xref: /freebsd/sys/vm/vnode_pager.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  * Copyright (c) 1993, 1994 John S. Dyson
8  * Copyright (c) 1995, David Greenman
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
43  */
44 
45 /*
46  * Page to/from files (vnodes).
47  */
48 
49 /*
50  * TODO:
51  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52  *	greatly re-simplify the vnode_pager.
53  */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include "opt_vm.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/systm.h>
63 #include <sys/sysctl.h>
64 #include <sys/proc.h>
65 #include <sys/vnode.h>
66 #include <sys/mount.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/vmmeter.h>
70 #include <sys/ktr.h>
71 #include <sys/limits.h>
72 #include <sys/conf.h>
73 #include <sys/rwlock.h>
74 #include <sys/sf_buf.h>
75 #include <sys/domainset.h>
76 
77 #include <machine/atomic.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pager.h>
84 #include <vm/vm_map.h>
85 #include <vm/vnode_pager.h>
86 #include <vm/vm_extern.h>
87 #include <vm/uma.h>
88 
89 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
90     daddr_t *rtaddress, int *run);
91 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
92 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
93 static void vnode_pager_dealloc(vm_object_t);
94 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
95 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
96     int *, vop_getpages_iodone_t, void *);
97 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
98 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
99 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
100     vm_ooffset_t, struct ucred *cred);
101 static int vnode_pager_generic_getpages_done(struct buf *);
102 static void vnode_pager_generic_getpages_done_async(struct buf *);
103 
104 struct pagerops vnodepagerops = {
105 	.pgo_alloc =	vnode_pager_alloc,
106 	.pgo_dealloc =	vnode_pager_dealloc,
107 	.pgo_getpages =	vnode_pager_getpages,
108 	.pgo_getpages_async = vnode_pager_getpages_async,
109 	.pgo_putpages =	vnode_pager_putpages,
110 	.pgo_haspage =	vnode_pager_haspage,
111 };
112 
113 static struct domainset *vnode_domainset = NULL;
114 
115 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_RW,
116     &vnode_domainset, 0, sysctl_handle_domainset, "A",
117     "Default vnode NUMA policy");
118 
119 static int nvnpbufs;
120 SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
121     &nvnpbufs, 0, "number of physical buffers allocated for vnode pager");
122 
123 static uma_zone_t vnode_pbuf_zone;
124 
125 static void
126 vnode_pager_init(void *dummy)
127 {
128 
129 #ifdef __LP64__
130 	nvnpbufs = nswbuf * 2;
131 #else
132 	nvnpbufs = nswbuf / 2;
133 #endif
134 	TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs);
135 	vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs);
136 }
137 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL);
138 
139 /* Create the VM system backing object for this vnode */
140 int
141 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
142 {
143 	vm_object_t object;
144 	vm_ooffset_t size = isize;
145 	struct vattr va;
146 
147 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
148 		return (0);
149 
150 	while ((object = vp->v_object) != NULL) {
151 		VM_OBJECT_WLOCK(object);
152 		if (!(object->flags & OBJ_DEAD)) {
153 			VM_OBJECT_WUNLOCK(object);
154 			return (0);
155 		}
156 		VOP_UNLOCK(vp, 0);
157 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
158 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
159 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
160 	}
161 
162 	if (size == 0) {
163 		if (vn_isdisk(vp, NULL)) {
164 			size = IDX_TO_OFF(INT_MAX);
165 		} else {
166 			if (VOP_GETATTR(vp, &va, td->td_ucred))
167 				return (0);
168 			size = va.va_size;
169 		}
170 	}
171 
172 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
173 	/*
174 	 * Dereference the reference we just created.  This assumes
175 	 * that the object is associated with the vp.
176 	 */
177 	VM_OBJECT_WLOCK(object);
178 	object->ref_count--;
179 	VM_OBJECT_WUNLOCK(object);
180 	vrele(vp);
181 
182 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
183 
184 	return (0);
185 }
186 
187 void
188 vnode_destroy_vobject(struct vnode *vp)
189 {
190 	struct vm_object *obj;
191 
192 	obj = vp->v_object;
193 	if (obj == NULL)
194 		return;
195 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
196 	VM_OBJECT_WLOCK(obj);
197 	umtx_shm_object_terminated(obj);
198 	if (obj->ref_count == 0) {
199 		/*
200 		 * don't double-terminate the object
201 		 */
202 		if ((obj->flags & OBJ_DEAD) == 0) {
203 			vm_object_terminate(obj);
204 		} else {
205 			/*
206 			 * Waiters were already handled during object
207 			 * termination.  The exclusive vnode lock hopefully
208 			 * prevented new waiters from referencing the dying
209 			 * object.
210 			 */
211 			KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0,
212 			    ("OBJ_DISCONNECTWNT set obj %p flags %x",
213 			    obj, obj->flags));
214 			vp->v_object = NULL;
215 			VM_OBJECT_WUNLOCK(obj);
216 		}
217 	} else {
218 		/*
219 		 * Woe to the process that tries to page now :-).
220 		 */
221 		vm_pager_deallocate(obj);
222 		VM_OBJECT_WUNLOCK(obj);
223 	}
224 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
225 }
226 
227 
228 /*
229  * Allocate (or lookup) pager for a vnode.
230  * Handle is a vnode pointer.
231  *
232  * MPSAFE
233  */
234 vm_object_t
235 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
236     vm_ooffset_t offset, struct ucred *cred)
237 {
238 	vm_object_t object;
239 	struct vnode *vp;
240 
241 	/*
242 	 * Pageout to vnode, no can do yet.
243 	 */
244 	if (handle == NULL)
245 		return (NULL);
246 
247 	vp = (struct vnode *) handle;
248 
249 	/*
250 	 * If the object is being terminated, wait for it to
251 	 * go away.
