xref: /freebsd/sys/vm/vnode_pager.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/limits.h>
65 #include <sys/conf.h>
66 #include <sys/sf_buf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_page.h>
71 #include <vm/vm_pager.h>
72 #include <vm/vm_map.h>
73 #include <vm/vnode_pager.h>
74 #include <vm/vm_extern.h>
75 
76 static void vnode_pager_init(void);
77 static vm_offset_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
78 					 int *run);
79 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
80 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
81 static void vnode_pager_dealloc(vm_object_t);
82 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
83 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
84 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
85 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t);
86 
87 struct pagerops vnodepagerops = {
88 	.pgo_init =	vnode_pager_init,
89 	.pgo_alloc =	vnode_pager_alloc,
90 	.pgo_dealloc =	vnode_pager_dealloc,
91 	.pgo_getpages =	vnode_pager_getpages,
92 	.pgo_putpages =	vnode_pager_putpages,
93 	.pgo_haspage =	vnode_pager_haspage,
94 };
95 
96 int vnode_pbuf_freecnt;
97 
98 static void
99 vnode_pager_init(void)
100 {
101 
102 	vnode_pbuf_freecnt = nswbuf / 2 + 1;
103 }
104 
105 /* Create the VM system backing object for this vnode */
106 int
107 vnode_create_vobject(struct vnode *vp, size_t isize, struct thread *td)
108 {
109 	vm_object_t object;
110 	vm_ooffset_t size = isize;
111 	struct vattr va;
112 
113 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
114 		return (0);
115 
116 	while ((object = vp->v_object) != NULL) {
117 		VM_OBJECT_LOCK(object);
118 		if (!(object->flags & OBJ_DEAD)) {
119 			VM_OBJECT_UNLOCK(object);
120 			return (0);
121 		}
122 		VOP_UNLOCK(vp, 0, td);
123 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
124 		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0);
125 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
126 	}
127 
128 	if (size == 0) {
129 		if (vn_isdisk(vp, NULL)) {
130 			size = IDX_TO_OFF(INT_MAX);
131 		} else {
132 			if (VOP_GETATTR(vp, &va, td->td_ucred, td) != 0)
133 				return (0);
134 			size = va.va_size;
135 		}
136 	}
137 
138 	object = vnode_pager_alloc(vp, size, 0, 0);
139 	/*
140 	 * Dereference the reference we just created.  This assumes
141 	 * that the object is associated with the vp.
142 	 */
143 	VM_OBJECT_LOCK(object);
144 	object->ref_count--;
145 	VM_OBJECT_UNLOCK(object);
146 	vrele(vp);
147 
148 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
149 
150 	return (0);
151 }
152 
153 void
154 vnode_destroy_vobject(struct vnode *vp)
155 {
156 	struct vm_object *obj;
157 
158 	obj = vp->v_object;
159 	if (obj == NULL)
160 		return;
161 	vp->v_object = NULL;
162 	VM_OBJECT_LOCK(obj);
163 	if (obj->ref_count == 0) {
164 		/*
165 		 * vclean() may be called twice. The first time
166 		 * removes the primary reference to the object,
167 		 * the second time goes one further and is a
168 		 * special-case to terminate the object.
169 		 *
170 		 * don't double-terminate the object
171 		 */
172 		if ((obj->flags & OBJ_DEAD) == 0)
173 			vm_object_terminate(obj);
174 		else
175 			VM_OBJECT_UNLOCK(obj);
176 	} else {
177 		/*
178 		 * Woe to the process that tries to page now :-).
179 		 */
180 		vm_pager_deallocate(obj);
181 		VM_OBJECT_UNLOCK(obj);
182 	}
183 }
184 
185 
186 /*
187  * Allocate (or lookup) pager for a vnode.
188  * Handle is a vnode pointer.
189  *
190  * MPSAFE
191  */
192 vm_object_t
193 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
194 		  vm_ooffset_t offset)
195 {
196 	vm_object_t object;
197 	struct vnode *vp;
198 
199 	/*
200 	 * Pageout to vnode, no can do yet.
201 	 */
202 	if (handle == NULL)
203 		return (NULL);
204 
205 	vp = (struct vnode *) handle;
206 
207 	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
208 
209 	/*
210 	 * Prevent race condition when allocating the object. This
211 	 * can happen with NFS vnodes since the nfsnode isn't locked.
212 	 */
213 	VI_LOCK(vp);
214 	while (vp->v_iflag & VI_OLOCK) {
215 		vp->v_iflag |= VI_OWANT;
216 		msleep(vp, VI_MTX(vp), PVM, "vnpobj", 0);
217 	}
218 	vp->v_iflag |= VI_OLOCK;
219 	VI_UNLOCK(vp);
220 
221 	/*
222 	 * If the object is being terminated, wait for it to
223 	 * go away.
