1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991 The Regents of the University of California. 6 * All rights reserved. 7 * Copyright (c) 1993, 1994 John S. Dyson 8 * Copyright (c) 1995, David Greenman 9 * 10 * This code is derived from software contributed to Berkeley by 11 * the Systems Programming Group of the University of Utah Computer 12 * Science Department. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 43 */ 44 45 /* 46 * Page to/from files (vnodes). 47 */ 48 49 /* 50 * TODO: 51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 52 * greatly re-simplify the vnode_pager. 53 */ 54 55 #include <sys/cdefs.h> 56 __FBSDID("$FreeBSD$"); 57 58 #include "opt_vm.h" 59 60 #include <sys/param.h> 61 #include <sys/kernel.h> 62 #include <sys/systm.h> 63 #include <sys/sysctl.h> 64 #include <sys/proc.h> 65 #include <sys/vnode.h> 66 #include <sys/mount.h> 67 #include <sys/bio.h> 68 #include <sys/buf.h> 69 #include <sys/vmmeter.h> 70 #include <sys/ktr.h> 71 #include <sys/limits.h> 72 #include <sys/conf.h> 73 #include <sys/refcount.h> 74 #include <sys/rwlock.h> 75 #include <sys/sf_buf.h> 76 #include <sys/domainset.h> 77 #include <sys/user.h> 78 79 #include <machine/atomic.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_param.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pager.h> 86 #include <vm/vm_map.h> 87 #include <vm/vnode_pager.h> 88 #include <vm/vm_extern.h> 89 #include <vm/uma.h> 90 91 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 92 daddr_t *rtaddress, int *run); 93 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 94 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 95 static void vnode_pager_dealloc(vm_object_t); 96 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *); 97 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 98 int *, vop_getpages_iodone_t, void *); 99 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *); 100 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 101 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, 102 vm_ooffset_t, struct ucred *cred); 103 static int vnode_pager_generic_getpages_done(struct buf *); 104 static void vnode_pager_generic_getpages_done_async(struct buf *); 105 static void vnode_pager_update_writecount(vm_object_t, vm_offset_t, 106 vm_offset_t); 107 static void vnode_pager_release_writecount(vm_object_t, vm_offset_t, 108 vm_offset_t); 109 static void vnode_pager_getvp(vm_object_t, struct vnode **, bool *); 110 111 const struct pagerops vnodepagerops = { 112 .pgo_kvme_type = KVME_TYPE_VNODE, 113 .pgo_alloc = vnode_pager_alloc, 114 .pgo_dealloc = vnode_pager_dealloc, 115 .pgo_getpages = vnode_pager_getpages, 116 .pgo_getpages_async = vnode_pager_getpages_async, 117 .pgo_putpages = vnode_pager_putpages, 118 .pgo_haspage = vnode_pager_haspage, 119 .pgo_update_writecount = vnode_pager_update_writecount, 120 .pgo_release_writecount = vnode_pager_release_writecount, 121 .pgo_set_writeable_dirty = vm_object_set_writeable_dirty_, 122 .pgo_mightbedirty = vm_object_mightbedirty_, 123 .pgo_getvp = vnode_pager_getvp, 124 }; 125 126 static struct domainset *vnode_domainset = NULL; 127 128 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, 129 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_RW, &vnode_domainset, 0, 130 sysctl_handle_domainset, "A", "Default vnode NUMA policy"); 131 132 static int nvnpbufs; 133 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 134 &nvnpbufs, 0, "number of physical buffers allocated for vnode pager"); 135 136 static uma_zone_t vnode_pbuf_zone; 137 138 static void 139 vnode_pager_init(void *dummy) 140 { 141 142 #ifdef __LP64__ 143 nvnpbufs = nswbuf * 2; 144 #else 145 nvnpbufs = nswbuf / 2; 146 #endif 147 TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs); 148 vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs); 149 } 150 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL); 151 152 /* Create the VM system backing object for this vnode */ 153 int 154 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 155 { 156 vm_object_t object; 157 vm_ooffset_t size = isize; 158 bool last; 159 160 if (!vn_isdisk(vp) && vn_canvmio(vp) == FALSE) 161 return (0); 162 163 object = vp->v_object; 164 if (object != NULL) 165 return (0); 166 167 if (size == 0) { 168 if (vn_isdisk(vp)) { 169 size = IDX_TO_OFF(INT_MAX); 170 } else { 171 if (vn_getsize_locked(vp, &size, td->td_ucred) != 0) 172 return (0); 173 } 174 } 175 176 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); 177 /* 178 * Dereference the reference we just created. This assumes 179 * that the object is associated with the vp. We still have 180 * to serialize with vnode_pager_dealloc() for the last 181 * potential reference. 182 */ 183 VM_OBJECT_RLOCK(object); 184 last = refcount_release(&object->ref_count); 185 VM_OBJECT_RUNLOCK(object); 186 if (last) 187 vrele(vp); 188 189 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 190 191 return (0); 192 } 193 194 void 195 vnode_destroy_vobject(struct vnode *vp) 196 { 197 struct vm_object *obj; 198 199 obj = vp->v_object; 200 if (obj == NULL || obj->handle != vp) 201 return; 202 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 203 VM_OBJECT_WLOCK(obj); 204 MPASS(obj->type == OBJT_VNODE); 205 umtx_shm_object_terminated(obj); 206 if (obj->ref_count == 0) { 207 KASSERT((obj->flags & OBJ_DEAD) == 0, 208 ("vnode_destroy_vobject: Terminating dead object")); 209 vm_object_set_flag(obj, OBJ_DEAD); 210 211 /* 212 * Clean pages and flush buffers. 213 */ 214 vm_object_page_clean(obj, 0, 0, OBJPC_SYNC); 215 VM_OBJECT_WUNLOCK(obj); 216 217 vinvalbuf(vp, V_SAVE, 0, 0); 218 219 BO_LOCK(&vp->v_bufobj); 220 vp->v_bufobj.bo_flag |= BO_DEAD; 221 BO_UNLOCK(&vp->v_bufobj); 222 223 VM_OBJECT_WLOCK(obj); 224 vm_object_terminate(obj); 225 } else { 226 /* 227 * Woe to the process that tries to page now :-). 228 */ 229 vm_pager_deallocate(obj); 230 VM_OBJECT_WUNLOCK(obj); 231 } 232 KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object)); 233 } 234 235 /* 236 * Allocate (or lookup) pager for a vnode. 237 * Handle is a vnode pointer. 