252 	 */
253 retry:
254 	while ((object = vp->v_object) != NULL) {
255 		VM_OBJECT_WLOCK(object);
256 		if ((object->flags & OBJ_DEAD) == 0)
257 			break;
258 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
259 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
260 	}
261 
262 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
263 
264 	if (object == NULL) {
265 		/*
266 		 * Add an object of the appropriate size
267 		 */
268 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
269 
270 		object->un_pager.vnp.vnp_size = size;
271 		object->un_pager.vnp.writemappings = 0;
272 		object->domain.dr_policy = vnode_domainset;
273 
274 		object->handle = handle;
275 		VI_LOCK(vp);
276 		if (vp->v_object != NULL) {
277 			/*
278 			 * Object has been created while we were sleeping
279 			 */
280 			VI_UNLOCK(vp);
281 			VM_OBJECT_WLOCK(object);
282 			KASSERT(object->ref_count == 1,
283 			    ("leaked ref %p %d", object, object->ref_count));
284 			object->type = OBJT_DEAD;
285 			object->ref_count = 0;
286 			VM_OBJECT_WUNLOCK(object);
287 			vm_object_destroy(object);
288 			goto retry;
289 		}
290 		vp->v_object = object;
291 		VI_UNLOCK(vp);
292 	} else {
293 		object->ref_count++;
294 #if VM_NRESERVLEVEL > 0
295 		vm_object_color(object, 0);
296 #endif
297 		VM_OBJECT_WUNLOCK(object);
298 	}
299 	vrefact(vp);
300 	return (object);
301 }
302 
303 /*
304  *	The object must be locked.
305  */
306 static void
307 vnode_pager_dealloc(vm_object_t object)
308 {
309 	struct vnode *vp;
310 	int refs;
311 
312 	vp = object->handle;
313 	if (vp == NULL)
314 		panic("vnode_pager_dealloc: pager already dealloced");
315 
316 	VM_OBJECT_ASSERT_WLOCKED(object);
317 	vm_object_pip_wait(object, "vnpdea");
318 	refs = object->ref_count;
319 
320 	object->handle = NULL;
321 	object->type = OBJT_DEAD;
322 	if (object->flags & OBJ_DISCONNECTWNT) {
323 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
324 		wakeup(object);
325 	}
326 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
327 	if (object->un_pager.vnp.writemappings > 0) {
328 		object->un_pager.vnp.writemappings = 0;
329 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
330 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
331 		    __func__, vp, vp->v_writecount);
332 	}
333 	vp->v_object = NULL;
334 	VI_LOCK(vp);
335 
336 	/*
337 	 * vm_map_entry_set_vnode_text() cannot reach this vnode by
338 	 * following object->handle.  Clear all text references now.
339 	 * This also clears the transient references from
340 	 * kern_execve(), which is fine because dead_vnodeops uses nop
341 	 * for VOP_UNSET_TEXT().
342 	 */
343 	if (vp->v_writecount < 0)
344 		vp->v_writecount = 0;
345 	VI_UNLOCK(vp);
346 	VM_OBJECT_WUNLOCK(object);
347 	while (refs-- > 0)
348 		vunref(vp);
349 	VM_OBJECT_WLOCK(object);
350 }
351 
352 static boolean_t
353 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
354     int *after)
355 {
356 	struct vnode *vp = object->handle;
357 	daddr_t bn;
358 	int err;
359 	daddr_t reqblock;
360 	int poff;
361 	int bsize;
362 	int pagesperblock, blocksperpage;
363 
364 	VM_OBJECT_ASSERT_WLOCKED(object);
365 	/*
366 	 * If no vp or vp is doomed or marked transparent to VM, we do not
367 	 * have the page.
368 	 */
369 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
370 		return FALSE;
371 	/*
372 	 * If the offset is beyond end of file we do
373 	 * not have the page.
374 	 */
375 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
376 		return FALSE;
377 
378 	bsize = vp->v_mount->mnt_stat.f_iosize;
379 	pagesperblock = bsize / PAGE_SIZE;
380 	blocksperpage = 0;
381 	if (pagesperblock > 0) {
382 		reqblock = pindex / pagesperblock;
383 	} else {
384 		blocksperpage = (PAGE_SIZE / bsize);
385 		reqblock = pindex * blocksperpage;
386 	}
387 	VM_OBJECT_WUNLOCK(object);
388 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
389 	VM_OBJECT_WLOCK(object);
390 	if (err)
391 		return TRUE;
392 	if (bn == -1)
393 		return FALSE;
394 	if (pagesperblock > 0) {
395 		poff = pindex - (reqblock * pagesperblock);
396 		if (before) {
397 			*before *= pagesperblock;
398 			*before += poff;
399 		}
400 		if (after) {
401 			/*
402 			 * The BMAP vop can report a partial block in the
403 			 * 'after', but must not report blocks after EOF.
404 			 * Assert the latter, and truncate 'after' in case
405 			 * of the former.
406 			 */
407 			KASSERT((reqblock + *after) * pagesperblock <
408 			    roundup2(object->size, pagesperblock),
409 			    ("%s: reqblock %jd after %d size %ju", __func__,
410 			    (intmax_t )reqblock, *after,
411 			    (uintmax_t )object->size));
412 			*after *= pagesperblock;
413 			*after += pagesperblock - (poff + 1);
414 			if (pindex + *after >= object->size)
415 				*after = object->size - 1 - pindex;
416 		}
417 	} else {
418 		if (before) {
419 			*before /= blocksperpage;
420 		}
421 
422 		if (after) {
423 			*after /= blocksperpage;
424 		}
425 	}
426 	return TRUE;
427 }
428 
429 /*
430  * Lets the VM system know about a change in size for a file.
431  * We adjust our own internal size and flush any cached pages in
432  * the associated object that are affected by the size change.
433  *
434  * Note: this routine may be invoked as a result of a pager put
435  * operation (possibly at object termination time), so we must be careful.
436  */
437 void
438 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
439 {
440 	vm_object_t object;
441 	vm_page_t m;
442 	vm_pindex_t nobjsize;
443 
444 	if ((object = vp->v_object) == NULL)
445 		return;
446 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
447 	VM_OBJECT_WLOCK(object);
448 	if (object->type == OBJT_DEAD) {
449 		VM_OBJECT_WUNLOCK(object);
450 		return;
451 	}
452 	KASSERT(object->type == OBJT_VNODE,
453 	    ("not vnode-backed object %p", object));
454 	if (nsize == object->un_pager.vnp.vnp_size) {
455 		/*
456 		 * Hasn't changed size
457 		 */
458 		VM_OBJECT_WUNLOCK(object);
459 		return;
460 	}
461 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
462 	if (nsize < object->un_pager.vnp.vnp_size) {
463 		/*
464 		 * File has shrunk. Toss any cached pages beyond the new EOF.
465 		 */
466 		if (nobjsize < object->size)
467 			vm_object_page_remove(object, nobjsize, object->size,
468 			    0);
469 		/*
470 		 * this gets rid of garbage at the end of a page that is now
471 		 * only partially backed by the vnode.
472 		 *
473 		 * XXX for some reason (I don't know yet), if we take a
474 		 * completely invalid page and mark it partially valid
475 		 * it can screw up NFS reads, so we don't allow the case.
