1 /*- 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/limits.h> 65 #include <sys/conf.h> 66 #include <sys/sf_buf.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_object.h> 70 #include <vm/vm_page.h> 71 #include <vm/vm_pager.h> 72 #include <vm/vm_map.h> 73 #include <vm/vnode_pager.h> 74 #include <vm/vm_extern.h> 75 76 static void vnode_pager_init(void); 77 static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 78 int *run); 79 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 80 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 81 static void vnode_pager_dealloc(vm_object_t); 82 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 83 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 84 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 85 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t); 86 87 struct pagerops vnodepagerops = { 88 .pgo_init = vnode_pager_init, 89 .pgo_alloc = vnode_pager_alloc, 90 .pgo_dealloc = vnode_pager_dealloc, 91 .pgo_getpages = vnode_pager_getpages, 92 .pgo_putpages = vnode_pager_putpages, 93 .pgo_haspage = vnode_pager_haspage, 94 }; 95 96 int vnode_pbuf_freecnt; 97 98 static void 99 vnode_pager_init(void) 100 { 101 102 vnode_pbuf_freecnt = nswbuf / 2 + 1; 103 } 104 105 /* Create the VM system backing object for this vnode */ 106 int 107 vnode_create_vobject(struct vnode *vp, size_t isize, struct thread *td) 108 { 109 vm_object_t object; 110 vm_ooffset_t size = isize; 111 struct vattr va; 112 113 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 114 return (0); 115 116 while ((object = vp->v_object) != NULL) { 117 VM_OBJECT_LOCK(object); 118 if (!(object->flags & OBJ_DEAD)) { 119 VM_OBJECT_UNLOCK(object); 120 return (0); 121 } 122 VOP_UNLOCK(vp, 0, td); 123 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 124 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0); 125 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 126 } 127 128 if (size == 0) { 129 if (vn_isdisk(vp, NULL)) { 130 size = IDX_TO_OFF(INT_MAX); 131 } else { 132 if (VOP_GETATTR(vp, &va, td->td_ucred, td) != 0) 133 return (0); 134 size = va.va_size; 135 } 136 } 137 138 object = vnode_pager_alloc(vp, size, 0, 0); 139 /* 140 * Dereference the reference we just created. This assumes 141 * that the object is associated with the vp. 142 */ 143 VM_OBJECT_LOCK(object); 144 object->ref_count--; 145 VM_OBJECT_UNLOCK(object); 146 vrele(vp); 147 148 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 149 150 return (0); 151 } 152 153 void 154 vnode_destroy_vobject(struct vnode *vp) 155 { 156 struct vm_object *obj; 157 158 obj = vp->v_object; 159 if (obj == NULL) 160 return; 161 vp->v_object = NULL; 162 VM_OBJECT_LOCK(obj); 163 if (obj->ref_count == 0) { 164 /* 165 * vclean() may be called twice. The first time 166 * removes the primary reference to the object, 167 * the second time goes one further and is a 168 * special-case to terminate the object. 169 * 170 * don't double-terminate the object 171 */ 172 if ((obj->flags & OBJ_DEAD) == 0) 173 vm_object_terminate(obj); 174 else 175 VM_OBJECT_UNLOCK(obj); 176 } else { 177 /* 178 * Woe to the process that tries to page now :-). 179 */ 180 vm_pager_deallocate(obj); 181 VM_OBJECT_UNLOCK(obj); 182 } 183 } 184 185 186 /* 187 * Allocate (or lookup) pager for a vnode. 188 * Handle is a vnode pointer. 189 * 190 * MPSAFE 191 */ 192 vm_object_t 193 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 194 vm_ooffset_t offset) 195 { 196 vm_object_t object; 197 struct vnode *vp; 198 199 /* 200 * Pageout to vnode, no can do yet. 201 */ 202 if (handle == NULL) 203 return (NULL); 204 205 vp = (struct vnode *) handle; 206 207 ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); 208 209 /* 210 * Prevent race condition when allocating the object. This 211 * can happen with NFS vnodes since the nfsnode isn't locked. 