238 */ 239 vm_object_t 240 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 241 vm_ooffset_t offset, struct ucred *cred) 242 { 243 vm_object_t object; 244 struct vnode *vp; 245 246 /* 247 * Pageout to vnode, no can do yet. 248 */ 249 if (handle == NULL) 250 return (NULL); 251 252 vp = (struct vnode *)handle; 253 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 254 VNPASS(vp->v_usecount > 0, vp); 255 retry: 256 object = vp->v_object; 257 258 if (object == NULL) { 259 /* 260 * Add an object of the appropriate size 261 */ 262 object = vm_object_allocate(OBJT_VNODE, 263 OFF_TO_IDX(round_page(size))); 264 265 object->un_pager.vnp.vnp_size = size; 266 object->un_pager.vnp.writemappings = 0; 267 object->domain.dr_policy = vnode_domainset; 268 object->handle = handle; 269 if ((vp->v_vflag & VV_VMSIZEVNLOCK) != 0) { 270 VM_OBJECT_WLOCK(object); 271 vm_object_set_flag(object, OBJ_SIZEVNLOCK); 272 VM_OBJECT_WUNLOCK(object); 273 } 274 VI_LOCK(vp); 275 if (vp->v_object != NULL) { 276 /* 277 * Object has been created while we were allocating. 278 */ 279 VI_UNLOCK(vp); 280 VM_OBJECT_WLOCK(object); 281 KASSERT(object->ref_count == 1, 282 ("leaked ref %p %d", object, object->ref_count)); 283 object->type = OBJT_DEAD; 284 refcount_init(&object->ref_count, 0); 285 VM_OBJECT_WUNLOCK(object); 286 vm_object_destroy(object); 287 goto retry; 288 } 289 vp->v_object = object; 290 VI_UNLOCK(vp); 291 vrefact(vp); 292 } else { 293 vm_object_reference(object); 294 #if VM_NRESERVLEVEL > 0 295 if ((object->flags & OBJ_COLORED) == 0) { 296 VM_OBJECT_WLOCK(object); 297 vm_object_color(object, 0); 298 VM_OBJECT_WUNLOCK(object); 299 } 300 #endif 301 } 302 return (object); 303 } 304 305 /* 306 * The object must be locked. 307 */ 308 static void 309 vnode_pager_dealloc(vm_object_t object) 310 { 311 struct vnode *vp; 312 int refs; 313 314 vp = object->handle; 315 if (vp == NULL) 316 panic("vnode_pager_dealloc: pager already dealloced"); 317 318 VM_OBJECT_ASSERT_WLOCKED(object); 319 vm_object_pip_wait(object, "vnpdea"); 320 refs = object->ref_count; 321 322 object->handle = NULL; 323 object->type = OBJT_DEAD; 324 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 325 if (object->un_pager.vnp.writemappings > 0) { 326 object->un_pager.vnp.writemappings = 0; 327 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 328 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 329 __func__, vp, vp->v_writecount); 330 } 331 vp->v_object = NULL; 332 VI_LOCK(vp); 333 334 /* 335 * vm_map_entry_set_vnode_text() cannot reach this vnode by 336 * following object->handle. Clear all text references now. 337 * This also clears the transient references from 338 * kern_execve(), which is fine because dead_vnodeops uses nop 339 * for VOP_UNSET_TEXT(). 340 */ 341 if (vp->v_writecount < 0) 342 vp->v_writecount = 0; 343 VI_UNLOCK(vp); 344 VM_OBJECT_WUNLOCK(object); 345 if (refs > 0) 346 vunref(vp); 347 VM_OBJECT_WLOCK(object); 348 } 349 350 static boolean_t 351 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 352 int *after) 353 { 354 struct vnode *vp = object->handle; 355 daddr_t bn; 356 uintptr_t lockstate; 357 int err; 358 daddr_t reqblock; 359 int poff; 360 int bsize; 361 int pagesperblock, blocksperpage; 362 363 VM_OBJECT_ASSERT_LOCKED(object); 364 /* 365 * If no vp or vp is doomed or marked transparent to VM, we do not 366 * have the page. 367 */ 368 if (vp == NULL || VN_IS_DOOMED(vp)) 369 return FALSE; 370 /* 371 * If the offset is beyond end of file we do 372 * not have the page. 373 */ 374 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 375 return FALSE; 376 377 bsize = vp->v_mount->mnt_stat.f_iosize; 378 pagesperblock = bsize / PAGE_SIZE; 379 blocksperpage = 0; 380 if (pagesperblock > 0) { 381 reqblock = pindex / pagesperblock; 382 } else { 383 blocksperpage = (PAGE_SIZE / bsize); 384 reqblock = pindex * blocksperpage; 385 } 386 lockstate = VM_OBJECT_DROP(object); 387 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 388 VM_OBJECT_PICKUP(object, lockstate); 389 if (err) 390 return TRUE; 391 if (bn == -1) 392 return FALSE; 393 if (pagesperblock > 0) { 394 poff = pindex - (reqblock * pagesperblock); 395 if (before) { 396 *before *= pagesperblock; 397 *before += poff; 398 } 399 if (after) { 400 /* 401 * The BMAP vop can report a partial block in the 402 * 'after', but must not report blocks after EOF. 403 * Assert the latter, and truncate 'after' in case 404 * of the former. 405 */ 406 KASSERT((reqblock + *after) * pagesperblock < 407 roundup2(object->size, pagesperblock), 408 ("%s: reqblock %jd after %d size %ju", __func__, 409 (intmax_t )reqblock, *after, 410 (uintmax_t )object->size)); 411 *after *= pagesperblock; 412 *after += pagesperblock - (poff + 1); 413 if (pindex + *after >= object->size) 414 *after = object->size - 1 - pindex; 415 } 416 } else { 417 if (before) { 418 *before /= blocksperpage; 419 } 420 421 if (after) { 422 *after /= blocksperpage; 423 } 424 } 425 return TRUE; 426 } 427 428 /* 429 * Internal routine clearing partial-page content 430 */ 431 static void 432 vnode_pager_subpage_purge(struct vm_page *m, int base, int end) 433 { 434 int size; 435 436 KASSERT(end > base && end <= PAGE_SIZE, 437 ("%s: start %d end %d", __func__, base, end)); 438 size = end - base; 439 440 /* 441 * Clear out partial-page garbage in case 442 * the page has been mapped. 443 */ 444 pmap_zero_page_area(m, base, size); 445 446 /* 447 * Update the valid bits to reflect the blocks 448 * that have been zeroed. Some of these valid 449 * bits may have already been set. 450 */ 451 vm_page_set_valid_range(m, base, size); 452 453 /* 454 * Round up "base" to the next block boundary so 455 * that the dirty bit for a partially zeroed 456 * block is not cleared. 457 */ 458 base = roundup2(base, DEV_BSIZE); 459 end = rounddown2(end, DEV_BSIZE); 460 461 if (end > base) { 462 /* 463 * Clear out partial-page dirty bits. 464 * 465 * note that we do not clear out the 466 * valid bits. This would prevent 467 * bogus_page replacement from working 468 * properly. 