager_generic_getpages_done(struct buf *bp)
1072 {
1073 	vm_object_t object;
1074 	off_t tfoff, nextoff;
1075 	int i, error;
1076 
1077 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1078 	object = bp->b_vp->v_object;
1079 
1080 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1081 		if (!buf_mapped(bp)) {
1082 			bp->b_data = bp->b_kvabase;
1083 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1084 			    bp->b_npages);
1085 		}
1086 		bzero(bp->b_data + bp->b_bcount,
1087 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1088 	}
1089 	if (buf_mapped(bp)) {
1090 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1091 		bp->b_data = unmapped_buf;
1092 	}
1093 
1094 	VM_OBJECT_WLOCK(object);
1095 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1096 	    i < bp->b_npages; i++, tfoff = nextoff) {
1097 		vm_page_t mt;
1098 
1099 		nextoff = tfoff + PAGE_SIZE;
1100 		mt = bp->b_pages[i];
1101 
1102 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1103 			/*
1104 			 * Read filled up entire page.
1105 			 */
1106 			mt->valid = VM_PAGE_BITS_ALL;
1107 			KASSERT(mt->dirty == 0,
1108 			    ("%s: page %p is dirty", __func__, mt));
1109 			KASSERT(!pmap_page_is_mapped(mt),
1110 			    ("%s: page %p is mapped", __func__, mt));
1111 		} else {
1112 			/*
1113 			 * Read did not fill up entire page.
1114 			 *
1115 			 * Currently we do not set the entire page valid,
1116 			 * we just try to clear the piece that we couldn't
1117 			 * read.
1118 			 */
1119 			vm_page_set_valid_range(mt, 0,
1120 			    object->un_pager.vnp.vnp_size - tfoff);
1121 			KASSERT((mt->dirty & vm_page_bits(0,
1122 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1123 			    ("%s: page %p is dirty", __func__, mt));
1124 		}
1125 
1126 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1127 			vm_page_readahead_finish(mt);
1128 	}
1129 	VM_OBJECT_WUNLOCK(object);
1130 	if (error != 0)
1131 		printf("%s: I/O read error %d\n", __func__, error);
1132 
1133 	return (error);
1134 }
1135 
1136 /*
1137  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1138  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1139  * vnode_pager_generic_putpages() to implement the previous behaviour.
1140  *
1141  * All other FS's should use the bypass to get to the local media
1142  * backing vp's VOP_PUTPAGES.
1143  */
1144 static void
1145 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1146     int flags, int *rtvals)
1147 {
1148 	int rtval;
1149 	struct vnode *vp;
1150 	int bytes = count * PAGE_SIZE;
1151 
1152 	/*
1153 	 * Force synchronous operation if we are extremely low on memory
1154 	 * to prevent a low-memory deadlock.  VOP operations often need to
1155 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1156 	 * operation ).  The swapper handles the case by limiting the amount
1157 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1158 	 * for the vnode pager without a lot of work.
1159 	 *
1160 	 * Also, the backing vnode's iodone routine may not wake the pageout
1161 	 * daemon up.  This should be probably be addressed XXX.
1162 	 */
1163 
1164 	if (vm_cnt.v_free_count < vm_cnt.v_pageout_free_min)
1165 		flags |= VM_PAGER_PUT_SYNC;
1166 
1167 	/*
1168 	 * Call device-specific putpages function
1169 	 */
1170 	vp = object->handle;
1171 	VM_OBJECT_WUNLOCK(object);
1172 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1173 	KASSERT(rtval != EOPNOTSUPP,
1174 	    ("vnode_pager: stale FS putpages\n"));
1175 	VM_OBJECT_WLOCK(object);
1176 }
1177 
1178 
1179 /*
1180  * This is now called from local media FS's to operate against their
1181  * own vnodes if they fail to implement VOP_PUTPAGES.