224 	 */
225 	while ((object = vp->v_object) != NULL) {
226 		VM_OBJECT_LOCK(object);
227 		if ((object->flags & OBJ_DEAD) == 0)
228 			break;
229 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
230 		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
231 	}
232 
233 	if (vp->v_usecount == 0)
234 		panic("vnode_pager_alloc: no vnode reference");
235 
236 	if (object == NULL) {
237 		/*
238 		 * And an object of the appropriate size
239 		 */
240 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
241 
242 		object->un_pager.vnp.vnp_size = size;
243 
244 		object->handle = handle;
245 		vp->v_object = object;
246 	} else {
247 		object->ref_count++;
248 		VM_OBJECT_UNLOCK(object);
249 	}
250 	VI_LOCK(vp);
251 	vp->v_usecount++;
252 	vp->v_iflag &= ~VI_OLOCK;
253 	if (vp->v_iflag & VI_OWANT) {
254 		vp->v_iflag &= ~VI_OWANT;
255 		wakeup(vp);
256 	}
257 	VI_UNLOCK(vp);
258 	return (object);
259 }
260 
261 /*
262  *	The object must be locked.
263  */
264 static void
265 vnode_pager_dealloc(object)
266 	vm_object_t object;
267 {
268 	struct vnode *vp = object->handle;
269 
270 	if (vp == NULL)
271 		panic("vnode_pager_dealloc: pager already dealloced");
272 
273 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
274 	vm_object_pip_wait(object, "vnpdea");
275 
276 	object->handle = NULL;
277 	object->type = OBJT_DEAD;
278 	if (object->flags & OBJ_DISCONNECTWNT) {
279 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
280 		wakeup(object);
281 	}
282 	ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc");
283 	vp->v_object = NULL;
284 	vp->v_vflag &= ~VV_TEXT;
285 }
286 
287 static boolean_t
288 vnode_pager_haspage(object, pindex, before, after)
289 	vm_object_t object;
290 	vm_pindex_t pindex;
291 	int *before;
292 	int *after;
293 {
294 	struct vnode *vp = object->handle;
295 	daddr_t bn;
296 	int err;
297 	daddr_t reqblock;
298 	int poff;
299 	int bsize;
300 	int pagesperblock, blocksperpage;
301 	int vfslocked;
302 
303 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
304 	/*
305 	 * If no vp or vp is doomed or marked transparent to VM, we do not
306 	 * have the page.
307 	 */
308 	if (vp == NULL)
309 		return FALSE;
310 
311 	VI_LOCK(vp);
312 	if (vp->v_iflag & VI_DOOMED) {
313 		VI_UNLOCK(vp);
314 		return FALSE;
315 	}
316 	VI_UNLOCK(vp);
317 	/*
318 	 * If filesystem no longer mounted or offset beyond end of file we do
319 	 * not have the page.
320 	 */
321 	if ((vp->v_mount == NULL) ||
322 	    (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size))
323 		return FALSE;
324 
325 	bsize = vp->v_mount->mnt_stat.f_iosize;
326 	pagesperblock = bsize / PAGE_SIZE;
327 	blocksperpage = 0;
328 	if (pagesperblock > 0) {
329 		reqblock = pindex / pagesperblock;
330 	} else {
331 		blocksperpage = (PAGE_SIZE / bsize);
332 		reqblock = pindex * blocksperpage;
333 	}
334 	VM_OBJECT_UNLOCK(object);
335 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
336 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
337 	VFS_UNLOCK_GIANT(vfslocked);
338 	VM_OBJECT_LOCK(object);
339 	if (err)
340 		return TRUE;
341 	if (bn == -1)
342 		return FALSE;
343 	if (pagesperblock > 0) {
344 		poff = pindex - (reqblock * pagesperblock);
345 		if (before) {
346 			*before *= pagesperblock;
347 			*before += poff;
348 		}
349 		if (after) {
350 			int numafter;
351 			*after *= pagesperblock;
352 			numafter = pagesperblock - (poff + 1);
353 			if (IDX_TO_OFF(pindex + numafter) >
354 			    object->un_pager.vnp.vnp_size) {
355 				numafter =
356 		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
357 				    pindex;
358 			}
359 			*after += numafter;
360 		}
361 	} else {
362 		if (before) {
363 			*before /= blocksperpage;
364 		}
365 
366 		if (after) {
367 			*after /= blocksperpage;
368 		}
369 	}
370 	return TRUE;
371 }
372 
373 /*
374  * Lets the VM system know about a change in size for a file.
375  * We adjust our own internal size and flush any cached pages in
376  * the associated object that are affected by the size change.
377  *
378  * Note: this routine may be invoked as a result of a pager put
379  * operation (possibly at object termination time), so we must be careful.