469 */ 470 vm_page_clear_dirty(m, base, end - base); 471 } 472 473 } 474 475 /* 476 * Lets the VM system know about a change in size for a file. 477 * We adjust our own internal size and flush any cached pages in 478 * the associated object that are affected by the size change. 479 * 480 * Note: this routine may be invoked as a result of a pager put 481 * operation (possibly at object termination time), so we must be careful. 482 */ 483 void 484 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize) 485 { 486 vm_object_t object; 487 vm_page_t m; 488 vm_pindex_t nobjsize; 489 490 if ((object = vp->v_object) == NULL) 491 return; 492 #ifdef DEBUG_VFS_LOCKS 493 { 494 struct mount *mp; 495 496 mp = vp->v_mount; 497 if (mp != NULL && (mp->mnt_kern_flag & MNTK_VMSETSIZE_BUG) == 0) 498 assert_vop_elocked(vp, 499 "vnode_pager_setsize and not locked vnode"); 500 } 501 #endif 502 VM_OBJECT_WLOCK(object); 503 if (object->type == OBJT_DEAD) { 504 VM_OBJECT_WUNLOCK(object); 505 return; 506 } 507 KASSERT(object->type == OBJT_VNODE, 508 ("not vnode-backed object %p", object)); 509 if (nsize == object->un_pager.vnp.vnp_size) { 510 /* 511 * Hasn't changed size 512 */ 513 VM_OBJECT_WUNLOCK(object); 514 return; 515 } 516 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 517 if (nsize < object->un_pager.vnp.vnp_size) { 518 /* 519 * File has shrunk. Toss any cached pages beyond the new EOF. 520 */ 521 if (nobjsize < object->size) 522 vm_object_page_remove(object, nobjsize, object->size, 523 0); 524 /* 525 * this gets rid of garbage at the end of a page that is now 526 * only partially backed by the vnode. 527 * 528 * XXX for some reason (I don't know yet), if we take a 529 * completely invalid page and mark it partially valid 530 * it can screw up NFS reads, so we don't allow the case. 531 */ 532 if (!(nsize & PAGE_MASK)) 533 goto out; 534 m = vm_page_grab(object, OFF_TO_IDX(nsize), VM_ALLOC_NOCREAT); 535 if (m == NULL) 536 goto out; 537 if (!vm_page_none_valid(m)) 538 vnode_pager_subpage_purge(m, (int)nsize & PAGE_MASK, 539 PAGE_SIZE); 540 vm_page_xunbusy(m); 541 } 542 out: 543 #if defined(__powerpc__) && !defined(__powerpc64__) 544 object->un_pager.vnp.vnp_size = nsize; 545 #else 546 atomic_store_64(&object->un_pager.vnp.vnp_size, nsize); 547 #endif 548 object->size = nobjsize; 549 VM_OBJECT_WUNLOCK(object); 550 } 551 552 /* 553 * Lets the VM system know about the purged range for a file. We toss away any 554 * cached pages in the associated object that are affected by the purge 555 * operation. Partial-page area not aligned to page boundaries will be zeroed 556 * and the dirty blocks in DEV_BSIZE unit within a page will not be flushed. 557 */ 558 void 559 vnode_pager_purge_range(struct vnode *vp, vm_ooffset_t start, vm_ooffset_t end) 560 { 561 struct vm_page *m; 562 struct vm_object *object; 563 vm_pindex_t pi, pistart, piend; 564 bool same_page; 565 int base, pend; 566 567 ASSERT_VOP_LOCKED(vp, "vnode_pager_purge_range"); 568 569 object = vp->v_object; 570 pi = start + PAGE_MASK < start ? OBJ_MAX_SIZE : 571 OFF_TO_IDX(start + PAGE_MASK); 572 pistart = OFF_TO_IDX(start); 573 piend = end == 0 ? OBJ_MAX_SIZE : OFF_TO_IDX(end); 574 same_page = pistart == piend; 575 if ((end != 0 && end <= start) || object == NULL) 576 return; 577 578 VM_OBJECT_WLOCK(object); 579 580 if (pi < piend) 581 vm_object_page_remove(object, pi, piend, 0); 582 583 if ((start & PAGE_MASK) != 0) { 584 base = (int)start & PAGE_MASK; 585 pend = same_page ? (int)end & PAGE_MASK : PAGE_SIZE; 586 m = vm_page_grab(object, pistart, VM_ALLOC_NOCREAT); 587 if (m != NULL) { 588 if (!vm_page_none_valid(m)) 589 vnode_pager_subpage_purge(m, base, pend); 590 vm_page_xunbusy(m); 591 } 592 if (same_page) 593 goto out; 594 } 595 if ((end & PAGE_MASK) != 0) { 596 base = same_page ? (int)start & PAGE_MASK : 0 ; 597 pend = (int)end & PAGE_MASK; 598 m = vm_page_grab(object, piend, VM_ALLOC_NOCREAT); 599 if (m != NULL) { 600 if (!vm_page_none_valid(m)) 601 vnode_pager_subpage_purge(m, base, pend); 602 vm_page_xunbusy(m); 603 } 604 } 605 out: 606 VM_OBJECT_WUNLOCK(object); 607 } 608 609 /* 610 * calculate the linear (byte) disk address of specified virtual 611 * file address 612 */ 613 static int 614 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 615 int *run) 616 { 617 int bsize; 618 int err; 619 daddr_t vblock; 620 daddr_t voffset; 621 622 if (VN_IS_DOOMED(vp)) 623 return -1; 624 625 bsize = vp->v_mount->mnt_stat.f_iosize; 626 vblock = address / bsize; 627 voffset = address % bsize; 628 629 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 630 if (err == 0) { 631 if (*rtaddress != -1) 632 *rtaddress += voffset / DEV_BSIZE; 633 if (run) { 634 *run += 1; 635 *run *= bsize / PAGE_SIZE; 636 *run -= voffset / PAGE_SIZE; 637 } 638 } 639 640 return (err); 641 } 642 643 static void 644 vnode_pager_input_bdone(struct buf *bp) 645 { 646 runningbufwakeup(bp); 647 bdone(bp); 648 } 649 650 /* 651 * small block filesystem vnode pager input 652 */ 653 static int 654 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m) 655 { 656 struct vnode *vp; 657 struct bufobj *bo; 658 struct buf *bp; 659 struct sf_buf *sf; 660 daddr_t fileaddr; 661 vm_offset_t bsize; 662 vm_page_bits_t bits; 663 int error, i; 664 665 error = 0; 666 vp = object->handle; 667 if (VN_IS_DOOMED(vp)) 668 return VM_PAGER_BAD; 669 670 bsize = vp->v_mount->mnt_stat.f_iosize; 671 672 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 673 674 sf = sf_buf_alloc(m, 0); 675 676 for (i = 0; i < PAGE_SIZE / bsize; i++) { 677 vm_ooffset_t address; 678 679 bits = vm_page_bits(i * bsize, bsize); 680 if (m->valid & bits) 681 continue; 682 683 address = IDX_TO_OFF(m->pindex) + i * bsize; 684 if (address >= object->un_pager.vnp.vnp_size) { 685 fileaddr = -1; 686 } else { 687 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 688 if (error) 689 break; 690 } 691 if (fileaddr != -1) { 692 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 693 694 /* build a minimal buffer header */ 695 bp->b_iocmd = BIO_READ; 696 bp->b_iodone = vnode_pager_input_bdone; 697 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 698 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 699 bp->b_rcred = crhold(curthread->td_ucred); 700 bp->b_wcred = crhold(curthread->td_ucred); 701 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 702 bp->b_blkno = fileaddr; 703 pbgetbo(bo, bp); 704 bp->b_vp = vp; 705 bp->b_bcount = bsize; 706 bp->b_bufsize = bsize; 707 bp->b_runningbufspace = bp->b_bufsize; 708 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 709 710 /* do the input */ 711 bp->b_iooffset = dbtob(bp->b_blkno); 712 bstrategy(bp); 713 714 bwait(bp, PVM, "vnsrd"); 715 716 if ((bp->b_ioflags & BIO_ERROR) != 0) { 717 KASSERT(bp->b_error != 0, 718 ("%s: buf error but b_error == 0\n", __func__)); 719 error = bp->b_error; 720 } 721 722 /* 723 * free the buffer header back to the swap buffer pool 724 */ 725 bp->b_vp = NULL; 726 pbrelbo(bp); 727 uma_zfree(vnode_pbuf_zone, bp); 728 if (error) 729 break; 730 } else 731 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 732 KASSERT((m->dirty & bits) == 0, 733 ("vnode_pager_input_smlfs: page %p is dirty", m)); 734 vm_page_bits_set(m, &m->valid, bits); 735 } 736 sf_buf_free(sf); 737 if (error) { 738 return VM_PAGER_ERROR; 739 } 740 return VM_PAGER_OK; 741 } 742 743 /* 744 * old style vnode pager input routine 745 */ 746 static int 747 vnode_pager_input_old(vm_object_t object, vm_page_t m) 748 { 749 struct uio auio; 750 struct iovec aiov; 751 int error; 752 int size; 753 struct sf_buf *sf; 754 struct vnode *vp; 755 756 VM_OBJECT_ASSERT_WLOCKED(object); 757 error = 0; 758 759 /* 760 * Return failure if beyond current EOF 761 */ 762 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 763 return VM_PAGER_BAD; 764 } else { 765 size = PAGE_SIZE; 766 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 767 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 768 vp = object->handle; 769 VM_OBJECT_WUNLOCK(object); 770 771 /* 772 * Allocate a kernel virtual address and initialize so that 773 * we can use VOP_READ/WRITE routines. 774 */ 775 sf = sf_buf_alloc(m, 0); 776 777 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 778 aiov.iov_len = size; 779 auio.uio_iov = &aiov; 780 auio.uio_iovcnt = 1; 781 auio.uio_offset = IDX_TO_OFF(m->pindex); 782 auio.uio_segflg = UIO_SYSSPACE; 783 auio.uio_rw = UIO_READ; 784 auio.uio_resid = size; 785 auio.uio_td = curthread; 786 787 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 788 if (!error) { 789 int count = size - auio.uio_resid; 790 791 if (count == 0) 792 error = EINVAL; 793 else if (count != PAGE_SIZE) 794 bzero((caddr_t)sf_buf_kva(sf) + count, 795 PAGE_SIZE - count); 796 } 797 sf_buf_free(sf); 798 799 VM_OBJECT_WLOCK(object); 800 } 801 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); 802 if (!error) 803 vm_page_valid(m); 804 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 805 } 806 807 /* 808 * generic vnode pager input routine 809 */ 810 811 /* 812 * Local media VFS's that do not implement their own VOP_GETPAGES 813 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 814 * to implement the previous behaviour. 815 * 816 * All other FS's should use the bypass to get to the local media 817 * backing vp's VOP_GETPAGES. 818 */ 819 static int 820 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, 821 int *rahead) 822 { 823 struct vnode *vp; 824 int rtval; 825 826 /* Handle is stable with paging in progress. */ 827 vp = object->handle; 828 rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead); 829 KASSERT(rtval != EOPNOTSUPP, 830 ("vnode_pager: FS getpages not implemented\n")); 831 return rtval; 832 } 833 834 static int 835 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 836 int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg) 837 { 838 struct vnode *vp; 839 int rtval; 840 841 vp = object->handle; 842 rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg); 843 KASSERT(rtval != EOPNOTSUPP, 844 ("vnode_pager: FS getpages_async not implemented\n")); 845 return (rtval); 846 } 847 848 /* 849 * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for 850 * local filesystems, where partially valid pages can only occur at 851 * the end of file. 852 */ 853 int 854 vnode_pager_local_getpages(struct vop_getpages_args *ap) 855 { 856 857 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 858 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 859 } 860 861 int 862 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap) 863 { 864 int error; 865 866 error = vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 867 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); 868 if (error != 0 && ap->a_iodone != NULL) 869 ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); 870 return (error); 871 } 872 873 /* 874 * This is now called from local media FS's to operate against their 875 * own vnodes if they fail to implement VOP_GETPAGES. 876 */ 877 int 878 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count, 879 int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg) 880 { 881 vm_object_t object; 882 struct bufobj *bo; 883 struct buf *bp; 884 off_t foff; 885 #ifdef INVARIANTS 886 off_t blkno0; 887 #endif 888 int bsize, pagesperblock; 889 int error, before, after, rbehind, rahead, poff, i; 890 int bytecount, secmask; 891 892 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 893 ("%s does not support devices", __func__)); 894 895 if (VN_IS_DOOMED(vp)) 896 return (VM_PAGER_BAD); 897 898 object = vp->v_object; 899 foff = IDX_TO_OFF(m[0]->pindex); 900 bsize = vp->v_mount->mnt_stat.f_iosize; 901 pagesperblock = bsize / PAGE_SIZE; 902 903 KASSERT(foff < object->un_pager.vnp.vnp_size, 904 ("%s: page %p offset beyond vp %p size", __func__, m[0], vp)); 905 KASSERT(count <= atop(maxphys), 906 ("%s: requested %d pages", __func__, count)); 907 908 /* 909 * The last page has valid blocks. Invalid part can only 910 * exist at the end of file, and the page is made fully valid 911 * by zeroing in vm_pager_get_pages(). 912 */ 913 if (!vm_page_none_valid(m[count - 1]) && --count == 0) { 914 if (iodone != NULL) 915 iodone(arg, m, 1, 0); 916 return (VM_PAGER_OK); 917 } 918 919 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 920 MPASS((bp->b_flags & B_MAXPHYS) != 0); 921 922 /* 923 * Get the underlying device blocks for the file with VOP_BMAP(). 