476 		 */
477 		if ((nsize & PAGE_MASK) &&
478 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
479 		    m->valid != 0) {
480 			int base = (int)nsize & PAGE_MASK;
481 			int size = PAGE_SIZE - base;
482 
483 			/*
484 			 * Clear out partial-page garbage in case
485 			 * the page has been mapped.
486 			 */
487 			pmap_zero_page_area(m, base, size);
488 
489 			/*
490 			 * Update the valid bits to reflect the blocks that
491 			 * have been zeroed.  Some of these valid bits may
492 			 * have already been set.
493 			 */
494 			vm_page_set_valid_range(m, base, size);
495 
496 			/*
497 			 * Round "base" to the next block boundary so that the
498 			 * dirty bit for a partially zeroed block is not
499 			 * cleared.
500 			 */
501 			base = roundup2(base, DEV_BSIZE);
502 
503 			/*
504 			 * Clear out partial-page dirty bits.
505 			 *
506 			 * note that we do not clear out the valid
507 			 * bits.  This would prevent bogus_page
508 			 * replacement from working properly.
509 			 */
510 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
511 		}
512 	}
513 	object->un_pager.vnp.vnp_size = nsize;
514 	object->size = nobjsize;
515 	VM_OBJECT_WUNLOCK(object);
516 }
517 
518 /*
519  * calculate the linear (byte) disk address of specified virtual
520  * file address
521  */
522 static int
523 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
524     int *run)
525 {
526 	int bsize;
527 	int err;
528 	daddr_t vblock;
529 	daddr_t voffset;
530 
531 	if (address < 0)
532 		return -1;
533 
534 	if (vp->v_iflag & VI_DOOMED)
535 		return -1;
536 
537 	bsize = vp->v_mount->mnt_stat.f_iosize;
538 	vblock = address / bsize;
539 	voffset = address % bsize;
540 
541 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
542 	if (err == 0) {
543 		if (*rtaddress != -1)
544 			*rtaddress += voffset / DEV_BSIZE;
545 		if (run) {
546 			*run += 1;
547 			*run *= bsize/PAGE_SIZE;
548 			*run -= voffset/PAGE_SIZE;
549 		}
550 	}
551 
552 	return (err);
553 }
554 
555 /*
556  * small block filesystem vnode pager input
557  */
558 static int
559 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
560 {
561 	struct vnode *vp;
562 	struct bufobj *bo;
563 	struct buf *bp;
564 	struct sf_buf *sf;
565 	daddr_t fileaddr;
566 	vm_offset_t bsize;
567 	vm_page_bits_t bits;
568 	int error, i;
569 
570 	error = 0;
571 	vp = object->handle;
572 	if (vp->v_iflag & VI_DOOMED)
573 		return VM_PAGER_BAD;
574 
575 	bsize = vp->v_mount->mnt_stat.f_iosize;
576 
577 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
578 
579 	sf = sf_buf_alloc(m, 0);
580 
581 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
582 		vm_ooffset_t address;
583 
584 		bits = vm_page_bits(i * bsize, bsize);
585 		if (m->valid & bits)
586 			continue;
587 
588 		address = IDX_TO_OFF(m->pindex) + i * bsize;
589 		if (address >= object->un_pager.vnp.vnp_size) {
590 			fileaddr = -1;
591 		} else {
592 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
593 			if (error)
594 				break;
595 		}
596 		if (fileaddr != -1) {
597 			bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
598 
599 			/* build a minimal buffer header */
600 			bp->b_iocmd = BIO_READ;
601 			bp->b_iodone = bdone;
602 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
603 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
604 			bp->b_rcred = crhold(curthread->td_ucred);
605 			bp->b_wcred = crhold(curthread->td_ucred);
606 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
607 			bp->b_blkno = fileaddr;
608 			pbgetbo(bo, bp);
609 			bp->b_vp = vp;
610 			bp->b_bcount = bsize;
611 			bp->b_bufsize = bsize;
612 			bp->b_runningbufspace = bp->b_bufsize;
613 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
614 
615 			/* do the input */
616 			bp->b_iooffset = dbtob(bp->b_blkno);
617 			bstrategy(bp);
618 
619 			bwait(bp, PVM, "vnsrd");
620 
621 			if ((bp->b_ioflags & BIO_ERROR) != 0)
622 				error = EIO;
623 
624 			/*
625 			 * free the buffer header back to the swap buffer pool
626 			 */
627 			bp->b_vp = NULL;
628 			pbrelbo(bp);
629 			uma_zfree(vnode_pbuf_zone, bp);
630 			if (error)
631 				break;
632 		} else
633 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
634 		KASSERT((m->dirty & bits) == 0,
635 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
636 		VM_OBJECT_WLOCK(object);
637 		m->valid |= bits;
638 		VM_OBJECT_WUNLOCK(object);
639 	}
640 	sf_buf_free(sf);
641 	if (error) {
642 		return VM_PAGER_ERROR;
643 	}
644 	return VM_PAGER_OK;
645 }
646 
647 /*
648  * old style vnode pager input routine
649  */
650 static int
651 vnode_pager_input_old(vm_object_t object, vm_page_t m)
652 {
653 	struct uio auio;
654 	struct iovec aiov;
655 	int error;
656 	int size;
657 	struct sf_buf *sf;
658 	struct vnode *vp;
659 
660 	VM_OBJECT_ASSERT_WLOCKED(object);
661 	error = 0;
662 
663 	/*
664 	 * Return failure if beyond current EOF
665 	 */
666 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
667 		return VM_PAGER_BAD;
668 	} else {
669 		size = PAGE_SIZE;
670 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
671 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
672 		vp = object->handle;
673 		VM_OBJECT_WUNLOCK(object);
674 
675 		/*
676 		 * Allocate a kernel virtual address and initialize so that
677 		 * we can use VOP_READ/WRITE routines.
678 		 */
679 		sf = sf_buf_alloc(m, 0);
680 
681 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
682 		aiov.iov_len = size;
683 		auio.uio_iov = &aiov;
684 		auio.uio_iovcnt = 1;
685 		auio.uio_offset = IDX_TO_OFF(m->pindex);
686 		auio.uio_segflg = UIO_SYSSPACE;
687 		auio.uio_rw = UIO_READ;
688 		auio.uio_resid = size;
689 		auio.uio_td = curthread;
690 
691 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
692 		if (!error) {
693 			int count = size - auio.uio_resid;
694 
695 			if (count == 0)
696 				error = EINVAL;
697 			else if (count != PAGE_SIZE)
698 				bzero((caddr_t)sf_buf_kva(sf) + count,
699 				    PAGE_SIZE - count);
700 		}
701 		sf_buf_free(sf);
702 
703 		VM_OBJECT_WLOCK(object);
704 	}
705 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
706 	if (!error)
707 		m->valid = VM_PAGE_BITS_ALL;
708 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
709 }
710 
711 /*
712  * generic vnode pager input routine
713  */
714 
715 /*
716  * Local media VFS's that do not implement their own VOP_GETPAGES
717  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
718  * to implement the previous behaviour.