380  */
381 void
382 vnode_pager_setsize(vp, nsize)
383 	struct vnode *vp;
384 	vm_ooffset_t nsize;
385 {
386 	vm_object_t object;
387 	vm_page_t m;
388 	vm_pindex_t nobjsize;
389 
390 	if ((object = vp->v_object) == NULL)
391 		return;
392 	VM_OBJECT_LOCK(object);
393 	if (nsize == object->un_pager.vnp.vnp_size) {
394 		/*
395 		 * Hasn't changed size
396 		 */
397 		VM_OBJECT_UNLOCK(object);
398 		return;
399 	}
400 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
401 	if (nsize < object->un_pager.vnp.vnp_size) {
402 		/*
403 		 * File has shrunk. Toss any cached pages beyond the new EOF.
404 		 */
405 		if (nobjsize < object->size)
406 			vm_object_page_remove(object, nobjsize, object->size,
407 			    FALSE);
408 		/*
409 		 * this gets rid of garbage at the end of a page that is now
410 		 * only partially backed by the vnode.
411 		 *
412 		 * XXX for some reason (I don't know yet), if we take a
413 		 * completely invalid page and mark it partially valid
414 		 * it can screw up NFS reads, so we don't allow the case.
415 		 */
416 		if ((nsize & PAGE_MASK) &&
417 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
418 		    m->valid != 0) {
419 			int base = (int)nsize & PAGE_MASK;
420 			int size = PAGE_SIZE - base;
421 
422 			/*
423 			 * Clear out partial-page garbage in case
424 			 * the page has been mapped.
425 			 */
426 			pmap_zero_page_area(m, base, size);
427 
428 			/*
429 			 * XXX work around SMP data integrity race
430 			 * by unmapping the page from user processes.
431 			 * The garbage we just cleared may be mapped
432 			 * to a user process running on another cpu
433 			 * and this code is not running through normal
434 			 * I/O channels which handle SMP issues for
435 			 * us, so unmap page to synchronize all cpus.
436 			 *
437 			 * XXX should vm_pager_unmap_page() have
438 			 * dealt with this?
439 			 */
440 			vm_page_lock_queues();
441 			pmap_remove_all(m);
442 
443 			/*
444 			 * Clear out partial-page dirty bits.  This
445 			 * has the side effect of setting the valid
446 			 * bits, but that is ok.  There are a bunch
447 			 * of places in the VM system where we expected
448 			 * m->dirty == VM_PAGE_BITS_ALL.  The file EOF
449 			 * case is one of them.  If the page is still
450 			 * partially dirty, make it fully dirty.
451 			 *
452 			 * note that we do not clear out the valid
453 			 * bits.  This would prevent bogus_page
454 			 * replacement from working properly.
455 			 */
456 			vm_page_set_validclean(m, base, size);
457 			if (m->dirty != 0)
458 				m->dirty = VM_PAGE_BITS_ALL;
459 			vm_page_unlock_queues();
460 		}
461 	}
462 	object->un_pager.vnp.vnp_size = nsize;
463 	object->size = nobjsize;
464 	VM_OBJECT_UNLOCK(object);
465 }
466 
467 /*
468  * calculate the linear (byte) disk address of specified virtual
469  * file address
470  */
471 static vm_offset_t
472 vnode_pager_addr(vp, address, run)
473 	struct vnode *vp;
474 	vm_ooffset_t address;
475 	int *run;
476 {
477 	int rtaddress;
478 	int bsize;
479 	daddr_t block;
480 	int err;
481 	daddr_t vblock;
482 	int voffset;
483 
484 	if (address < 0)
485 		return -1;
486 
487 	if (vp->v_mount == NULL)
488 		return -1;
489 
490 	bsize = vp->v_mount->mnt_stat.f_iosize;
491 	vblock = address / bsize;
492 	voffset = address % bsize;
493 
494 	err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL);
495 
496 	if (err || (block == -1))
497 		rtaddress = -1;
498 	else {
499 		rtaddress = block + voffset / DEV_BSIZE;
500 		if (run) {
501 			*run += 1;
502 			*run *= bsize/PAGE_SIZE;
503 			*run -= voffset/PAGE_SIZE;
504 		}
505 	}
506 
507 	return rtaddress;
508 }
509 
510 /*
511  * small block filesystem vnode pager input
512  */
513 static int
514 vnode_pager_input_smlfs(object, m)
515 	vm_object_t object;
516 	vm_page_t m;
517 {
518 	int i;
519 	struct vnode *vp;
520 	struct bufobj *bo;
521 	struct buf *bp;
522 	struct sf_buf *sf;
523 	int fileaddr;
524 	vm_offset_t bsize;
525 	int error = 0;
526 
527 	vp = object->handle;
528 	if (vp->v_mount == NULL)
529 		return VM_PAGER_BAD;
530 
531 	bsize = vp->v_mount->mnt_stat.f_iosize;
532 
533 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
534 
535 	sf = sf_buf_alloc(m, 0);