1182  *
1183  * This is typically called indirectly via the pageout daemon and
1184  * clustering has already typically occurred, so in general we ask the
1185  * underlying filesystem to write the data out asynchronously rather
1186  * then delayed.
1187  */
1188 int
1189 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1190     int flags, int *rtvals)
1191 {
1192 	int i;
1193 	vm_object_t object;
1194 	vm_page_t m;
1195 	int count;
1196 
1197 	int maxsize, ncount;
1198 	vm_ooffset_t poffset;
1199 	struct uio auio;
1200 	struct iovec aiov;
1201 	int error;
1202 	int ioflags;
1203 	int ppscheck = 0;
1204 	static struct timeval lastfail;
1205 	static int curfail;
1206 
1207 	object = vp->v_object;
1208 	count = bytecount / PAGE_SIZE;
1209 
1210 	for (i = 0; i < count; i++)
1211 		rtvals[i] = VM_PAGER_ERROR;
1212 
1213 	if ((int64_t)ma[0]->pindex < 0) {
1214 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1215 		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1216 		rtvals[0] = VM_PAGER_BAD;
1217 		return VM_PAGER_BAD;
1218 	}
1219 
1220 	maxsize = count * PAGE_SIZE;
1221 	ncount = count;
1222 
1223 	poffset = IDX_TO_OFF(ma[0]->pindex);
1224 
1225 	/*
1226 	 * If the page-aligned write is larger then the actual file we
1227 	 * have to invalidate pages occurring beyond the file EOF.  However,
1228 	 * there is an edge case where a file may not be page-aligned where
1229 	 * the last page is partially invalid.  In this case the filesystem
1230 	 * may not properly clear the dirty bits for the entire page (which
1231 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1232 	 * With the page locked we are free to fix-up the dirty bits here.
1233 	 *
1234 	 * We do not under any circumstances truncate the valid bits, as
1235 	 * this will screw up bogus page replacement.
1236 	 */
1237 	VM_OBJECT_WLOCK(object);
1238 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1239 		if (object->un_pager.vnp.vnp_size > poffset) {
1240 			int pgoff;
1241 
1242 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1243 			ncount = btoc(maxsize);
1244 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1245 				/*
1246 				 * If the object is locked and the following
1247 				 * conditions hold, then the page's dirty
1248 				 * field cannot be concurrently changed by a
1249 				 * pmap operation.
1250 				 */
1251 				m = ma[ncount - 1];
1252 				vm_page_assert_sbusied(m);
1253 				KASSERT(!pmap_page_is_write_mapped(m),
1254 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1255 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1256 				    pgoff);
1257 			}
1258 		} else {
1259 			maxsize = 0;
1260 			ncount = 0;
1261 		}
1262 		if (ncount < count) {
1263 			for (i = ncount; i < count; i++) {
1264 				rtvals[i] = VM_PAGER_BAD;
1265 			}
1266 		}
1267 	}
1268 	VM_OBJECT_WUNLOCK(object);
1269 
1270 	/*
1271 	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1272 	 * rather then a bdwrite() to prevent paging I/O from saturating
1273 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1274 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1275 	 * the system decides how to cluster.