212 */ 213 VI_LOCK(vp); 214 while (vp->v_iflag & VI_OLOCK) { 215 vp->v_iflag |= VI_OWANT; 216 msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0); 217 } 218 vp->v_iflag |= VI_OLOCK; 219 VI_UNLOCK(vp); 220 221 /* 222 * If the object is being terminated, wait for it to 223 * go away. 224 */ 225 while ((object = vp->v_object) != NULL) { 226 VM_OBJECT_LOCK(object); 227 if ((object->flags & OBJ_DEAD) == 0) 228 break; 229 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 230 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 231 } 232 233 if (vp->v_usecount == 0) 234 panic("vnode_pager_alloc: no vnode reference"); 235 236 if (object == NULL) { 237 /* 238 * And an object of the appropriate size 239 */ 240 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 241 242 object->un_pager.vnp.vnp_size = size; 243 244 object->handle = handle; 245 vp->v_object = object; 246 } else { 247 object->ref_count++; 248 VM_OBJECT_UNLOCK(object); 249 } 250 VI_LOCK(vp); 251 vp->v_usecount++; 252 vp->v_iflag &= ~VI_OLOCK; 253 if (vp->v_iflag & VI_OWANT) { 254 vp->v_iflag &= ~VI_OWANT; 255 wakeup(vp); 256 } 257 VI_UNLOCK(vp); 258 return (object); 259 } 260 261 /* 262 * The object must be locked. 263 */ 264 static void 265 vnode_pager_dealloc(object) 266 vm_object_t object; 267 { 268 struct vnode *vp = object->handle; 269 270 if (vp == NULL) 271 panic("vnode_pager_dealloc: pager already dealloced"); 272 273 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 274 vm_object_pip_wait(object, "vnpdea"); 275 276 object->handle = NULL; 277 object->type = OBJT_DEAD; 278 if (object->flags & OBJ_DISCONNECTWNT) { 279 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 280 wakeup(object); 281 } 282 ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc"); 283 vp->v_object = NULL; 284 vp->v_vflag &= ~VV_TEXT; 285 } 286 287 static boolean_t 288 vnode_pager_haspage(object, pindex, before, after) 289 vm_object_t object; 290 vm_pindex_t pindex; 291 int *before; 292 int *after; 293 { 294 struct vnode *vp = object->handle; 295 daddr_t bn; 296 int err; 297 daddr_t reqblock; 298 int poff; 299 int bsize; 300 int pagesperblock, blocksperpage; 301 int vfslocked; 302 303 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 304 /* 305 * If no vp or vp is doomed or marked transparent to VM, we do not 306 * have the page. 307 */ 308 if (vp == NULL) 309 return FALSE; 310 311 VI_LOCK(vp); 312 if (vp->v_iflag & VI_DOOMED) { 313 VI_UNLOCK(vp); 314 return FALSE; 315 } 316 VI_UNLOCK(vp); 317 /* 318 * If filesystem no longer mounted or offset beyond end of file we do 319 * not have the page. 320 */ 321 if ((vp->v_mount == NULL) || 322 (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)) 323 return FALSE; 324 325 bsize = vp->v_mount->mnt_stat.f_iosize; 326 pagesperblock = bsize / PAGE_SIZE; 327 blocksperpage = 0; 328 if (pagesperblock > 0) { 329 reqblock = pindex / pagesperblock; 330 } else { 331 blocksperpage = (PAGE_SIZE / bsize); 332 reqblock = pindex * blocksperpage; 333 } 334 VM_OBJECT_UNLOCK(object); 335 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 336 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 337 VFS_UNLOCK_GIANT(vfslocked); 338 VM_OBJECT_LOCK(object); 339 if (err) 340 return TRUE; 341 if (bn == -1) 342 return FALSE; 343 if (pagesperblock > 0) { 344 poff = pindex - (reqblock * pagesperblock); 345 if (before) { 346 *before *= pagesperblock; 347 *before += poff; 348 } 349 if (after) { 350 int numafter; 351 *after *= pagesperblock; 352 numafter = pagesperblock - (poff + 1); 353 if (IDX_TO_OFF(pindex + numafter) > 354 object->un_pager.vnp.vnp_size) { 355 numafter = 356 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 357 pindex; 358 } 359 *after += numafter; 360 } 361 } else { 362 if (before) { 363 *before /= blocksperpage; 364 } 365 366 if (after) { 367 *after /= blocksperpage; 368 } 369 } 370 return TRUE; 371 } 372 373 /* 374 * Lets the VM system know about a change in size for a file. 375 * We adjust our own internal size and flush any cached pages in 376 * the associated object that are affected by the size change. 