536 
537 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
538 		vm_ooffset_t address;
539 
540 		if (vm_page_bits(i * bsize, bsize) & m->valid)
541 			continue;
542 
543 		address = IDX_TO_OFF(m->pindex) + i * bsize;
544 		if (address >= object->un_pager.vnp.vnp_size) {
545 			fileaddr = -1;
546 		} else {
547 			fileaddr = vnode_pager_addr(vp, address, NULL);
548 		}
549 		if (fileaddr != -1) {
550 			bp = getpbuf(&vnode_pbuf_freecnt);
551 
552 			/* build a minimal buffer header */
553 			bp->b_iocmd = BIO_READ;
554 			bp->b_iodone = bdone;
555 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
556 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
557 			bp->b_rcred = crhold(curthread->td_ucred);
558 			bp->b_wcred = crhold(curthread->td_ucred);
559 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
560 			bp->b_blkno = fileaddr;
561 			pbgetbo(bo, bp);
562 			bp->b_bcount = bsize;
563 			bp->b_bufsize = bsize;
564 			bp->b_runningbufspace = bp->b_bufsize;
565 			runningbufspace += bp->b_runningbufspace;
566 
567 			/* do the input */
568 			bp->b_iooffset = dbtob(bp->b_blkno);
569 			bstrategy(bp);
570 
571 			/* we definitely need to be at splvm here */
572 
573 			bwait(bp, PVM, "vnsrd");
574 
575 			if ((bp->b_ioflags & BIO_ERROR) != 0)
576 				error = EIO;
577 
578 			/*
579 			 * free the buffer header back to the swap buffer pool
580 			 */
581 			pbrelbo(bp);
582 			relpbuf(bp, &vnode_pbuf_freecnt);
583 			if (error)
584 				break;
585 
586 			VM_OBJECT_LOCK(object);
587 			vm_page_lock_queues();
588 			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
589 			vm_page_unlock_queues();
590 			VM_OBJECT_UNLOCK(object);
591 		} else {
592 			VM_OBJECT_LOCK(object);
593 			vm_page_lock_queues();
594 			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
595 			vm_page_unlock_queues();
596 			VM_OBJECT_UNLOCK(object);
597 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
598 		}
599 	}
600 	sf_buf_free(sf);
601 	vm_page_lock_queues();
602 	pmap_clear_modify(m);
603 	vm_page_unlock_queues();
604 	if (error) {
605 		return VM_PAGER_ERROR;
606 	}
607 	return VM_PAGER_OK;
608 
609 }
610 
611 
612 /*
613  * old style vnode pager input routine
614  */
615 static int
616 vnode_pager_input_old(object, m)
617 	vm_object_t object;
618 	vm_page_t m;
619 {
620 	struct uio auio;
621 	struct iovec aiov;
622 	int error;
623 	int size;
624 	struct sf_buf *sf;
625 	struct vnode *vp;
626 
627 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
628 	error = 0;
629 
630 	/*
631 	 * Return failure if beyond current EOF
632 	 */
633 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
634 		return VM_PAGER_BAD;
635 	} else {
636 		size = PAGE_SIZE;
637 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
638 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
639 		vp = object->handle;
640 		VM_OBJECT_UNLOCK(object);
641 
642 		/*
643 		 * Allocate a kernel virtual address and initialize so that
644 		 * we can use VOP_READ/WRITE routines.
645 		 */
646 		sf = sf_buf_alloc(m, 0);
647 
648 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
649 		aiov.iov_len = size;
650 		auio.uio_iov = &aiov;
651 		auio.uio_iovcnt = 1;
652 		auio.uio_offset = IDX_TO_OFF(m->pindex);
653 		auio.uio_segflg = UIO_SYSSPACE;
654 		auio.uio_rw = UIO_READ;
655 		auio.uio_resid = size;
656 		auio.uio_td = curthread;
657 
658 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
659 		if (!error) {
660 			int count = size - auio.uio_resid;
661 
662 			if (count == 0)
663 				error = EINVAL;
664 			else if (count != PAGE_SIZE)
665 				bzero((caddr_t)sf_buf_kva(sf) + count,
666 				    PAGE_SIZE - count);
667 		}
668 		sf_buf_free(sf);
669 
670 		VM_OBJECT_LOCK(object);
671 	}
672 	vm_page_lock_queues();
673 	pmap_clear_modify(m);
674 	vm_page_undirty(m);
675 	vm_page_unlock_queues();
676 	if (!error)
677 		m->valid = VM_PAGE_BITS_ALL;
678 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
679 }
680 
681 /*
682  * generic vnode pager input routine
683  */
684 
685 /*
686  * Local media VFS's that do not implement their own VOP_GETPAGES
687  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
688  * to implement the previous behaviour.