719  *
720  * All other FS's should use the bypass to get to the local media
721  * backing vp's VOP_GETPAGES.
722  */
723 static int
724 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
725     int *rahead)
726 {
727 	struct vnode *vp;
728 	int rtval;
729 
730 	vp = object->handle;
731 	VM_OBJECT_WUNLOCK(object);
732 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
733 	KASSERT(rtval != EOPNOTSUPP,
734 	    ("vnode_pager: FS getpages not implemented\n"));
735 	VM_OBJECT_WLOCK(object);
736 	return rtval;
737 }
738 
739 static int
740 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
741     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
742 {
743 	struct vnode *vp;
744 	int rtval;
745 
746 	vp = object->handle;
747 	VM_OBJECT_WUNLOCK(object);
748 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
749 	KASSERT(rtval != EOPNOTSUPP,
750 	    ("vnode_pager: FS getpages_async not implemented\n"));
751 	VM_OBJECT_WLOCK(object);
752 	return (rtval);
753 }
754 
755 /*
756  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
757  * local filesystems, where partially valid pages can only occur at
758  * the end of file.
759  */
760 int
761 vnode_pager_local_getpages(struct vop_getpages_args *ap)
762 {
763 
764 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
765 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
766 }
767 
768 int
769 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
770 {
771 
772 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
773 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
774 }
775 
776 /*
777  * This is now called from local media FS's to operate against their
778  * own vnodes if they fail to implement VOP_GETPAGES.
779  */
780 int
781 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
782     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
783 {
784 	vm_object_t object;
785 	struct bufobj *bo;
786 	struct buf *bp;
787 	off_t foff;
788 #ifdef INVARIANTS
789 	off_t blkno0;
790 #endif
791 	int bsize, pagesperblock;
792 	int error, before, after, rbehind, rahead, poff, i;
793 	int bytecount, secmask;
794 
795 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
796 	    ("%s does not support devices", __func__));
797 
798 	if (vp->v_iflag & VI_DOOMED)
799 		return (VM_PAGER_BAD);
800 
801 	object = vp->v_object;
802 	foff = IDX_TO_OFF(m[0]->pindex);
803 	bsize = vp->v_mount->mnt_stat.f_iosize;
804 	pagesperblock = bsize / PAGE_SIZE;
805 
806 	KASSERT(foff < object->un_pager.vnp.vnp_size,
807 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
808 	KASSERT(count <= nitems(bp->b_pages),
809 	    ("%s: requested %d pages", __func__, count));
810 
811 	/*
812 	 * The last page has valid blocks.  Invalid part can only
813 	 * exist at the end of file, and the page is made fully valid
814 	 * by zeroing in vm_pager_get_pages().
815 	 */
816 	if (m[count - 1]->valid != 0 && --count == 0) {
817 		if (iodone != NULL)
818 			iodone(arg, m, 1, 0);
819 		return (VM_PAGER_OK);
820 	}
821 
822 	bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK);
823 
824 	/*
825 	 * Get the underlying device blocks for the file with VOP_BMAP().
826 	 * If the file system doesn't support VOP_BMAP, use old way of
827 	 * getting pages via VOP_READ.
828 	 */
829 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
830 	if (error == EOPNOTSUPP) {
831 		uma_zfree(vnode_pbuf_zone, bp);
832 		VM_OBJECT_WLOCK(object);
833 		for (i = 0; i < count; i++) {
834 			VM_CNT_INC(v_vnodein);
835 			VM_CNT_INC(v_vnodepgsin);
836 			error = vnode_pager_input_old(object, m[i]);
837 			if (error)
838 				break;
839 		}
840 		VM_OBJECT_WUNLOCK(object);
841 		return (error);
842 	} else if (error != 0) {
843 		uma_zfree(vnode_pbuf_zone, bp);
844 		return (VM_PAGER_ERROR);
845 	}
846 
847 	/*
848 	 * If the file system supports BMAP, but blocksize is smaller
849 	 * than a page size, then use special small filesystem code.
850 	 */
851 	if (pagesperblock == 0) {
852 		uma_zfree(vnode_pbuf_zone, bp);
853 		for (i = 0; i < count; i++) {
854 			VM_CNT_INC(v_vnodein);
855 			VM_CNT_INC(v_vnodepgsin);
856 			error = vnode_pager_input_smlfs(object, m[i]);
857 			if (error)
858 				break;
859 		}
860 		return (error);
861 	}
862 
863 	/*
864 	 * A sparse file can be encountered only for a single page request,
865 	 * which may not be preceded by call to vm_pager_haspage().
866 	 */
867 	if (bp->b_blkno == -1) {
868 		KASSERT(count == 1,
869 		    ("%s: array[%d] request to a sparse file %p", __func__,
870 		    count, vp));
871 		uma_zfree(vnode_pbuf_zone, bp);
872 		pmap_zero_page(m[0]);
873 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
874 		    __func__, m[0]));
875 		VM_OBJECT_WLOCK(object);
876 		m[0]->valid = VM_PAGE_BITS_ALL;
877 		VM_OBJECT_WUNLOCK(object);
878 		return (VM_PAGER_OK);
879 	}
880 
881 #ifdef INVARIANTS
882 	blkno0 = bp->b_blkno;
883 #endif
884 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
885 
886 	/* Recalculate blocks available after/before to pages. */
887 	poff = (foff % bsize) / PAGE_SIZE;
888 	before *= pagesperblock;
889 	before += poff;
890 	after *= pagesperblock;
891 	after += pagesperblock - (poff + 1);
892 	if (m[0]->pindex + after >= object->size)
893 		after = object->size - 1 - m[0]->pindex;
894 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
895 	    __func__, count, after + 1));
896 	after -= count - 1;
897 
898 	/* Trim requested rbehind/rahead to possible values. */
899 	rbehind = a_rbehind ? *a_rbehind : 0;
900 	rahead = a_rahead ? *a_rahead : 0;
901 	rbehind = min(rbehind, before);
902 	rbehind = min(rbehind, m[0]->pindex);
903 	rahead = min(rahead, after);
904 	rahead = min(rahead, object->size - m[count - 1]->pindex);
905 	/*
906 	 * Check that total amount of pages fit into buf.  Trim rbehind and
907 	 * rahead evenly if not.