377 * 378 * Note: this routine may be invoked as a result of a pager put 379 * operation (possibly at object termination time), so we must be careful. 380 */ 381 void 382 vnode_pager_setsize(vp, nsize) 383 struct vnode *vp; 384 vm_ooffset_t nsize; 385 { 386 vm_object_t object; 387 vm_page_t m; 388 vm_pindex_t nobjsize; 389 390 if ((object = vp->v_object) == NULL) 391 return; 392 VM_OBJECT_LOCK(object); 393 if (nsize == object->un_pager.vnp.vnp_size) { 394 /* 395 * Hasn't changed size 396 */ 397 VM_OBJECT_UNLOCK(object); 398 return; 399 } 400 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 401 if (nsize < object->un_pager.vnp.vnp_size) { 402 /* 403 * File has shrunk. Toss any cached pages beyond the new EOF. 404 */ 405 if (nobjsize < object->size) 406 vm_object_page_remove(object, nobjsize, object->size, 407 FALSE); 408 /* 409 * this gets rid of garbage at the end of a page that is now 410 * only partially backed by the vnode. 411 * 412 * XXX for some reason (I don't know yet), if we take a 413 * completely invalid page and mark it partially valid 414 * it can screw up NFS reads, so we don't allow the case. 415 */ 416 if ((nsize & PAGE_MASK) && 417 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 418 m->valid != 0) { 419 int base = (int)nsize & PAGE_MASK; 420 int size = PAGE_SIZE - base; 421 422 /* 423 * Clear out partial-page garbage in case 424 * the page has been mapped. 425 */ 426 pmap_zero_page_area(m, base, size); 427 428 /* 429 * XXX work around SMP data integrity race 430 * by unmapping the page from user processes. 431 * The garbage we just cleared may be mapped 432 * to a user process running on another cpu 433 * and this code is not running through normal 434 * I/O channels which handle SMP issues for 435 * us, so unmap page to synchronize all cpus. 436 * 437 * XXX should vm_pager_unmap_page() have 438 * dealt with this? 439 */ 440 vm_page_lock_queues(); 441 pmap_remove_all(m); 442 443 /* 444 * Clear out partial-page dirty bits. This 445 * has the side effect of setting the valid 446 * bits, but that is ok. There are a bunch 447 * of places in the VM system where we expected 448 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 449 * case is one of them. If the page is still 450 * partially dirty, make it fully dirty. 451 * 452 * note that we do not clear out the valid 453 * bits. This would prevent bogus_page 454 * replacement from working properly. 455 */ 456 vm_page_set_validclean(m, base, size); 457 if (m->dirty != 0) 458 m->dirty = VM_PAGE_BITS_ALL; 459 vm_page_unlock_queues(); 460 } 461 } 462 object->un_pager.vnp.vnp_size = nsize; 463 object->size = nobjsize; 464 VM_OBJECT_UNLOCK(object); 465 } 466 467 /* 468 * calculate the linear (byte) disk address of specified virtual 469 * file address 470 */ 471 static vm_offset_t 472 vnode_pager_addr(vp, address, run) 473 struct vnode *vp; 474 vm_ooffset_t address; 475 int *run; 476 { 477 int rtaddress; 478 int bsize; 479 daddr_t block; 480 int err; 481 daddr_t vblock; 482 int voffset; 483 484 if (address < 0) 485 return -1; 486 487 if (vp->v_mount == NULL) 488 return -1; 489 490 bsize = vp->v_mount->mnt_stat.f_iosize; 491 vblock = address / bsize; 492 voffset = address % bsize; 493 494 err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL); 495 496 if (err || (block == -1)) 497 rtaddress = -1; 498 else { 499 rtaddress = block + voffset / DEV_BSIZE; 500 if (run) { 501 *run += 1; 502 *run *= bsize/PAGE_SIZE; 503 *run -= voffset/PAGE_SIZE; 504 } 505 } 506 507 return rtaddress; 508 } 509 510 /* 511 * small block filesystem vnode pager input 512 */ 513 static int 514 vnode_pager_input_smlfs(object, m) 515 vm_object_t object; 516 vm_page_t m; 517 { 518 int i; 519 struct vnode *vp; 520 struct bufobj *bo; 521 struct