689  *
690  * All other FS's should use the bypass to get to the local media
691  * backing vp's VOP_GETPAGES.
692  */
693 static int
694 vnode_pager_getpages(object, m, count, reqpage)
695 	vm_object_t object;
696 	vm_page_t *m;
697 	int count;
698 	int reqpage;
699 {
700 	int rtval;
701 	struct vnode *vp;
702 	int bytes = count * PAGE_SIZE;
703 	int vfslocked;
704 
705 	vp = object->handle;
706 	VM_OBJECT_UNLOCK(object);
707 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
708 	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
709 	KASSERT(rtval != EOPNOTSUPP,
710 	    ("vnode_pager: FS getpages not implemented\n"));
711 	VFS_UNLOCK_GIANT(vfslocked);
712 	VM_OBJECT_LOCK(object);
713 	return rtval;
714 }
715 
716 /*
717  * This is now called from local media FS's to operate against their
718  * own vnodes if they fail to implement VOP_GETPAGES.
719  */
720 int
721 vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
722 	struct vnode *vp;
723 	vm_page_t *m;
724 	int bytecount;
725 	int reqpage;
726 {
727 	vm_object_t object;
728 	vm_offset_t kva;
729 	off_t foff, tfoff, nextoff;
730 	int i, j, size, bsize, first, firstaddr;
731 	struct bufobj *bo;
732 	int runpg;
733 	int runend;
734 	struct buf *bp;
735 	int count;
736 	int error = 0;
737 
738 	object = vp->v_object;
739 	count = bytecount / PAGE_SIZE;
740 
741 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
742 	    ("vnode_pager_generic_getpages does not support devices"));
743 	if (vp->v_mount == NULL)
744 		return VM_PAGER_BAD;
745 
746 	bsize = vp->v_mount->mnt_stat.f_iosize;
747 
748 	/* get the UNDERLYING device for the file with VOP_BMAP() */
749 
750 	/*
751 	 * originally, we did not check for an error return value -- assuming
752 	 * an fs always has a bmap entry point -- that assumption is wrong!!!
753 	 */
754 	foff = IDX_TO_OFF(m[reqpage]->pindex);
755 
756 	/*
757 	 * if we can't bmap, use old VOP code
758 	 */
759 	if (VOP_BMAP(vp, 0, &bo, 0, NULL, NULL)) {
760 		VM_OBJECT_LOCK(object);
761 		vm_page_lock_queues();
762 		for (i = 0; i < count; i++)
763 			if (i != reqpage)
764 				vm_page_free(m[i]);
765 		vm_page_unlock_queues();
766 		cnt.v_vnodein++;
767 		cnt.v_vnodepgsin++;
768 		error = vnode_pager_input_old(object, m[reqpage]);
769 		VM_OBJECT_UNLOCK(object);
770 		return (error);
771 
772 		/*
773 		 * if the blocksize is smaller than a page size, then use
774 		 * special small filesystem code.  NFS sometimes has a small
775 		 * blocksize, but it can handle large reads itself.
776 		 */
777 	} else if ((PAGE_SIZE / bsize) > 1 &&
778 	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
779 		VM_OBJECT_LOCK(object);
780 		vm_page_lock_queues();
781 		for (i = 0; i < count; i++)
782 			if (i != reqpage)
783 				vm_page_free(m[i]);
784 		vm_page_unlock_queues();
785 		VM_OBJECT_UNLOCK(object);
786 		cnt.v_vnodein++;
787 		cnt.v_vnodepgsin++;
788 		return vnode_pager_input_smlfs(object, m[reqpage]);
789 	}
790 
791 	/*
792 	 * If we have a completely valid page available to us, we can
793 	 * clean up and return.  Otherwise we have to re-read the
794 	 * media.