1276 	 */
1277 	ioflags = IO_VMIO;
1278 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1279 		ioflags |= IO_SYNC;
1280 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1281 		ioflags |= IO_ASYNC;
1282 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1283 	ioflags |= (flags & VM_PAGER_PUT_NOREUSE) ? IO_NOREUSE : 0;
1284 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1285 
1286 	aiov.iov_base = (caddr_t) 0;
1287 	aiov.iov_len = maxsize;
1288 	auio.uio_iov = &aiov;
1289 	auio.uio_iovcnt = 1;
1290 	auio.uio_offset = poffset;
1291 	auio.uio_segflg = UIO_NOCOPY;
1292 	auio.uio_rw = UIO_WRITE;
1293 	auio.uio_resid = maxsize;
1294 	auio.uio_td = (struct thread *) 0;
1295 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1296 	PCPU_INC(cnt.v_vnodeout);
1297 	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1298 
1299 	if (error) {
1300 		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1301 			printf("vnode_pager_putpages: I/O error %d\n", error);
1302 	}
1303 	if (auio.uio_resid) {
1304 		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1305 			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1306 			    auio.uio_resid, (u_long)ma[0]->pindex);
1307 	}
1308 	for (i = 0; i < ncount; i++) {
1309 		rtvals[i] = VM_PAGER_OK;
1310 	}
1311 	return rtvals[0];
1312 }
1313 
1314 void
1315 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1316 {
1317 	vm_object_t obj;
1318 	int i, pos;
1319 
1320 	if (written == 0)
1321 		return;
1322 	obj = ma[0]->object;
1323 	VM_OBJECT_WLOCK(obj);
1324 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1325 		if (pos < trunc_page(written)) {
1326 			rtvals[i] = VM_PAGER_OK;
1327 			vm_page_undirty(ma[i]);
1328 		} else {
1329 			/* Partially written page. */
1330 			rtvals[i] = VM_PAGER_AGAIN;
1331 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1332 		}
1333 	}
1334 	VM_OBJECT_WUNLOCK(obj);
1335 }
1336 
1337 void
1338 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1339     vm_offset_t end)
1340 {
1341 	struct vnode *vp;
1342 	vm_ooffset_t old_wm;
1343 
1344 	VM_OBJECT_WLOCK(object);
1345 	if (object->type != OBJT_VNODE) {
1346 		VM_OBJECT_WUNLOCK(object);
1347 		return;
1348 	}
1349 	old_wm = object->un_pager.vnp.writemappings;
1350 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1351 	vp = object->handle;
1352 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1353 		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1354 		VOP_ADD_WRITECOUNT(vp, 1);
1355 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1356 		    __func__, vp, vp->v_writecount);
1357 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1358 		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1359 		VOP_ADD_WRITECOUNT(vp, -1);
1360 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1361 		    __func__, vp, vp->v_writecount);
1362 	}
1363 	VM_OBJECT_WUNLOCK(object);
1364 }
1365 
1366 void
1367 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1368     vm_offset_t end)
1369 {
1370 	struct vnode *vp;
1371 	struct mount *mp;
1372 	vm_offset_t inc;
1373 
1374 	VM_OBJECT_WLOCK(object);
1375 
1376 	/*
1377 	 * First, recheck the object type to account for the race when
1378 	 * the vnode is reclaimed.
1379 	 */
1380 	if (object->type != OBJT_VNODE) {
1381 		VM_OBJECT_WUNLOCK(object);
1382 		return;
1383 	}
1384 
1385 	/*
1386 	 * Optimize for the case when writemappings is not going to
1387 	 * zero.
1388 	 */
1389 	inc = end - start;
1390 	if (object->un_pager.vnp.writemappings != inc) {
1391 		object->un_pager.vnp.writemappings -= inc;
1392 		VM_OBJECT_WUNLOCK(object);
1393 		return;
1394 	}
1395 
1396 	vp = object->handle;
1397 	vhold(vp);
1398 	VM_OBJECT_WUNLOCK(object);
1399 	mp = NULL;
1400 	vn_start_write(vp, &mp, V_WAIT);
1401 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1402 
1403 	/*
1404 	 * Decrement the object's writemappings, by swapping the start
1405 	 * and end arguments for vnode_pager_update_writecount().  If
1406 	 * there was not a race with vnode reclaimation, then the
1407 	 * vnode's v_writecount is decremented.
1408 	 */
1409 	vnode_pager_update_writecount(object, end, start);
1410 	VOP_UNLOCK(vp, 0);
1411 	vdrop(vp);
1412 	if (mp != NULL)
1413 		vn_finished_write(mp);
1414 }
1415