buf *bp; 522 struct sf_buf *sf; 523 int fileaddr; 524 vm_offset_t bsize; 525 int error = 0; 526 527 vp = object->handle; 528 if (vp->v_mount == NULL) 529 return VM_PAGER_BAD; 530 531 bsize = vp->v_mount->mnt_stat.f_iosize; 532 533 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 534 535 sf = sf_buf_alloc(m, 0); 536 537 for (i = 0; i < PAGE_SIZE / bsize; i++) { 538 vm_ooffset_t address; 539 540 if (vm_page_bits(i * bsize, bsize) & m->valid) 541 continue; 542 543 address = IDX_TO_OFF(m->pindex) + i * bsize; 544 if (address >= object->un_pager.vnp.vnp_size) { 545 fileaddr = -1; 546 } else { 547 fileaddr = vnode_pager_addr(vp, address, NULL); 548 } 549 if (fileaddr != -1) { 550 bp = getpbuf(&vnode_pbuf_freecnt); 551 552 /* build a minimal buffer header */ 553 bp->b_iocmd = BIO_READ; 554 bp->b_iodone = bdone; 555 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 556 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 557 bp->b_rcred = crhold(curthread->td_ucred); 558 bp->b_wcred = crhold(curthread->td_ucred); 559 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 560 bp->b_blkno = fileaddr; 561 pbgetbo(bo, bp); 562 bp->b_bcount = bsize; 563 bp->b_bufsize = bsize; 564 bp->b_runningbufspace = bp->b_bufsize; 565 runningbufspace += bp->b_runningbufspace; 566 567 /* do the input */ 568 bp->b_iooffset = dbtob(bp->b_blkno); 569 bstrategy(bp); 570 571 /* we definitely need to be at splvm here */ 572 573 bwait(bp, PVM, "vnsrd"); 574 575 if ((bp->b_ioflags & BIO_ERROR) != 0) 576 error = EIO; 577 578 /* 579 * free the buffer header back to the swap buffer pool 580 */ 581 pbrelbo(bp); 582 relpbuf(bp, &vnode_pbuf_freecnt); 583 if (error) 584 break; 585 586 VM_OBJECT_LOCK(object); 587 vm_page_lock_queues(); 588 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 589 vm_page_unlock_queues(); 590 VM_OBJECT_UNLOCK(object); 591 } else { 592 VM_OBJECT_LOCK(object); 593 vm_page_lock_queues(); 594 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 595 vm_page_unlock_queues(); 596 VM_OBJECT_UNLOCK(object); 597 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 598 } 599 } 600 sf_buf_free(sf); 601 vm_page_lock_queues(); 602 pmap_clear_modify(m); 603 vm_page_unlock_queues(); 604 if (error) { 605 return VM_PAGER_ERROR; 606 } 607 return VM_PAGER_OK; 608 609 } 610 611 612 /* 613 * old style vnode pager input routine 614 */ 615 static int 616 vnode_pager_input_old(object, m) 617 vm_object_t object; 618 vm_page_t m; 619 { 620 struct uio auio; 621 struct iovec aiov; 622 int error; 623 int size; 624 struct sf_buf *sf; 625 struct vnode *vp; 626 627 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 628 error = 0; 629 630 /* 631 * Return failure if beyond current EOF 632 */ 633 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 634 return VM_PAGER_BAD; 635 } else { 636 size = PAGE_SIZE; 637 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 638 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 639 vp = object->handle; 640 VM_OBJECT_UNLOCK(object); 641 642 /* 643 * Allocate a kernel virtual address and initialize so that 644 * we can use VOP_READ/WRITE routines. 645 */ 646 sf = sf_buf_alloc(m, 0); 647 648 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 649 aiov.iov_len = size; 650 auio.uio_iov = &aiov; 651 auio.uio_iovcnt = 1; 652 auio.uio_offset = IDX_TO_OFF(m->pindex); 653 auio.uio_segflg = UIO_SYSSPACE; 654 auio.uio_rw = UIO_READ; 655 auio.uio_resid = size; 656 auio.uio_td = curthread; 657 658 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 659 if (!error) { 660 int count = size - auio.uio_resid; 661 662 if (count == 0) 663 error = EINVAL; 664 else if (count != PAGE_SIZE) 665 bzero((caddr_t)sf_buf_kva(sf) + count, 666 PAGE_SIZE - count); 667 } 668 sf_buf_free(sf); 669 670 VM_OBJECT_LOCK(object); 671 } 672 vm_page_lock_queues(); 673 pmap_clear_modify(m); 674 vm_page_undirty(m); 675 vm_page_unlock_queues(); 676 if (!error) 677 m->valid = VM_PAGE_BITS_ALL; 678 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 679 } 680 681 /* 682 * generic vnode pager input routine 683 */ 684 685 /* 686 * Local media VFS's that do not implement their own VOP_GETPAGES 687 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 688 * to implement the previous behaviour. 