795 	 */
796 	VM_OBJECT_LOCK(object);
797 	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
798 		vm_page_lock_queues();
799 		for (i = 0; i < count; i++)
800 			if (i != reqpage)
801 				vm_page_free(m[i]);
802 		vm_page_unlock_queues();
803 		VM_OBJECT_UNLOCK(object);
804 		return VM_PAGER_OK;
805 	}
806 	m[reqpage]->valid = 0;
807 	VM_OBJECT_UNLOCK(object);
808 
809 	/*
810 	 * here on direct device I/O
811 	 */
812 	firstaddr = -1;
813 
814 	/*
815 	 * calculate the run that includes the required page
816 	 */
817 	for (first = 0, i = 0; i < count; i = runend) {
818 		firstaddr = vnode_pager_addr(vp,
819 			IDX_TO_OFF(m[i]->pindex), &runpg);
820 		if (firstaddr == -1) {
821 			VM_OBJECT_LOCK(object);
822 			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
823 				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
824 				    firstaddr, (uintmax_t)(foff >> 32),
825 				    (uintmax_t)foff,
826 				    (uintmax_t)
827 				    (object->un_pager.vnp.vnp_size >> 32),
828 				    (uintmax_t)object->un_pager.vnp.vnp_size);
829 			}
830 			vm_page_lock_queues();
831 			vm_page_free(m[i]);
832 			vm_page_unlock_queues();
833 			VM_OBJECT_UNLOCK(object);
834 			runend = i + 1;
835 			first = runend;
836 			continue;
837 		}
838 		runend = i + runpg;
839 		if (runend <= reqpage) {
840 			VM_OBJECT_LOCK(object);
841 			vm_page_lock_queues();
842 			for (j = i; j < runend; j++)
843 				vm_page_free(m[j]);
844 			vm_page_unlock_queues();
845 			VM_OBJECT_UNLOCK(object);
846 		} else {
847 			if (runpg < (count - first)) {
848 				VM_OBJECT_LOCK(object);
849 				vm_page_lock_queues();
850 				for (i = first + runpg; i < count; i++)
851 					vm_page_free(m[i]);
852 				vm_page_unlock_queues();
853 				VM_OBJECT_UNLOCK(object);
854 				count = first + runpg;
855 			}
856 			break;
857 		}
858 		first = runend;
859 	}
860 
861 	/*
862 	 * the first and last page have been calculated now, move input pages
863 	 * to be zero based...
864 	 */
865 	if (first != 0) {
866 		for (i = first; i < count; i++) {
867 			m[i - first] = m[i];
868 		}
869 		count -= first;
870 		reqpage -= first;
871 	}
872 
873 	/*
874 	 * calculate the file virtual address for the transfer
875 	 */
876 	foff = IDX_TO_OFF(m[0]->pindex);
877 
878 	/*
879 	 * calculate the size of the transfer
880 	 */
881 	size = count * PAGE_SIZE;
882 	KASSERT(count > 0, ("zero count"));
883 	if ((foff + size) > object->un_pager.vnp.vnp_size)
884 		size = object->un_pager.vnp.vnp_size - foff;
885 	KASSERT(size > 0, ("zero size"));
886 
887 	/*
888 	 * round up physical size for real devices.
889 	 */
890 	if (1) {
891 		int secmask = bo->bo_bsize - 1;
892 		KASSERT(secmask < PAGE_SIZE && secmask > 0,
893 		    ("vnode_pager_generic_getpages: sector size %d too large",
894 		    secmask + 1));
895 		size = (size + secmask) & ~secmask;
896 	}
897 
898 	bp = getpbuf(&vnode_pbuf_freecnt);
899 	kva = (vm_offset_t) bp->b_data;
900 
901 	/*
902 	 * and map the pages to be read into the kva
903 	 */
904 	pmap_qenter(kva, m, count);
905 
906 	/* build a minimal buffer header */
907 	bp->b_iocmd = BIO_READ;
908 	bp->b_iodone = bdone;
909 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
910 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
911 	bp->b_rcred = crhold(curthread->td_ucred);
912 	bp->b_wcred = crhold(curthread->td_ucred);
913 	bp->b_blkno = firstaddr;
914 	pbgetbo(bo, bp);
915 	bp->b_bcount = size;
916 	bp->b_bufsize = size;
917 	bp->b_runningbufspace = bp->b_bufsize;
918 	runningbufspace += bp->b_runningbufspace;
919 
920 	cnt.v_vnodein++;
921 	cnt.v_vnodepgsin += count;
922 
923 	/* do the input */
924 	bp->b_iooffset = dbtob(bp->b_blkno);
925 	bstrategy(bp);
926 
927 	bwait(bp, PVM, "vnread");
928 
929 	if ((bp->b_ioflags & BIO_ERROR) != 0)
930 		error = EIO;
931 
932 	if (!error) {
933 		if (size != count * PAGE_SIZE)
934 			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
935 	}
936 	pmap_qremove(kva, count);
937 
938 	/*
939 	 * free the buffer header back to the swap buffer pool
940 	 */
941 	pbrelbo(bp);
942 	relpbuf(bp, &vnode_pbuf_freecnt);
943 
944 	VM_OBJECT_LOCK(object);
945 	vm_page_lock_queues();
946 	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
947 		vm_page_t mt;
948 
949 		nextoff = tfoff + PAGE_SIZE;
950 		mt = m[i];
951 
952 		if (nextoff <= object->un_pager.vnp.vnp_size) {
953 			/*
954 			 * Read filled up entire page.