924 * If the file system doesn't support VOP_BMAP, use old way of 925 * getting pages via VOP_READ. 926 */ 927 error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before); 928 if (error == EOPNOTSUPP) { 929 uma_zfree(vnode_pbuf_zone, bp); 930 VM_OBJECT_WLOCK(object); 931 for (i = 0; i < count; i++) { 932 VM_CNT_INC(v_vnodein); 933 VM_CNT_INC(v_vnodepgsin); 934 error = vnode_pager_input_old(object, m[i]); 935 if (error) 936 break; 937 } 938 VM_OBJECT_WUNLOCK(object); 939 return (error); 940 } else if (error != 0) { 941 uma_zfree(vnode_pbuf_zone, bp); 942 return (VM_PAGER_ERROR); 943 } 944 945 /* 946 * If the file system supports BMAP, but blocksize is smaller 947 * than a page size, then use special small filesystem code. 948 */ 949 if (pagesperblock == 0) { 950 uma_zfree(vnode_pbuf_zone, bp); 951 for (i = 0; i < count; i++) { 952 VM_CNT_INC(v_vnodein); 953 VM_CNT_INC(v_vnodepgsin); 954 error = vnode_pager_input_smlfs(object, m[i]); 955 if (error) 956 break; 957 } 958 return (error); 959 } 960 961 /* 962 * A sparse file can be encountered only for a single page request, 963 * which may not be preceded by call to vm_pager_haspage(). 964 */ 965 if (bp->b_blkno == -1) { 966 KASSERT(count == 1, 967 ("%s: array[%d] request to a sparse file %p", __func__, 968 count, vp)); 969 uma_zfree(vnode_pbuf_zone, bp); 970 pmap_zero_page(m[0]); 971 KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty", 972 __func__, m[0])); 973 vm_page_valid(m[0]); 974 return (VM_PAGER_OK); 975 } 976 977 #ifdef INVARIANTS 978 blkno0 = bp->b_blkno; 979 #endif 980 bp->b_blkno += (foff % bsize) / DEV_BSIZE; 981 982 /* Recalculate blocks available after/before to pages. */ 983 poff = (foff % bsize) / PAGE_SIZE; 984 before *= pagesperblock; 985 before += poff; 986 after *= pagesperblock; 987 after += pagesperblock - (poff + 1); 988 if (m[0]->pindex + after >= object->size) 989 after = object->size - 1 - m[0]->pindex; 990 KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d", 991 __func__, count, after + 1)); 992 after -= count - 1; 993 994 /* Trim requested rbehind/rahead to possible values. */ 995 rbehind = a_rbehind ? *a_rbehind : 0; 996 rahead = a_rahead ? *a_rahead : 0; 997 rbehind = min(rbehind, before); 998 rbehind = min(rbehind, m[0]->pindex); 999 rahead = min(rahead, after); 1000 rahead = min(rahead, object->size - m[count - 1]->pindex); 1001 /* 1002 * Check that total amount of pages fit into buf. Trim rbehind and 1003 * rahead evenly if not. 1004 */ 1005 if (rbehind + rahead + count > atop(maxphys)) { 1006 int trim, sum; 1007 1008 trim = rbehind + rahead + count - atop(maxphys) + 1; 1009 sum = rbehind + rahead; 1010 if (rbehind == before) { 1011 /* Roundup rbehind trim to block size. */ 1012 rbehind -= roundup(trim * rbehind / sum, pagesperblock); 1013 if (rbehind < 0) 1014 rbehind = 0; 1015 } else 1016 rbehind -= trim * rbehind / sum; 1017 rahead -= trim * rahead / sum; 1018 } 1019 KASSERT(rbehind + rahead + count <= atop(maxphys), 1020 ("%s: behind %d ahead %d count %d maxphys %lu", __func__, 1021 rbehind, rahead, count, maxphys)); 1022 1023 /* 1024 * Fill in the bp->b_pages[] array with requested and optional 1025 * read behind or read ahead pages. Read behind pages are looked 1026 * up in a backward direction, down to a first cached page. Same 1027 * for read ahead pages, but there is no need to shift the array 1028 * in case of encountering a cached page. 1029 */ 1030 i = bp->b_npages = 0; 1031 if (rbehind) { 1032 vm_pindex_t startpindex, tpindex; 1033 vm_page_t p; 1034 1035 VM_OBJECT_WLOCK(object); 1036 startpindex = m[0]->pindex - rbehind; 1037 if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL && 1038 p->pindex >= startpindex) 1039 startpindex = p->pindex + 1; 1040 1041 /* tpindex is unsigned; beware of numeric underflow. */ 1042 for (tpindex = m[0]->pindex - 1; 1043 tpindex >= startpindex && tpindex < m[0]->pindex; 1044 tpindex--, i++) { 1045 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 1046 if (p == NULL) { 1047 /* Shift the array. */ 1048 for (int j = 0; j < i; j++) 1049 bp->b_pages[j] = bp->b_pages[j + 1050 tpindex + 1 - startpindex]; 1051 break; 1052 } 1053 bp->b_pages[tpindex - startpindex] = p; 1054 } 1055 1056 bp->b_pgbefore = i; 1057 bp->b_npages += i; 1058 bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE; 1059 } else 1060 bp->b_pgbefore = 0; 1061 1062 /* Requested pages. */ 1063 for (int j = 0; j < count; j++, i++) 1064 bp->b_pages[i] = m[j]; 1065 bp->b_npages += count; 1066 1067 if (rahead) { 1068 vm_pindex_t endpindex, tpindex; 1069 vm_page_t p; 1070 1071 if (!VM_OBJECT_WOWNED(object)) 1072 VM_OBJECT_WLOCK(object); 1073 endpindex = m[count - 1]->pindex + rahead + 1; 1074 if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL && 1075 p->pindex < endpindex) 1076 endpindex = p->pindex; 1077 if (endpindex > object->size) 1078 endpindex = object->size; 1079 1080 for (tpindex = m[count - 1]->pindex + 1; 1081 tpindex < endpindex; i++, tpindex++) { 1082 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 1083 if (p == NULL) 1084 break; 1085 bp->b_pages[i] = p; 1086 } 1087 1088 bp->b_pgafter = i - bp->b_npages; 1089 bp->b_npages = i; 1090 } else 1091 bp->b_pgafter = 0; 1092 1093 if (VM_OBJECT_WOWNED(object)) 1094 VM_OBJECT_WUNLOCK(object); 1095 1096 /* Report back actual behind/ahead read. */ 1097 if (a_rbehind) 1098 *a_rbehind = bp->b_pgbefore; 1099 if (a_rahead) 1100 *a_rahead = bp->b_pgafter; 1101 1102 #ifdef INVARIANTS 1103 KASSERT(bp->b_npages <= atop(maxphys), 1104 ("%s: buf %p overflowed", __func__, bp)); 1105 for (int j = 1, prev = 0; j < bp->b_npages; j++) { 1106 if (bp->b_pages[j] == bogus_page) 1107 continue; 1108 KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex == 1109 j - prev, ("%s: pages array not consecutive, bp %p", 1110 __func__, bp)); 1111 prev = j; 1112 } 1113 #endif 1114 1115 /* 1116 * Recalculate first offset and bytecount with regards to read behind. 1117 * Truncate bytecount to vnode real size and round up physical size 1118 * for real devices. 