689 * 690 * All other FS's should use the bypass to get to the local media 691 * backing vp's VOP_GETPAGES. 692 */ 693 static int 694 vnode_pager_getpages(object, m, count, reqpage) 695 vm_object_t object; 696 vm_page_t *m; 697 int count; 698 int reqpage; 699 { 700 int rtval; 701 struct vnode *vp; 702 int bytes = count * PAGE_SIZE; 703 int vfslocked; 704 705 vp = object->handle; 706 VM_OBJECT_UNLOCK(object); 707 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 708 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 709 KASSERT(rtval != EOPNOTSUPP, 710 ("vnode_pager: FS getpages not implemented\n")); 711 VFS_UNLOCK_GIANT(vfslocked); 712 VM_OBJECT_LOCK(object); 713 return rtval; 714 } 715 716 /* 717 * This is now called from local media FS's to operate against their 718 * own vnodes if they fail to implement VOP_GETPAGES. 719 */ 720 int 721 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 722 struct vnode *vp; 723 vm_page_t *m; 724 int bytecount; 725 int reqpage; 726 { 727 vm_object_t object; 728 vm_offset_t kva; 729 off_t foff, tfoff, nextoff; 730 int i, j, size, bsize, first, firstaddr; 731 struct bufobj *bo; 732 int runpg; 733 int runend; 734 struct buf *bp; 735 int count; 736 int error = 0; 737 738 object = vp->v_object; 739 count = bytecount / PAGE_SIZE; 740 741 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 742 ("vnode_pager_generic_getpages does not support devices")); 743 if (vp->v_mount == NULL) 744 return VM_PAGER_BAD; 745 746 bsize = vp->v_mount->mnt_stat.f_iosize; 747 748 /* get the UNDERLYING device for the file with VOP_BMAP() */ 749 750 /* 751 * originally, we did not check for an error return value -- assuming 752 * an fs always has a bmap entry point -- that assumption is wrong!!! 753 */ 754 foff = IDX_TO_OFF(m[reqpage]->pindex); 755 756 /* 757 * if we can't bmap, use old VOP code 758 */ 759 if (VOP_BMAP(vp, 0, &bo, 0, NULL, NULL)) { 760 VM_OBJECT_LOCK(object); 761 vm_page_lock_queues(); 762 for (i = 0; i < count; i++) 763 if (i != reqpage) 764 vm_page_free(m[i]); 765 vm_page_unlock_queues(); 766 cnt.v_vnodein++; 767 cnt.v_vnodepgsin++; 768 error = vnode_pager_input_old(object, m[reqpage]); 769 VM_OBJECT_UNLOCK(object); 770 return (error); 771 772 /* 773 * if the blocksize is smaller than a page size, then use 774 * special small filesystem code. NFS sometimes has a small 775 * blocksize, but it can handle large reads itself. 776 */ 777 } else if ((PAGE_SIZE / bsize) > 1 && 778 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 779 VM_OBJECT_LOCK(object); 780 vm_page_lock_queues(); 781 for (i = 0; i < count; i++) 782 if (i != reqpage) 783 vm_page_free(m[i]); 784 vm_page_unlock_queues(); 785 VM_OBJECT_UNLOCK(object); 786 cnt.v_vnodein++; 787 cnt.v_vnodepgsin++; 788 return vnode_pager_input_smlfs(object, m[reqpage]); 789 } 790 791 /* 792 * If we have a completely valid page available to us, we can 793 * clean up and return. Otherwise we have to re-read the 794 * media. 795 */ 796 VM_OBJECT_LOCK(object); 797 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 798 vm_page_lock_queues(); 799 for (i = 0; i < count; i++) 800 if (i != reqpage) 801 vm_page_free(m[i]); 802 vm_page_unlock_queues(); 803 VM_OBJECT_UNLOCK(object); 804 return VM_PAGER_OK; 805 } 806 m[reqpage]->valid = 0; 807 VM_OBJECT_UNLOCK(object); 808 809 /* 810 * here on direct device I/O 811 */ 812 firstaddr = -1; 813 814 /* 815 * calculate the run that includes the required page 816 */ 817 for (first = 0, i = 0; i < count; i = runend) { 818 firstaddr = vnode_pager_addr(vp, 819 