955 			 */
956 			mt->valid = VM_PAGE_BITS_ALL;
957 			vm_page_undirty(mt);	/* should be an assert? XXX */
958 			pmap_clear_modify(mt);
959 		} else {
960 			/*
961 			 * Read did not fill up entire page.  Since this
962 			 * is getpages, the page may be mapped, so we have
963 			 * to zero the invalid portions of the page even
964 			 * though we aren't setting them valid.
965 			 *
966 			 * Currently we do not set the entire page valid,
967 			 * we just try to clear the piece that we couldn't
968 			 * read.
969 			 */
970 			vm_page_set_validclean(mt, 0,
971 			    object->un_pager.vnp.vnp_size - tfoff);
972 			/* handled by vm_fault now */
973 			/* vm_page_zero_invalid(mt, FALSE); */
974 		}
975 
976 		if (i != reqpage) {
977 
978 			/*
979 			 * whether or not to leave the page activated is up in
980 			 * the air, but we should put the page on a page queue
981 			 * somewhere. (it already is in the object). Result:
982 			 * It appears that empirical results show that
983 			 * deactivating pages is best.
984 			 */
985 
986 			/*
987 			 * just in case someone was asking for this page we
988 			 * now tell them that it is ok to use
989 			 */
990 			if (!error) {
991 				if (mt->flags & PG_WANTED)
992 					vm_page_activate(mt);
993 				else
994 					vm_page_deactivate(mt);
995 				vm_page_wakeup(mt);
996 			} else {
997 				vm_page_free(mt);
998 			}
999 		}
1000 	}
1001 	vm_page_unlock_queues();
1002 	VM_OBJECT_UNLOCK(object);
1003 	if (error) {
1004 		printf("vnode_pager_getpages: I/O read error\n");
1005 	}
1006 	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
1007 }
1008 
1009 /*
1010  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1011  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1012  * vnode_pager_generic_putpages() to implement the previous behaviour.
1013  *
1014  * All other FS's should use the bypass to get to the local media
1015  * backing vp's VOP_PUTPAGES.
1016  */
1017 static void
1018 vnode_pager_putpages(object, m, count, sync, rtvals)
1019 	vm_object_t object;
1020 	vm_page_t *m;
1021 	int count;
1022 	boolean_t sync;
1023 	int *rtvals;
1024 {
1025 	int rtval;
1026 	struct vnode *vp;
1027 	struct mount *mp;
1028 	int bytes = count * PAGE_SIZE;
1029 
1030 	/*
1031 	 * Force synchronous operation if we are extremely low on memory
1032 	 * to prevent a low-memory deadlock.  VOP operations often need to
1033 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1034 	 * operation ).  The swapper handles the case by limiting the amount
1035 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1036 	 * for the vnode pager without a lot of work.
1037 	 *
1038 	 * Also, the backing vnode's iodone routine may not wake the pageout
1039 	 * daemon up.  This should be probably be addressed XXX.
1040 	 */
1041 
1042 	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
1043 		sync |= OBJPC_SYNC;
1044 
1045 	/*
1046 	 * Call device-specific putpages function
1047 	 */
1048 	vp = object->handle;
1049 	VM_OBJECT_UNLOCK(object);
1050 	if (vp->v_type != VREG)
1051 		mp = NULL;
1052 	(void)vn_start_write(vp, &mp, V_WAIT);
1053 	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
1054 	KASSERT(rtval != EOPNOTSUPP,
1055 	    ("vnode_pager: stale FS putpages\n"));
1056 	vn_finished_write(mp);
1057 	VM_OBJECT_LOCK(object);
1058 }
1059 
1060 
1061 /*
1062  * This is now called from local media FS's to operate against their
1063  * own vnodes if they fail to implement VOP_PUTPAGES.
1064  *
1065  * This is typically called indirectly via the pageout daemon and
1066  * clustering has already typically occured, so in general we ask the
1067  * underlying filesystem to write the data out asynchronously rather
1068  * then delayed.
1069  */
1070 int
1071 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals)
1072 	struct vnode *vp;
1073 	vm_page_t *m;
1074 	int bytecount;
1075 	int flags;
1076 	int *rtvals;
1077 {
1078 	int i;
1079 	vm_object_t object;
1080 	int count;
1081 
1082 	int maxsize, ncount;
1083 	vm_ooffset_t poffset;
1084 	struct uio auio;
1085 	struct iovec aiov;
1086 	int error;
1087 	int ioflags;
1088 
1089 	object = vp->v_object;
1090 	count = bytecount / PAGE_SIZE;
1091 
1092 	for (i = 0; i < count; i++)
1093 		rtvals[i] = VM_PAGER_AGAIN;
1094 
1095 	if ((int64_t)m[0]->pindex < 0) {
1096 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1097 			(long)m[0]->pindex, (u_long)m[0]->dirty);
1098 		rtvals[0] = VM_PAGER_BAD;
1099 		return VM_PAGER_BAD;
1100 	}
1101 
1102 	maxsize = count * PAGE_SIZE;
1103 	ncount = count;
1104 
1105 	poffset = IDX_TO_OFF(m[0]->pindex);
1106 
1107 	/*
1108 	 * If the page-aligned write is larger then the actual file we
1109 	 * have to invalidate pages occuring beyond the file EOF.  However,
1110 	 * there is an edge case where a file may not be page-aligned where
1111 	 * the last page is partially invalid.  In this case the filesystem
1112 	 * may not properly clear the dirty bits for the entire page (which
1113 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1114 	 * With the page locked we are free to fix-up the dirty bits here.