908 	 */
909 	if (rbehind + rahead + count > nitems(bp->b_pages)) {
910 		int trim, sum;
911 
912 		trim = rbehind + rahead + count - nitems(bp->b_pages) + 1;
913 		sum = rbehind + rahead;
914 		if (rbehind == before) {
915 			/* Roundup rbehind trim to block size. */
916 			rbehind -= roundup(trim * rbehind / sum, pagesperblock);
917 			if (rbehind < 0)
918 				rbehind = 0;
919 		} else
920 			rbehind -= trim * rbehind / sum;
921 		rahead -= trim * rahead / sum;
922 	}
923 	KASSERT(rbehind + rahead + count <= nitems(bp->b_pages),
924 	    ("%s: behind %d ahead %d count %d", __func__,
925 	    rbehind, rahead, count));
926 
927 	/*
928 	 * Fill in the bp->b_pages[] array with requested and optional
929 	 * read behind or read ahead pages.  Read behind pages are looked
930 	 * up in a backward direction, down to a first cached page.  Same
931 	 * for read ahead pages, but there is no need to shift the array
932 	 * in case of encountering a cached page.
933 	 */
934 	i = bp->b_npages = 0;
935 	if (rbehind) {
936 		vm_pindex_t startpindex, tpindex;
937 		vm_page_t p;
938 
939 		VM_OBJECT_WLOCK(object);
940 		startpindex = m[0]->pindex - rbehind;
941 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
942 		    p->pindex >= startpindex)
943 			startpindex = p->pindex + 1;
944 
945 		/* tpindex is unsigned; beware of numeric underflow. */
946 		for (tpindex = m[0]->pindex - 1;
947 		    tpindex >= startpindex && tpindex < m[0]->pindex;
948 		    tpindex--, i++) {
949 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
950 			if (p == NULL) {
951 				/* Shift the array. */
952 				for (int j = 0; j < i; j++)
953 					bp->b_pages[j] = bp->b_pages[j +
954 					    tpindex + 1 - startpindex];
955 				break;
956 			}
957 			bp->b_pages[tpindex - startpindex] = p;
958 		}
959 
960 		bp->b_pgbefore = i;
961 		bp->b_npages += i;
962 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
963 	} else
964 		bp->b_pgbefore = 0;
965 
966 	/* Requested pages. */
967 	for (int j = 0; j < count; j++, i++)
968 		bp->b_pages[i] = m[j];
969 	bp->b_npages += count;
970 
971 	if (rahead) {
972 		vm_pindex_t endpindex, tpindex;
973 		vm_page_t p;
974 
975 		if (!VM_OBJECT_WOWNED(object))
976 			VM_OBJECT_WLOCK(object);
977 		endpindex = m[count - 1]->pindex + rahead + 1;
978 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
979 		    p->pindex < endpindex)
980 			endpindex = p->pindex;
981 		if (endpindex > object->size)
982 			endpindex = object->size;
983 
984 		for (tpindex = m[count - 1]->pindex + 1;
985 		    tpindex < endpindex; i++, tpindex++) {
986 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
987 			if (p == NULL)
988 				break;
989 			bp->b_pages[i] = p;
990 		}
991 
992 		bp->b_pgafter = i - bp->b_npages;
993 		bp->b_npages = i;
994 	} else
995 		bp->b_pgafter = 0;
996 
997 	if (VM_OBJECT_WOWNED(object))
998 		VM_OBJECT_WUNLOCK(object);
999 
1000 	/* Report back actual behind/ahead read. */
1001 	if (a_rbehind)
1002 		*a_rbehind = bp->b_pgbefore;
1003 	if (a_rahead)
1004 		*a_rahead = bp->b_pgafter;
1005 
1006 #ifdef INVARIANTS
1007 	KASSERT(bp->b_npages <= nitems(bp->b_pages),
1008 	    ("%s: buf %p overflowed", __func__, bp));
1009 	for (int j = 1, prev = 0; j < bp->b_npages; j++) {
1010 		if (bp->b_pages[j] == bogus_page)
1011 			continue;
1012 		KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex ==
1013 		    j - prev, ("%s: pages array not consecutive, bp %p",
1014 		     __func__, bp));
1015 		prev = j;
1016 	}
1017 #endif
1018 
1019 	/*
1020 	 * Recalculate first offset and bytecount with regards to read behind.
1021 	 * Truncate bytecount to vnode real size and round up physical size
1022 	 * for real devices.
1023 	 */
1024 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1025 	bytecount = bp->b_npages << PAGE_SHIFT;
1026 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
1027 		bytecount = object->un_pager.vnp.vnp_size - foff;
1028 	secmask = bo->bo_bsize - 1;
1029 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
1030 	    ("%s: sector size %d too large", __func__, secmask + 1));
1031 	bytecount = (bytecount + secmask) & ~secmask;
1032 
1033 	/*
1034 	 * And map the pages to be read into the kva, if the filesystem
1035 	 * requires mapped buffers.