IDX_TO_OFF(m[i]->pindex), &runpg); 820 if (firstaddr == -1) { 821 VM_OBJECT_LOCK(object); 822 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 823 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 824 firstaddr, (uintmax_t)(foff >> 32), 825 (uintmax_t)foff, 826 (uintmax_t) 827 (object->un_pager.vnp.vnp_size >> 32), 828 (uintmax_t)object->un_pager.vnp.vnp_size); 829 } 830 vm_page_lock_queues(); 831 vm_page_free(m[i]); 832 vm_page_unlock_queues(); 833 VM_OBJECT_UNLOCK(object); 834 runend = i + 1; 835 first = runend; 836 continue; 837 } 838 runend = i + runpg; 839 if (runend <= reqpage) { 840 VM_OBJECT_LOCK(object); 841 vm_page_lock_queues(); 842 for (j = i; j < runend; j++) 843 vm_page_free(m[j]); 844 vm_page_unlock_queues(); 845 VM_OBJECT_UNLOCK(object); 846 } else { 847 if (runpg < (count - first)) { 848 VM_OBJECT_LOCK(object); 849 vm_page_lock_queues(); 850 for (i = first + runpg; i < count; i++) 851 vm_page_free(m[i]); 852 vm_page_unlock_queues(); 853 VM_OBJECT_UNLOCK(object); 854 count = first + runpg; 855 } 856 break; 857 } 858 first = runend; 859 } 860 861 /* 862 * the first and last page have been calculated now, move input pages 863 * to be zero based... 864 */ 865 if (first != 0) { 866 for (i = first; i < count; i++) { 867 m[i - first] = m[i]; 868 } 869 count -= first; 870 reqpage -= first; 871 } 872 873 /* 874 * calculate the file virtual address for the transfer 875 */ 876 foff = IDX_TO_OFF(m[0]->pindex); 877 878 /* 879 * calculate the size of the transfer 880 */ 881 size = count * PAGE_SIZE; 882 KASSERT(count > 0, ("zero count")); 883 if ((foff + size) > object->un_pager.vnp.vnp_size) 884 size = object->un_pager.vnp.vnp_size - foff; 885 KASSERT(size > 0, ("zero size")); 886 887 /* 888 * round up physical size for real devices. 889 */ 890 if (1) { 891 int secmask = bo->bo_bsize - 1; 892 KASSERT(secmask < PAGE_SIZE && secmask > 0, 893 ("vnode_pager_generic_getpages: sector size %d too large", 894 secmask + 1)); 895 size = (size + secmask) & ~secmask; 896 } 897 898 bp = getpbuf(&vnode_pbuf_freecnt); 899 kva = (vm_offset_t) bp->b_data; 900 901 /* 902 * and map the pages to be read into the kva 903 */ 904 pmap_qenter(kva, m, count); 905 906 /* build a minimal buffer header */ 907 bp->b_iocmd = BIO_READ; 908 bp->b_iodone = bdone; 909 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 910 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 911 bp->b_rcred = crhold(curthread->td_ucred); 912 bp->b_wcred = crhold(curthread->td_ucred); 913 bp->b_blkno = firstaddr; 914 pbgetbo(bo, bp); 915 bp->b_bcount = size; 916 bp->b_bufsize = size; 917 bp->b_runningbufspace = bp->b_bufsize; 918 runningbufspace += bp->b_runningbufspace; 919 920 cnt.v_vnodein++; 921 cnt.v_vnodepgsin += count; 922 923 /* do the input */ 924 bp->b_iooffset = dbtob(bp->b_blkno); 925 bstrategy(bp); 926 927 bwait(bp, PVM, "vnread"); 928 929 if ((bp->b_ioflags & BIO_ERROR) != 0) 930 error = EIO; 931 932 if (!error) { 933 if (size != count * PAGE_SIZE) 934 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 935 } 936 pmap_qremove(kva, count); 937 938 /* 939 * free the buffer header back to the swap buffer pool 940 */ 941 pbrelbo(bp); 942 relpbuf(bp, &vnode_pbuf_freecnt); 943 944 VM_OBJECT_LOCK(object); 945 vm_page_lock_queues(); 946 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 947 vm_page_t mt; 948 949 nextoff = tfoff + PAGE_SIZE; 950 mt = m[i]; 951 952 if (nextoff <= object->un_pager.vnp.vnp_size) { 953 /* 954 * Read filled up entire page. 955 */ 956 mt->valid = VM_PAGE_BITS_ALL; 957 vm_page_undirty(mt); /* should be an assert? XXX */ 958 pmap_clear_modify(mt); 959 } else { 960 /* 961 * Read did not fill up entire page. Since this 962 * is getpages, the page may be mapped, so we have 963 * to zero the invalid portions of the page even 964 * though we aren't setting them valid. 