1115 	 *
1116 	 * We do not under any circumstances truncate the valid bits, as
1117 	 * this will screw up bogus page replacement.
1118 	 */
1119 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1120 		if (object->un_pager.vnp.vnp_size > poffset) {
1121 			int pgoff;
1122 
1123 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1124 			ncount = btoc(maxsize);
1125 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1126 				vm_page_lock_queues();
1127 				vm_page_clear_dirty(m[ncount - 1], pgoff,
1128 					PAGE_SIZE - pgoff);
1129 				vm_page_unlock_queues();
1130 			}
1131 		} else {
1132 			maxsize = 0;
1133 			ncount = 0;
1134 		}
1135 		if (ncount < count) {
1136 			for (i = ncount; i < count; i++) {
1137 				rtvals[i] = VM_PAGER_BAD;
1138 			}
1139 		}
1140 	}
1141 
1142 	/*
1143 	 * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
1144 	 * rather then a bdwrite() to prevent paging I/O from saturating
1145 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1146 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1147 	 * the system decides how to cluster.
1148 	 */
1149 	ioflags = IO_VMIO;
1150 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1151 		ioflags |= IO_SYNC;
1152 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1153 		ioflags |= IO_ASYNC;
1154 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1155 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1156 
1157 	aiov.iov_base = (caddr_t) 0;
1158 	aiov.iov_len = maxsize;
1159 	auio.uio_iov = &aiov;
1160 	auio.uio_iovcnt = 1;
1161 	auio.uio_offset = poffset;
1162 	auio.uio_segflg = UIO_NOCOPY;
1163 	auio.uio_rw = UIO_WRITE;
1164 	auio.uio_resid = maxsize;
1165 	auio.uio_td = (struct thread *) 0;
1166 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1167 	cnt.v_vnodeout++;
1168 	cnt.v_vnodepgsout += ncount;
1169 
1170 	if (error) {
1171 		printf("vnode_pager_putpages: I/O error %d\n", error);
1172 	}
1173 	if (auio.uio_resid) {
1174 		printf("vnode_pager_putpages: residual I/O %d at %lu\n",
1175 		    auio.uio_resid, (u_long)m[0]->pindex);
1176 	}
1177 	for (i = 0; i < ncount; i++) {
1178 		rtvals[i] = VM_PAGER_OK;
1179 	}
1180 	return rtvals[0];
1181 }
1182 
1183 struct vnode *
1184 vnode_pager_lock(vm_object_t first_object)
1185 {
1186 	struct vnode *vp;
1187 	vm_object_t backing_object, object;
1188 
1189 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
1190 	for (object = first_object; object != NULL; object = backing_object) {
1191 		if (object->type != OBJT_VNODE) {
1192 			if ((backing_object = object->backing_object) != NULL)
1193 				VM_OBJECT_LOCK(backing_object);
1194 			if (object != first_object)
1195 				VM_OBJECT_UNLOCK(object);
1196 			continue;
1197 		}
1198 	retry:
1199 		if (object->flags & OBJ_DEAD) {
1200 			if (object != first_object)
1201 				VM_OBJECT_UNLOCK(object);
1202 			return NULL;
1203 		}
1204 		vp = object->handle;
1205 		VI_LOCK(vp);
1206 		VM_OBJECT_UNLOCK(object);
1207 		if (first_object != object)
1208 			VM_OBJECT_UNLOCK(first_object);
1209 		if (vget(vp, LK_CANRECURSE | LK_INTERLOCK | LK_NOPAUSE |
1210 		    LK_RETRY | LK_SHARED, curthread)) {
1211 			VM_OBJECT_LOCK(first_object);
1212 			if (object != first_object)
1213 				VM_OBJECT_LOCK(object);
1214 			if (object->type != OBJT_VNODE) {
1215 				if (object != first_object)
1216 					VM_OBJECT_UNLOCK(object);
1217 				return NULL;
1218 			}
1219 			printf("vnode_pager_lock: retrying\n");
1220 			goto retry;
1221 		}
1222 		VM_OBJECT_LOCK(first_object);
1223 		return (vp);
1224 	}
1225 	return NULL;
1226 }
1227