1036 	 */
1037 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
1038 	    unmapped_buf_allowed) {
1039 		bp->b_data = unmapped_buf;
1040 		bp->b_offset = 0;
1041 	} else {
1042 		bp->b_data = bp->b_kvabase;
1043 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1044 	}
1045 
1046 	/* Build a minimal buffer header. */
1047 	bp->b_iocmd = BIO_READ;
1048 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
1049 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
1050 	bp->b_rcred = crhold(curthread->td_ucred);
1051 	bp->b_wcred = crhold(curthread->td_ucred);
1052 	pbgetbo(bo, bp);
1053 	bp->b_vp = vp;
1054 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
1055 	bp->b_iooffset = dbtob(bp->b_blkno);
1056 	KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) ==
1057 	    (blkno0 - bp->b_blkno) * DEV_BSIZE +
1058 	    IDX_TO_OFF(m[0]->pindex) % bsize,
1059 	    ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju "
1060 	    "blkno0 %ju b_blkno %ju", bsize,
1061 	    (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex,
1062 	    (uintmax_t)blkno0, (uintmax_t)bp->b_blkno));
1063 
1064 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
1065 	VM_CNT_INC(v_vnodein);
1066 	VM_CNT_ADD(v_vnodepgsin, bp->b_npages);
1067 
1068 	if (iodone != NULL) { /* async */
1069 		bp->b_pgiodone = iodone;
1070 		bp->b_caller1 = arg;
1071 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1072 		bp->b_flags |= B_ASYNC;
1073 		BUF_KERNPROC(bp);
1074 		bstrategy(bp);
1075 		return (VM_PAGER_OK);
1076 	} else {
1077 		bp->b_iodone = bdone;
1078 		bstrategy(bp);
1079 		bwait(bp, PVM, "vnread");
1080 		error = vnode_pager_generic_getpages_done(bp);
1081 		for (i = 0; i < bp->b_npages; i++)
1082 			bp->b_pages[i] = NULL;
1083 		bp->b_vp = NULL;
1084 		pbrelbo(bp);
1085 		uma_zfree(vnode_pbuf_zone, bp);
1086 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1087 	}
1088 }
1089 
1090 static void
1091 vnode_pager_generic_getpages_done_async(struct buf *bp)
1092 {
1093 	int error;
1094 
1095 	error = vnode_pager_generic_getpages_done(bp);
1096 	/* Run the iodone upon the requested range. */
1097 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1098 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1099 	for (int i = 0; i < bp->b_npages; i++)
1100 		bp->b_pages[i] = NULL;
1101 	bp->b_vp = NULL;
1102 	pbrelbo(bp);
1103 	uma_zfree(vnode_pbuf_zone, bp);
1104 }
1105 
1106 static int
1107 vnode_pager_generic_getpages_done(struct buf *bp)
1108 {
1109 	vm_object_t object;
1110 	off_t tfoff, nextoff;
1111 	int i, error;
1112 
1113 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1114 	object = bp->b_vp->v_object;
1115 
1116 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1117 		if (!buf_mapped(bp)) {
1118 			bp->b_data = bp->b_kvabase;
1119 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1120 			    bp->b_npages);
1121 		}
1122 		bzero(bp->b_data + bp->b_bcount,
1123 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1124 	}
1125 	if (buf_mapped(bp)) {
1126 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1127 		bp->b_data = unmapped_buf;
1128 	}
1129 
1130 	VM_OBJECT_WLOCK(object);
1131 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1132 	    i < bp->b_npages; i++, tfoff = nextoff) {
1133 		vm_page_t mt;
1134 
1135 		nextoff = tfoff + PAGE_SIZE;
1136 		mt = bp->b_pages[i];
1137 
1138 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1139 			/*
1140 			 * Read filled up entire page.
1141 			 */
1142 			mt->valid = VM_PAGE_BITS_ALL;
1143 			KASSERT(mt->dirty == 0,
1144 			    ("%s: page %p is dirty", __func__, mt));
1145 			KASSERT(!pmap_page_is_mapped(mt),
1146 			    ("%s: page %p is mapped", __func__, mt));
1147 		} else {
1148 			/*
1149 			 * Read did not fill up entire page.
1150 			 *
1151 			 * Currently we do not set the entire page valid,
1152 			 * we just try to clear the piece that we couldn't
1153 			 * read.
1154 			 */
1155 			vm_page_set_valid_range(mt, 0,
1156 			    object->un_pager.vnp.vnp_size - tfoff);
1157 			KASSERT((mt->dirty & vm_page_bits(0,
1158 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1159 			    ("%s: page %p is dirty", __func__, mt));
1160 		}
1161 
1162 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1163 			vm_page_readahead_finish(mt);
1164 	}
1165 	VM_OBJECT_WUNLOCK(object);
1166 	if (error != 0)
1167 		printf("%s: I/O read error %d\n", __func__, error);
1168 
1169 	return (error);
1170 }
1171 
1172 /*
1173  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1174  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1175  * vnode_pager_generic_putpages() to implement the previous behaviour.
1176  *
1177  * All other FS's should use the bypass to get to the local media
1178  * backing vp's VOP_PUTPAGES.
1179  */
1180 static void
1181 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1182     int flags, int *rtvals)
1183 {
1184 	int rtval;
1185 	struct vnode *vp;
1186 	int bytes = count * PAGE_SIZE;
1187 
1188 	/*
1189 	 * Force synchronous operation if we are extremely low on memory
1190 	 * to prevent a low-memory deadlock.  VOP operations often need to
1191 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1192 	 * operation ).  The swapper handles the case by limiting the amount
1193 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1194 	 * for the vnode pager without a lot of work.
1195 	 *
1196 	 * Also, the backing vnode's iodone routine may not wake the pageout
1197 	 * daemon up.  This should be probably be addressed XXX.
1198 	 */
1199 
1200 	if (vm_page_count_min())
1201 		flags |= VM_PAGER_PUT_SYNC;
1202 
1203 	/*
1204 	 * Call device-specific putpages function
1205 	 */
1206 	vp = object->handle;
1207 	VM_OBJECT_WUNLOCK(object);
1208 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1209 	KASSERT(rtval != EOPNOTSUPP,
1210 	    ("vnode_pager: stale FS putpages\n"));
1211 	VM_OBJECT_WLOCK(object);
1212 }
1213 
1214 static int
1215 vn_off2bidx(vm_ooffset_t offset)
1216 {
1217 
1218 	return ((offset & PAGE_MASK) / DEV_BSIZE);
1219 }
1220 
1221 static bool
1222 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset)
1223 {
1224 
1225 	KASSERT(IDX_TO_OFF(m->pindex) <= offset &&
1226 	    offset < IDX_TO_OFF(m->pindex + 1),
1227 	    ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex,
1228 	    (uintmax_t)offset));
1229 	return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0);
1230 }
1231 
1232 /*
1233  * This is now called from local media FS's to operate against their
1234  * own vnodes if they fail to implement VOP_PUTPAGES.
1235  *
1236  * This is typically called indirectly via the pageout daemon and
1237  * clustering has already typically occurred, so in general we ask the
1238  * underlying filesystem to write the data out asynchronously rather
1239  * then delayed.