1119 */ 1120 foff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1121 bytecount = bp->b_npages << PAGE_SHIFT; 1122 if ((foff + bytecount) > object->un_pager.vnp.vnp_size) 1123 bytecount = object->un_pager.vnp.vnp_size - foff; 1124 secmask = bo->bo_bsize - 1; 1125 KASSERT(secmask < PAGE_SIZE && secmask > 0, 1126 ("%s: sector size %d too large", __func__, secmask + 1)); 1127 bytecount = (bytecount + secmask) & ~secmask; 1128 1129 /* 1130 * And map the pages to be read into the kva, if the filesystem 1131 * requires mapped buffers. 1132 */ 1133 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 && 1134 unmapped_buf_allowed) { 1135 bp->b_data = unmapped_buf; 1136 bp->b_offset = 0; 1137 } else { 1138 bp->b_data = bp->b_kvabase; 1139 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 1140 } 1141 1142 /* Build a minimal buffer header. */ 1143 bp->b_iocmd = BIO_READ; 1144 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 1145 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 1146 bp->b_rcred = crhold(curthread->td_ucred); 1147 bp->b_wcred = crhold(curthread->td_ucred); 1148 pbgetbo(bo, bp); 1149 bp->b_vp = vp; 1150 bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount; 1151 bp->b_iooffset = dbtob(bp->b_blkno); 1152 KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) == 1153 (blkno0 - bp->b_blkno) * DEV_BSIZE + 1154 IDX_TO_OFF(m[0]->pindex) % bsize, 1155 ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju " 1156 "blkno0 %ju b_blkno %ju", bsize, 1157 (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex, 1158 (uintmax_t)blkno0, (uintmax_t)bp->b_blkno)); 1159 1160 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 1161 VM_CNT_INC(v_vnodein); 1162 VM_CNT_ADD(v_vnodepgsin, bp->b_npages); 1163 1164 if (iodone != NULL) { /* async */ 1165 bp->b_pgiodone = iodone; 1166 bp->b_caller1 = arg; 1167 bp->b_iodone = vnode_pager_generic_getpages_done_async; 1168 bp->b_flags |= B_ASYNC; 1169 BUF_KERNPROC(bp); 1170 bstrategy(bp); 1171 return (VM_PAGER_OK); 1172 } else { 1173 bp->b_iodone = bdone; 1174 bstrategy(bp); 1175 bwait(bp, PVM, "vnread"); 1176 error = vnode_pager_generic_getpages_done(bp); 1177 for (i = 0; i < bp->b_npages; i++) 1178 bp->b_pages[i] = NULL; 1179 bp->b_vp = NULL; 1180 pbrelbo(bp); 1181 uma_zfree(vnode_pbuf_zone, bp); 1182 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); 1183 } 1184 } 1185 1186 static void 1187 vnode_pager_generic_getpages_done_async(struct buf *bp) 1188 { 1189 int error; 1190 1191 error = vnode_pager_generic_getpages_done(bp); 1192 /* Run the iodone upon the requested range. */ 1193 bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore, 1194 bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error); 1195 for (int i = 0; i < bp->b_npages; i++) 1196 bp->b_pages[i] = NULL; 1197 bp->b_vp = NULL; 1198 pbrelbo(bp); 1199 uma_zfree(vnode_pbuf_zone, bp); 1200 } 1201 1202 static int 1203 vnode_pager_generic_getpages_done(struct buf *bp) 1204 { 1205 vm_object_t object; 1206 off_t tfoff, nextoff; 1207 int i, error; 1208 1209 KASSERT((bp->b_ioflags & BIO_ERROR) == 0 || bp->b_error != 0, 1210 ("%s: buf error but b_error == 0\n", __func__)); 1211 error = (bp->b_ioflags & BIO_ERROR) != 0 ? bp->b_error : 0; 1212 object = bp->b_vp->v_object; 1213 1214 runningbufwakeup(bp); 1215 1216 if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) { 1217 if (!buf_mapped(bp)) { 1218 bp->b_data = bp->b_kvabase; 1219 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, 1220 bp->b_npages); 1221 } 1222 bzero(bp->b_data + bp->b_bcount, 1223 PAGE_SIZE * bp->b_npages - bp->b_bcount); 1224 } 1225 if (buf_mapped(bp)) { 1226 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1227 bp->b_data = unmapped_buf; 1228 } 1229 1230 /* 1231 * If the read failed, we must free any read ahead/behind pages here. 1232 * The requested pages are freed by the caller (for sync requests) 1233 * or by the bp->b_pgiodone callback (for async requests). 1234 */ 1235 if (error != 0) { 1236 VM_OBJECT_WLOCK(object); 1237 for (i = 0; i < bp->b_pgbefore; i++) 1238 vm_page_free_invalid(bp->b_pages[i]); 1239 for (i = bp->b_npages - bp->b_pgafter; i < bp->b_npages; i++) 1240 vm_page_free_invalid(bp->b_pages[i]); 1241 VM_OBJECT_WUNLOCK(object); 1242 return (error); 1243 } 1244 1245 /* Read lock to protect size. */ 1246 VM_OBJECT_RLOCK(object); 1247 for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1248 i < bp->b_npages; i++, tfoff = nextoff) { 1249 vm_page_t mt; 1250 1251 nextoff = tfoff + PAGE_SIZE; 1252 mt = bp->b_pages[i]; 1253 if (mt == bogus_page) 1254 continue; 1255 1256 if (nextoff <= object->un_pager.vnp.vnp_size) { 1257 /* 1258 * Read filled up entire page. 1259 */ 1260 vm_page_valid(mt); 1261 KASSERT(mt->dirty == 0, 1262 ("%s: page %p is dirty", __func__, mt)); 1263 KASSERT(!pmap_page_is_mapped(mt), 1264 ("%s: page %p is mapped", __func__, mt)); 1265 } else { 1266 /* 1267 * Read did not fill up entire page. 1268 * 1269 * Currently we do not set the entire page valid, 1270 * we just try to clear the piece that we couldn't 1271 * read. 1272 */ 1273 vm_page_set_valid_range(mt, 0, 1274 object->un_pager.vnp.vnp_size - tfoff); 1275 KASSERT((mt->dirty & vm_page_bits(0, 1276 object->un_pager.vnp.vnp_size - tfoff)) == 0, 1277 ("%s: page %p is dirty", __func__, mt)); 1278 } 1279 1280 if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter) 1281 vm_page_readahead_finish(mt); 1282 } 1283 VM_OBJECT_RUNLOCK(object); 1284 1285 return (error); 1286 } 1287 1288 /* 1289 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 1290 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 1291 * vnode_pager_generic_putpages() to implement the previous behaviour. 1292 * 1293 * All other FS's should use the bypass to get to the local media 1294 * backing vp's VOP_PUTPAGES. 