965 * 966 * Currently we do not set the entire page valid, 967 * we just try to clear the piece that we couldn't 968 * read. 969 */ 970 vm_page_set_validclean(mt, 0, 971 object->un_pager.vnp.vnp_size - tfoff); 972 /* handled by vm_fault now */ 973 /* vm_page_zero_invalid(mt, FALSE); */ 974 } 975 976 if (i != reqpage) { 977 978 /* 979 * whether or not to leave the page activated is up in 980 * the air, but we should put the page on a page queue 981 * somewhere. (it already is in the object). Result: 982 * It appears that empirical results show that 983 * deactivating pages is best. 984 */ 985 986 /* 987 * just in case someone was asking for this page we 988 * now tell them that it is ok to use 989 */ 990 if (!error) { 991 if (mt->flags & PG_WANTED) 992 vm_page_activate(mt); 993 else 994 vm_page_deactivate(mt); 995 vm_page_wakeup(mt); 996 } else { 997 vm_page_free(mt); 998 } 999 } 1000 } 1001 vm_page_unlock_queues(); 1002 VM_OBJECT_UNLOCK(object); 1003 if (error) { 1004 printf("vnode_pager_getpages: I/O read error\n"); 1005 } 1006 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 1007 } 1008 1009 /* 1010 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 1011 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 1012 * vnode_pager_generic_putpages() to implement the previous behaviour. 1013 * 1014 * All other FS's should use the bypass to get to the local media 1015 * backing vp's VOP_PUTPAGES. 1016 */ 1017 static void 1018 vnode_pager_putpages(object, m, count, sync, rtvals) 1019 vm_object_t object; 1020 vm_page_t *m; 1021 int count; 1022 boolean_t sync; 1023 int *rtvals; 1024 { 1025 int rtval; 1026 struct vnode *vp; 1027 struct mount *mp; 1028 int bytes = count * PAGE_SIZE; 1029 1030 /* 1031 * Force synchronous operation if we are extremely low on memory 1032 * to prevent a low-memory deadlock. VOP operations often need to 1033 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1034 * operation ). The swapper handles the case by limiting the amount 1035 * of asynchronous I/O, but that sort of solution doesn't scale well 1036 * for the vnode pager without a lot of work. 1037 * 1038 * Also, the backing vnode's iodone routine may not wake the pageout 1039 * daemon up. This should be probably be addressed XXX. 1040 */ 1041 1042 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 1043 sync |= OBJPC_SYNC; 1044 1045 /* 1046 * Call device-specific putpages function 1047 */ 1048 vp = object->handle; 1049 VM_OBJECT_UNLOCK(object); 1050 if (vp->v_type != VREG) 1051 mp = NULL; 1052 (void)vn_start_write(vp, &mp, V_WAIT); 1053 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 1054 KASSERT(rtval != EOPNOTSUPP, 1055 ("vnode_pager: stale FS putpages\n")); 1056 vn_finished_write(mp); 1057 VM_OBJECT_LOCK(object); 1058 } 1059 1060 1061 /* 1062 * This is now called from local media FS's to operate against their 1063 * own vnodes if they fail to implement VOP_PUTPAGES. 1064 * 1065 * This is typically called indirectly via the pageout daemon and 1066 * clustering has already typically occured, so in general we ask the 1067 * underlying filesystem to write the data out asynchronously rather 1068 * then delayed. 1069 */ 1070 int 1071 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 1072 struct vnode *vp; 1073 vm_page_t *m; 1074 int bytecount; 1075 int flags; 1076 int *rtvals; 1077 { 1078 int i; 1079 vm_object_t object; 1080 int count; 1081 1082 int maxsize, ncount; 1083 vm_ooffset_t poffset; 1084 struct uio auio; 1085 struct iovec aiov; 1086 int error; 1087 int ioflags; 1088 1089 object = vp->v_object; 1090 count = bytecount / PAGE_SIZE; 1091 1092 for (i = 0; i < count; i++) 1093 rtvals[i] = VM_PAGER_AGAIN; 1094 1095 if ((int64_t)m[0]->pindex < 0) { 1096 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", 1097 (long)m[0]->pindex, (u_long)m[0]->dirty); 1098 rtvals[0] = VM_PAGER_BAD; 1099 return VM_PAGER_BAD; 1100 } 1101 1102 maxsize = count * PAGE_SIZE; 1103 ncount = count; 1104 1105 poffset = IDX_TO_OFF(m[0]->pindex); 1106 1107 /* 1108 * If the page-aligned write is larger then the actual file we 1109 * have to invalidate pages occuring beyond the file EOF. However, 1110 * there is an edge case where a file may not be page-aligned where 1111 * the last page is partially invalid. In this case the filesystem 1112 * may not properly clear the dirty bits for the entire page (which 1113 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1114 * With the page locked we are free to fix-up the dirty bits here. 1115 * 1116 * We do not under any circumstances truncate the valid bits, as 1117 * this will screw up bogus page replacement. 1118 */ 1119 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1120 if (object->un_pager.vnp.vnp_size > poffset) { 1121 int pgoff; 1122 1123 maxsize = object->un_pager.vnp.vnp_size - poffset; 1124 ncount = btoc(maxsize); 1125 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1126 vm_page_lock_queues(); 1127 vm_page_clear_dirty(m[ncount - 1], pgoff, 1128 PAGE_SIZE - pgoff); 1129 vm_page_unlock_queues(); 1130 } 1131 } else { 1132 maxsize = 0; 1133 ncount = 0; 1134 } 1135 if (ncount < count) { 1136 for (i = ncount; i < count; i++) { 1137 rtvals[i] = VM_PAGER_BAD; 1138 } 1139 } 1140 } 1141 1142 /* 1143 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 1144 * rather then a bdwrite() to prevent paging I/O from saturating 1145 * the buffer cache. Dummy-up the sequential heuristic to cause 1146 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1147 * the system decides how to cluster. 1148 */ 1149 ioflags = IO_VMIO; 1150 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1151 ioflags |= IO_SYNC; 1152 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1153 ioflags |= IO_ASYNC; 1154 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1155 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1156 1157 aiov.iov_base = (caddr_t) 0; 1158 aiov.iov_len = maxsize; 1159 auio.uio_iov = &aiov; 1160 auio.uio_iovcnt = 1; 1161 auio.uio_offset = poffset; 1162 auio.uio_segflg = UIO_NOCOPY; 1163 auio.uio_rw = UIO_WRITE; 1164 auio.uio_resid = maxsize; 1165 auio.uio_td = (struct thread *) 0; 1166 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1167 cnt.v_vnodeout++; 1168 cnt.v_vnodepgsout += ncount; 1169 1170 if (error) { 1171 printf("vnode_pager_putpages: I/O error %d\n", error); 1172 } 1173 if (auio.uio_resid) { 1174 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1175 auio.uio_resid, (u_long)m[0]->pindex); 1176 } 1177 for (i = 0; i < ncount; i++) { 1178 rtvals[i] = VM_PAGER_OK; 1179 } 1180 return rtvals[0]; 1181 } 1182 1183 struct vnode * 1184 vnode_pager_lock(vm_object_t first_object) 1185 { 1186 struct vnode *vp; 1187 vm_object_t backing_object, object; 1188 1189 VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED); 1190 for (object = first_object; object != NULL; object = backing_object) { 1191 if (object->type != OBJT_VNODE) { 1192 if ((backing_object = object->backing_object) != NULL) 1193 VM_OBJECT_LOCK(backing_object); 1194 if (object != first_object) 1195 VM_OBJECT_UNLOCK(object); 1196 continue; 1197 } 1198 retry: 1199 if (object->flags & OBJ_DEAD) { 1200 if (object != first_object) 1201 VM_OBJECT_UNLOCK(object); 1202 return NULL; 1203 } 1204 vp = object->handle; 1205 VI_LOCK(vp); 1206 VM_OBJECT_UNLOCK(object); 1207 if (first_object != object) 1208 VM_OBJECT_UNLOCK(first_object); 1209 if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | LK_NOPAUSE | 1210 LK_RETRY | LK_SHARED, curthread)) { 1211 VM_OBJECT_LOCK(first_object); 1212 if (object != first_object) 1213 VM_OBJECT_LOCK(object); 1214 if (object->type != OBJT_VNODE) { 1215 if (object != first_object) 1216 VM_OBJECT_UNLOCK(object); 1217 return NULL; 1218 } 1219 printf("vnode_pager_lock: retrying\n"); 1220 goto retry; 1221 } 1222 VM_OBJECT_LOCK(first_object); 1223 return (vp); 1224 } 1225 return NULL; 1226 } 1227