1240  */
1241 int
1242 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1243     int flags, int *rtvals)
1244 {
1245 	vm_object_t object;
1246 	vm_page_t m;
1247 	vm_ooffset_t maxblksz, next_offset, poffset, prev_offset;
1248 	struct uio auio;
1249 	struct iovec aiov;
1250 	off_t prev_resid, wrsz;
1251 	int count, error, i, maxsize, ncount, pgoff, ppscheck;
1252 	bool in_hole;
1253 	static struct timeval lastfail;
1254 	static int curfail;
1255 
1256 	object = vp->v_object;
1257 	count = bytecount / PAGE_SIZE;
1258 
1259 	for (i = 0; i < count; i++)
1260 		rtvals[i] = VM_PAGER_ERROR;
1261 
1262 	if ((int64_t)ma[0]->pindex < 0) {
1263 		printf("vnode_pager_generic_putpages: "
1264 		    "attempt to write meta-data 0x%jx(%lx)\n",
1265 		    (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty);
1266 		rtvals[0] = VM_PAGER_BAD;
1267 		return (VM_PAGER_BAD);
1268 	}
1269 
1270 	maxsize = count * PAGE_SIZE;
1271 	ncount = count;
1272 
1273 	poffset = IDX_TO_OFF(ma[0]->pindex);
1274 
1275 	/*
1276 	 * If the page-aligned write is larger then the actual file we
1277 	 * have to invalidate pages occurring beyond the file EOF.  However,
1278 	 * there is an edge case where a file may not be page-aligned where
1279 	 * the last page is partially invalid.  In this case the filesystem
1280 	 * may not properly clear the dirty bits for the entire page (which
1281 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1282 	 * With the page locked we are free to fix-up the dirty bits here.
1283 	 *
1284 	 * We do not under any circumstances truncate the valid bits, as
1285 	 * this will screw up bogus page replacement.
1286 	 */
1287 	VM_OBJECT_RLOCK(object);
1288 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1289 		if (!VM_OBJECT_TRYUPGRADE(object)) {
1290 			VM_OBJECT_RUNLOCK(object);
1291 			VM_OBJECT_WLOCK(object);
1292 			if (maxsize + poffset <= object->un_pager.vnp.vnp_size)
1293 				goto downgrade;
1294 		}
1295 		if (object->un_pager.vnp.vnp_size > poffset) {
1296 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1297 			ncount = btoc(maxsize);
1298 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1299 				pgoff = roundup2(pgoff, DEV_BSIZE);
1300 
1301 				/*
1302 				 * If the object is locked and the following
1303 				 * conditions hold, then the page's dirty
1304 				 * field cannot be concurrently changed by a
1305 				 * pmap operation.
1306 				 */
1307 				m = ma[ncount - 1];
1308 				vm_page_assert_sbusied(m);
1309 				KASSERT(!pmap_page_is_write_mapped(m),
1310 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1311 				MPASS(m->dirty != 0);
1312 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1313 				    pgoff);
1314 			}
1315 		} else {
1316 			maxsize = 0;
1317 			ncount = 0;
1318 		}
1319 		for (i = ncount; i < count; i++)
1320 			rtvals[i] = VM_PAGER_BAD;
1321 downgrade:
1322 		VM_OBJECT_LOCK_DOWNGRADE(object);
1323 	}
1324 
1325 	auio.uio_iov = &aiov;
1326 	auio.uio_segflg = UIO_NOCOPY;
1327 	auio.uio_rw = UIO_WRITE;
1328 	auio.uio_td = NULL;
1329 	maxblksz = roundup2(poffset + maxsize, DEV_BSIZE);
1330 
1331 	for (prev_offset = poffset; prev_offset < maxblksz;) {
1332 		/* Skip clean blocks. */
1333 		for (in_hole = true; in_hole && prev_offset < maxblksz;) {
1334 			m = ma[OFF_TO_IDX(prev_offset - poffset)];
1335 			for (i = vn_off2bidx(prev_offset);
1336 			    i < sizeof(vm_page_bits_t) * NBBY &&
1337 			    prev_offset < maxblksz; i++) {
1338 				if (vn_dirty_blk(m, prev_offset)) {
1339 					in_hole = false;
1340 					break;
1341 				}
1342 				prev_offset += DEV_BSIZE;
1343 			}
1344 		}
1345 		if (in_hole)
1346 			goto write_done;
1347 
1348 		/* Find longest run of dirty blocks. */
1349 		for (next_offset = prev_offset; next_offset < maxblksz;) {
1350 			m = ma[OFF_TO_IDX(next_offset - poffset)];
1351 			for (i = vn_off2bidx(next_offset);
1352 			    i < sizeof(vm_page_bits_t) * NBBY &&
1353 			    next_offset < maxblksz; i++) {
1354 				if (!vn_dirty_blk(m, next_offset))
1355 					goto start_write;
1356 				next_offset += DEV_BSIZE;
1357 			}
1358 		}
1359 start_write:
1360 		if (next_offset > poffset + maxsize)
1361 			next_offset = poffset + maxsize;
1362 
1363 		/*
1364 		 * Getting here requires finding a dirty block in the
1365 		 * 'skip clean blocks' loop.
1366 		 */
1367 		MPASS(prev_offset < next_offset);
1368 
1369 		VM_OBJECT_RUNLOCK(object);
1370 		aiov.iov_base = NULL;
1371 		auio.uio_iovcnt = 1;
1372 		auio.uio_offset = prev_offset;
1373 		prev_resid = auio.uio_resid = aiov.iov_len = next_offset -
1374 		    prev_offset;
1375 		error = VOP_WRITE(vp, &auio,
1376 		    vnode_pager_putpages_ioflags(flags), curthread->td_ucred);
1377 
1378 		wrsz = prev_resid - auio.uio_resid;
1379 		if (wrsz == 0) {
1380 			if (ppsratecheck(&lastfail, &curfail, 1) != 0) {
1381 				vn_printf(vp, "vnode_pager_putpages: "
1382 				    "zero-length write at %ju resid %zd\n",
1383 				    auio.uio_offset, auio.uio_resid);
1384 			}
1385 			VM_OBJECT_RLOCK(object);
1386 			break;
1387 		}
1388 
1389 		/* Adjust the starting offset for next iteration. */
1390 		prev_offset += wrsz;
1391 		MPASS(auio.uio_offset == prev_offset);
1392 
1393 		ppscheck = 0;
1394 		if (error != 0 && (ppscheck = ppsratecheck(&lastfail,
1395 		    &curfail, 1)) != 0)
1396 			vn_printf(vp, "vnode_pager_putpages: I/O error %d\n",
1397 			    error);
1398 		if (auio.uio_resid != 0 && (ppscheck != 0 ||
1399 		    ppsratecheck(&lastfail, &curfail, 1) != 0))
1400 			vn_printf(vp, "vnode_pager_putpages: residual I/O %zd "
1401 			    "at %ju\n", auio.uio_resid,
1402 			    (uintmax_t)ma[0]->pindex);
1403 		VM_OBJECT_RLOCK(object);
1404 		if (error != 0 || auio.uio_resid != 0)
1405 			break;
1406 	}
1407 write_done:
1408 	/* Mark completely processed pages. */
1409 	for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++)
1410 		rtvals[i] = VM_PAGER_OK;
1411 	/* Mark partial EOF page. */
1412 	if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0)
1413 		rtvals[i++] = VM_PAGER_OK;
1414 	/* Unwritten pages in range, free bonus if the page is clean. */
1415 	for (; i < ncount; i++)
1416 		rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR;
1417 	VM_OBJECT_RUNLOCK(object);
1418 	VM_CNT_ADD(v_vnodepgsout, i);
1419 	VM_CNT_INC(v_vnodeout);
1420 	return (rtvals[0]);
1421 }
1422 
1423 int
1424 vnode_pager_putpages_ioflags(int pager_flags)
1425 {
1426 	int ioflags;
1427 
1428 	/*
1429 	 * Pageouts are already clustered, use IO_ASYNC to force a
1430 	 * bawrite() rather then a bdwrite() to prevent paging I/O
1431 	 * from saturating the buffer cache.  Dummy-up the sequential
1432 	 * heuristic to cause large ranges to cluster.  If neither
1433 	 * IO_SYNC or IO_ASYNC is set, the system decides how to
1434 	 * cluster.