1295 */ 1296 static void 1297 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1298 int flags, int *rtvals) 1299 { 1300 int rtval __diagused; 1301 struct vnode *vp; 1302 int bytes = count * PAGE_SIZE; 1303 1304 /* 1305 * Force synchronous operation if we are extremely low on memory 1306 * to prevent a low-memory deadlock. VOP operations often need to 1307 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1308 * operation ). The swapper handles the case by limiting the amount 1309 * of asynchronous I/O, but that sort of solution doesn't scale well 1310 * for the vnode pager without a lot of work. 1311 * 1312 * Also, the backing vnode's iodone routine may not wake the pageout 1313 * daemon up. This should be probably be addressed XXX. 1314 */ 1315 1316 if (vm_page_count_min()) 1317 flags |= VM_PAGER_PUT_SYNC; 1318 1319 /* 1320 * Call device-specific putpages function 1321 */ 1322 vp = object->handle; 1323 VM_OBJECT_WUNLOCK(object); 1324 rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals); 1325 KASSERT(rtval != EOPNOTSUPP, 1326 ("vnode_pager: stale FS putpages\n")); 1327 VM_OBJECT_WLOCK(object); 1328 } 1329 1330 static int 1331 vn_off2bidx(vm_ooffset_t offset) 1332 { 1333 1334 return ((offset & PAGE_MASK) / DEV_BSIZE); 1335 } 1336 1337 static bool 1338 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset) 1339 { 1340 1341 KASSERT(IDX_TO_OFF(m->pindex) <= offset && 1342 offset < IDX_TO_OFF(m->pindex + 1), 1343 ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex, 1344 (uintmax_t)offset)); 1345 return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0); 1346 } 1347 1348 /* 1349 * This is now called from local media FS's to operate against their 1350 * own vnodes if they fail to implement VOP_PUTPAGES. 1351 * 1352 * This is typically called indirectly via the pageout daemon and 1353 * clustering has already typically occurred, so in general we ask the 1354 * underlying filesystem to write the data out asynchronously rather 1355 * then delayed. 1356 */ 1357 int 1358 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, 1359 int flags, int *rtvals) 1360 { 1361 vm_object_t object; 1362 vm_page_t m; 1363 vm_ooffset_t maxblksz, next_offset, poffset, prev_offset; 1364 struct uio auio; 1365 struct iovec aiov; 1366 off_t prev_resid, wrsz; 1367 int count, error, i, maxsize, ncount, pgoff, ppscheck; 1368 bool in_hole; 1369 static struct timeval lastfail; 1370 static int curfail; 1371 1372 object = vp->v_object; 1373 count = bytecount / PAGE_SIZE; 1374 1375 for (i = 0; i < count; i++) 1376 rtvals[i] = VM_PAGER_ERROR; 1377 1378 if ((int64_t)ma[0]->pindex < 0) { 1379 printf("vnode_pager_generic_putpages: " 1380 "attempt to write meta-data 0x%jx(%lx)\n", 1381 (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty); 1382 rtvals[0] = VM_PAGER_BAD; 1383 return (VM_PAGER_BAD); 1384 } 1385 1386 maxsize = count * PAGE_SIZE; 1387 ncount = count; 1388 1389 poffset = IDX_TO_OFF(ma[0]->pindex); 1390 1391 /* 1392 * If the page-aligned write is larger then the actual file we 1393 * have to invalidate pages occurring beyond the file EOF. However, 1394 * there is an edge case where a file may not be page-aligned where 1395 * the last page is partially invalid. In this case the filesystem 1396 * may not properly clear the dirty bits for the entire page (which 1397 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1398 * With the page busied we are free to fix up the dirty bits here. 1399 * 1400 * We do not under any circumstances truncate the valid bits, as 1401 * this will screw up bogus page replacement. 1402 */ 1403 VM_OBJECT_RLOCK(object); 1404 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1405 if (object->un_pager.vnp.vnp_size > poffset) { 1406 maxsize = object->un_pager.vnp.vnp_size - poffset; 1407 ncount = btoc(maxsize); 1408 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1409 pgoff = roundup2(pgoff, DEV_BSIZE); 1410 1411 /* 1412 * If the page is busy and the following 1413 * conditions hold, then the page's dirty 1414 * field cannot be concurrently changed by a 1415 * pmap operation. 1416 */ 1417 m = ma[ncount - 1]; 1418 vm_page_assert_sbusied(m); 1419 KASSERT(!pmap_page_is_write_mapped(m), 1420 ("vnode_pager_generic_putpages: page %p is not read-only", m)); 1421 MPASS(m->dirty != 0); 1422 vm_page_clear_dirty(m, pgoff, PAGE_SIZE - 1423 pgoff); 1424 } 1425 } else { 1426 maxsize = 0; 1427 ncount = 0; 1428 } 1429 for (i = ncount; i < count; i++) 1430 rtvals[i] = VM_PAGER_BAD; 1431 } 1432 VM_OBJECT_RUNLOCK(object); 1433 1434 auio.uio_iov = &aiov; 1435 auio.uio_segflg = UIO_NOCOPY; 1436 auio.uio_rw = UIO_WRITE; 1437 auio.uio_td = NULL; 1438 maxblksz = roundup2(poffset + maxsize, DEV_BSIZE); 1439 1440 for (prev_offset = poffset; prev_offset < maxblksz;) { 1441 /* Skip clean blocks. */ 1442 for (in_hole = true; in_hole && prev_offset < maxblksz;) { 1443 m = ma[OFF_TO_IDX(prev_offset - poffset)]; 1444 for (i = vn_off2bidx(prev_offset); 1445 i < sizeof(vm_page_bits_t) * NBBY && 1446 prev_offset < maxblksz; i++) { 1447 if (vn_dirty_blk(m, prev_offset)) { 1448 in_hole = false; 1449 break; 1450 } 1451 prev_offset += DEV_BSIZE; 1452 } 1453 } 1454 if (in_hole) 1455 goto write_done; 1456 1457 /* Find longest run of dirty blocks. */ 1458 for (next_offset = prev_offset; next_offset < maxblksz;) { 1459 m = ma[OFF_TO_IDX(next_offset - poffset)]; 1460 for (i = vn_off2bidx(next_offset); 1461 i < sizeof(vm_page_bits_t) * NBBY && 1462 next_offset < maxblksz; i++) { 1463 if (!vn_dirty_blk(m, next_offset)) 1464 goto start_write; 1465 next_offset += DEV_BSIZE; 1466 } 1467 } 1468 start_write: 1469 if (next_offset > poffset + maxsize) 1470 next_offset = poffset + maxsize; 1471 1472 /* 1473 * Getting here requires finding a dirty block in the 1474 * 'skip clean blocks' loop. 1475 */ 1476 MPASS(prev_offset < next_offset); 1477 1478 aiov.iov_base = NULL; 1479 auio.uio_iovcnt = 1; 1480 auio.uio_offset = prev_offset; 1481 prev_resid = auio.uio_resid = aiov.iov_len = next_offset - 1482 prev_offset; 1483 error = VOP_WRITE(vp, &auio, 1484 vnode_pager_putpages_ioflags(flags), curthread->td_ucred); 1485 1486 wrsz = prev_resid - auio.uio_resid; 1487 if (wrsz == 0) { 1488 if (ppsratecheck(&lastfail, &curfail, 1) != 0) { 1489 vn_printf(vp, "vnode_pager_putpages: " 1490 "zero-length write at %ju resid %zd\n", 1491 auio.uio_offset, auio.uio_resid); 1492 } 1493 break; 1494 } 1495 1496 /* Adjust the starting offset for next iteration. */ 1497 prev_offset += wrsz; 1498 MPASS(auio.uio_offset == prev_offset); 1499 1500 ppscheck = 0; 1501 if (error != 0 && (ppscheck = ppsratecheck(&lastfail, 1502 &curfail, 1)) != 0) 1503 vn_printf(vp, "vnode_pager_putpages: I/O error %d\n", 1504 error); 1505 if (auio.uio_resid != 0 && (ppscheck != 0 || 1506 ppsratecheck(&lastfail, &curfail, 1) != 0)) 1507 vn_printf(vp, "vnode_pager_putpages: residual I/O %zd " 1508 "at %ju\n", auio.uio_resid, 1509 (uintmax_t)ma[0]->pindex); 1510 if (error != 0 || auio.uio_resid != 0) 1511 break; 1512 } 1513 write_done: 1514 /* Mark completely processed pages. */ 1515 for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++) 1516 rtvals[i] = VM_PAGER_OK; 1517 /* Mark partial EOF page. */ 1518 if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0) 1519 rtvals[i++] = VM_PAGER_OK; 1520 /* Unwritten pages in range, free bonus if the page is clean. */ 1521 for (; i < ncount; i++) 1522 rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR; 1523 VM_CNT_ADD(v_vnodepgsout, i); 1524 VM_CNT_INC(v_vnodeout); 1525 return (rtvals[0]); 1526 } 1527 1528 int 1529 vnode_pager_putpages_ioflags(int pager_flags) 1530 { 1531 int ioflags; 1532 1533 /* 1534 * Pageouts are already clustered, use IO_ASYNC to force a 1535 * bawrite() rather then a bdwrite() to prevent paging I/O 1536 * from saturating the buffer cache. Dummy-up the sequential 1537 * heuristic to cause large ranges to cluster. If neither 1538 * IO_SYNC or IO_ASYNC is set, the system decides how to 1539 * cluster. 1540 */ 1541 ioflags = IO_VMIO; 1542 if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0) 1543 ioflags |= IO_SYNC; 1544 else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0) 1545 ioflags |= IO_ASYNC; 1546 ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0; 1547 ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0; 1548 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1549 return (ioflags); 1550 } 1551 1552 /* 1553 * vnode_pager_undirty_pages(). 1554 * 1555 * A helper to mark pages as clean after pageout that was possibly 1556 * done with a short write. The lpos argument specifies the page run 1557 * length in bytes, and the written argument specifies how many bytes 1558 * were actually written. eof is the offset past the last valid byte 1559 * in the vnode using the absolute file position of the first byte in 1560 * the run as the base from which it is computed. 1561 */ 1562 void 1563 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof, 1564 int lpos) 1565 { 1566 int i, pos, pos_devb; 1567 1568 if (written == 0 && eof >= lpos) 1569 return; 1570 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { 1571 if (pos < trunc_page(written)) { 1572 rtvals[i] = VM_PAGER_OK; 1573 vm_page_undirty(ma[i]); 1574 } else { 1575 /* Partially written page. */ 1576 rtvals[i] = VM_PAGER_AGAIN; 1577 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); 1578 } 1579 } 1580 if (eof >= lpos) /* avoid truncation */ 1581 return; 1582 for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) { 1583 if (pos != trunc_page(pos)) { 1584 /* 1585 * The page contains the last valid byte in 1586 * the vnode, mark the rest of the page as 1587 * clean, potentially making the whole page 1588 * clean. 1589 */ 1590 pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE); 1591 vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE - 1592 pos_devb); 1593 1594 /* 1595 * If the page was cleaned, report the pageout 1596 * on it as successful. msync() no longer 1597 * needs to write out the page, endlessly 1598 * creating write requests and dirty buffers. 1599 */ 1600 if (ma[i]->dirty == 0) 1601 rtvals[i] = VM_PAGER_OK; 1602 1603 pos = round_page(pos); 1604 } else { 1605 /* vm_pageout_flush() clears dirty */ 1606 rtvals[i] = VM_PAGER_BAD; 1607 pos += PAGE_SIZE; 1608 } 1609 } 1610 } 1611 1612 static void 1613 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, 1614 vm_offset_t end) 1615 { 1616 struct vnode *vp; 1617 vm_ooffset_t old_wm; 1618 1619 VM_OBJECT_WLOCK(object); 1620 if (object->type != OBJT_VNODE) { 1621 VM_OBJECT_WUNLOCK(object); 1622 return; 1623 } 1624 old_wm = object->un_pager.vnp.writemappings; 1625 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; 1626 vp = object->handle; 1627 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { 1628 ASSERT_VOP_LOCKED(vp, "v_writecount inc"); 1629 VOP_ADD_WRITECOUNT_CHECKED(vp, 1); 1630 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 1631 __func__, vp, vp->v_writecount); 1632 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { 1633 ASSERT_VOP_LOCKED(vp, "v_writecount dec"); 1634 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 1635 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 1636 __func__, vp, vp->v_writecount); 1637 } 1638 VM_OBJECT_WUNLOCK(object); 1639 } 1640 1641 static void 1642 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, 1643 vm_offset_t end) 1644 { 1645 struct vnode *vp; 1646 struct mount *mp; 1647 vm_offset_t inc; 1648 1649 VM_OBJECT_WLOCK(object); 1650 1651 /* 1652 * First, recheck the object type to account for the race when 1653 * the vnode is reclaimed. 1654 */ 1655 if (object->type != OBJT_VNODE) { 1656 VM_OBJECT_WUNLOCK(object); 1657 return; 1658 } 1659 1660 /* 1661 * Optimize for the case when writemappings is not going to 1662 * zero. 1663 */ 1664 inc = end - start; 1665 if (object->un_pager.vnp.writemappings != inc) { 1666 object->un_pager.vnp.writemappings -= inc; 1667 VM_OBJECT_WUNLOCK(object); 1668 return; 1669 } 1670 1671 vp = object->handle; 1672 vhold(vp); 1673 VM_OBJECT_WUNLOCK(object); 1674 mp = NULL; 1675 vn_start_write(vp, &mp, V_WAIT); 1676 vn_lock(vp, LK_SHARED | LK_RETRY); 1677 1678 /* 1679 * Decrement the object's writemappings, by swapping the start 1680 * and end arguments for vnode_pager_update_writecount(). If 1681 * there was not a race with vnode reclaimation, then the 1682 * vnode's v_writecount is decremented. 1683 */ 1684 vnode_pager_update_writecount(object, end, start); 1685 VOP_UNLOCK(vp); 1686 vdrop(vp); 1687 if (mp != NULL) 1688 vn_finished_write(mp); 1689 } 1690 1691 static void 1692 vnode_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp) 1693 { 1694 *vpp = object->handle; 1695 } 1696