1435 	 */
1436 	ioflags = IO_VMIO;
1437 	if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0)
1438 		ioflags |= IO_SYNC;
1439 	else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0)
1440 		ioflags |= IO_ASYNC;
1441 	ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0;
1442 	ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0;
1443 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1444 	return (ioflags);
1445 }
1446 
1447 /*
1448  * vnode_pager_undirty_pages().
1449  *
1450  * A helper to mark pages as clean after pageout that was possibly
1451  * done with a short write.  The lpos argument specifies the page run
1452  * length in bytes, and the written argument specifies how many bytes
1453  * were actually written.  eof is the offset past the last valid byte
1454  * in the vnode using the absolute file position of the first byte in
1455  * the run as the base from which it is computed.
1456  */
1457 void
1458 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof,
1459     int lpos)
1460 {
1461 	vm_object_t obj;
1462 	int i, pos, pos_devb;
1463 
1464 	if (written == 0 && eof >= lpos)
1465 		return;
1466 	obj = ma[0]->object;
1467 	VM_OBJECT_WLOCK(obj);
1468 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1469 		if (pos < trunc_page(written)) {
1470 			rtvals[i] = VM_PAGER_OK;
1471 			vm_page_undirty(ma[i]);
1472 		} else {
1473 			/* Partially written page. */
1474 			rtvals[i] = VM_PAGER_AGAIN;
1475 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1476 		}
1477 	}
1478 	if (eof >= lpos) /* avoid truncation */
1479 		goto done;
1480 	for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) {
1481 		if (pos != trunc_page(pos)) {
1482 			/*
1483 			 * The page contains the last valid byte in
1484 			 * the vnode, mark the rest of the page as
1485 			 * clean, potentially making the whole page
1486 			 * clean.
1487 			 */
1488 			pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE);
1489 			vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE -
1490 			    pos_devb);
1491 
1492 			/*
1493 			 * If the page was cleaned, report the pageout
1494 			 * on it as successful.  msync() no longer
1495 			 * needs to write out the page, endlessly
1496 			 * creating write requests and dirty buffers.
1497 			 */
1498 			if (ma[i]->dirty == 0)
1499 				rtvals[i] = VM_PAGER_OK;
1500 
1501 			pos = round_page(pos);
1502 		} else {
1503 			/* vm_pageout_flush() clears dirty */
1504 			rtvals[i] = VM_PAGER_BAD;
1505 			pos += PAGE_SIZE;
1506 		}
1507 	}
1508 done:
1509 	VM_OBJECT_WUNLOCK(obj);
1510 }
1511 
1512 void
1513 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1514     vm_offset_t end)
1515 {
1516 	struct vnode *vp;
1517 	vm_ooffset_t old_wm;
1518 
1519 	VM_OBJECT_WLOCK(object);
1520 	if (object->type != OBJT_VNODE) {
1521 		VM_OBJECT_WUNLOCK(object);
1522 		return;
1523 	}
1524 	old_wm = object->un_pager.vnp.writemappings;
1525 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1526 	vp = object->handle;
1527 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1528 		ASSERT_VOP_LOCKED(vp, "v_writecount inc");
1529 		VOP_ADD_WRITECOUNT_CHECKED(vp, 1);
1530 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1531 		    __func__, vp, vp->v_writecount);
1532 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1533 		ASSERT_VOP_LOCKED(vp, "v_writecount dec");
1534 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1535 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1536 		    __func__, vp, vp->v_writecount);
1537 	}
1538 	VM_OBJECT_WUNLOCK(object);
1539 }
1540 
1541 void
1542 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1543     vm_offset_t end)
1544 {
1545 	struct vnode *vp;
1546 	struct mount *mp;
1547 	vm_offset_t inc;
1548 
1549 	VM_OBJECT_WLOCK(object);
1550 
1551 	/*
1552 	 * First, recheck the object type to account for the race when
1553 	 * the vnode is reclaimed.
1554 	 */
1555 	if (object->type != OBJT_VNODE) {
1556 		VM_OBJECT_WUNLOCK(object);
1557 		return;
1558 	}
1559 
1560 	/*
1561 	 * Optimize for the case when writemappings is not going to
1562 	 * zero.
1563 	 */
1564 	inc = end - start;
1565 	if (object->un_pager.vnp.writemappings != inc) {
1566 		object->un_pager.vnp.writemappings -= inc;
1567 		VM_OBJECT_WUNLOCK(object);
1568 		return;
1569 	}
1570 
1571 	vp = object->handle;
1572 	vhold(vp);
1573 	VM_OBJECT_WUNLOCK(object);
1574 	mp = NULL;
1575 	vn_start_write(vp, &mp, V_WAIT);
1576 	vn_lock(vp, LK_SHARED | LK_RETRY);
1577 
1578 	/*
1579 	 * Decrement the object's writemappings, by swapping the start
1580 	 * and end arguments for vnode_pager_update_writecount().  If
1581 	 * there was not a race with vnode reclaimation, then the
1582 	 * vnode's v_writecount is decremented.
1583 	 */
1584 	vnode_pager_update_writecount(object, end, start);
1585 	VOP_UNLOCK(vp, 0);
1586 	vdrop(vp);
1587 	if (mp != NULL)
1588 		vn_finished_write(mp);
1589 }
1590