1 /*- 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/limits.h> 65 #include <sys/conf.h> 66 #include <sys/rwlock.h> 67 #include <sys/sf_buf.h> 68 69 #include <machine/atomic.h> 70 71 #include <vm/vm.h> 72 #include <vm/vm_param.h> 73 #include <vm/vm_object.h> 74 #include <vm/vm_page.h> 75 #include <vm/vm_pager.h> 76 #include <vm/vm_map.h> 77 #include <vm/vnode_pager.h> 78 #include <vm/vm_extern.h> 79 80 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 81 daddr_t *rtaddress, int *run); 82 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 83 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 84 static void vnode_pager_dealloc(vm_object_t); 85 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 86 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 87 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 88 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, 89 vm_ooffset_t, struct ucred *cred); 90 91 struct pagerops vnodepagerops = { 92 .pgo_alloc = vnode_pager_alloc, 93 .pgo_dealloc = vnode_pager_dealloc, 94 .pgo_getpages = vnode_pager_getpages, 95 .pgo_putpages = vnode_pager_putpages, 96 .pgo_haspage = vnode_pager_haspage, 97 }; 98 99 int vnode_pbuf_freecnt; 100 101 /* Create the VM system backing object for this vnode */ 102 int 103 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 104 { 105 vm_object_t object; 106 vm_ooffset_t size = isize; 107 struct vattr va; 108 109 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 110 return (0); 111 112 while ((object = vp->v_object) != NULL) { 113 VM_OBJECT_WLOCK(object); 114 if (!(object->flags & OBJ_DEAD)) { 115 VM_OBJECT_WUNLOCK(object); 116 return (0); 117 } 118 VOP_UNLOCK(vp, 0); 119 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 120 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0); 121 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 122 } 123 124 if (size == 0) { 125 if (vn_isdisk(vp, NULL)) { 126 size = IDX_TO_OFF(INT_MAX); 127 } else { 128 if (VOP_GETATTR(vp, &va, td->td_ucred)) 129 return (0); 130 size = va.va_size; 131 } 132 } 133 134 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); 135 /* 136 * Dereference the reference we just created. This assumes 137 * that the object is associated with the vp. 138 */ 139 VM_OBJECT_WLOCK(object); 140 object->ref_count--; 141 VM_OBJECT_WUNLOCK(object); 142 vrele(vp); 143 144 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 145 146 return (0); 147 } 148 149 void 150 vnode_destroy_vobject(struct vnode *vp) 151 { 152 struct vm_object *obj; 153 154 obj = vp->v_object; 155 if (obj == NULL) 156 return; 157 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 158 VM_OBJECT_WLOCK(obj); 159 if (obj->ref_count == 0) { 160 /* 161 * vclean() may be called twice. The first time 162 * removes the primary reference to the object, 163 * the second time goes one further and is a 164 * special-case to terminate the object. 165 * 166 * don't double-terminate the object 167 */ 168 if ((obj->flags & OBJ_DEAD) == 0) 169 vm_object_terminate(obj); 170 else 171 VM_OBJECT_WUNLOCK(obj); 172 } else { 173 /* 174 * Woe to the process that tries to page now :-). 175 */ 176 vm_pager_deallocate(obj); 177 VM_OBJECT_WUNLOCK(obj); 178 } 179 vp->v_object = NULL; 180 } 181 182 183 /* 184 * Allocate (or lookup) pager for a vnode. 185 * Handle is a vnode pointer. 186 * 187 * MPSAFE 188 */ 189 vm_object_t 190 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 191 vm_ooffset_t offset, struct ucred *cred) 192 { 193 vm_object_t object; 194 struct vnode *vp; 195 196 /* 197 * Pageout to vnode, no can do yet. 198 */ 199 if (handle == NULL) 200 return (NULL); 201 202 vp = (struct vnode *) handle; 203 204 /* 205 * If the object is being terminated, wait for it to 206 * go away. 207 */ 208 retry: 209 while ((object = vp->v_object) != NULL) { 210 VM_OBJECT_WLOCK(object); 211 if ((object->flags & OBJ_DEAD) == 0) 212 break; 213 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 214 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0); 215 } 216 217 KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference")); 218 219 if (object == NULL) { 220 /* 221 * Add an object of the appropriate size 222 */ 223 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 224 225 object->un_pager.vnp.vnp_size = size; 226 object->un_pager.vnp.writemappings = 0; 227 228 object->handle = handle; 229 VI_LOCK(vp); 230 if (vp->v_object != NULL) { 231 /* 232 * Object has been created while we were sleeping 233 */ 234 VI_UNLOCK(vp); 235 vm_object_destroy(object); 236 goto retry; 237 } 238 vp->v_object = object; 239 VI_UNLOCK(vp); 240 } else { 241 object->ref_count++; 242 VM_OBJECT_WUNLOCK(object); 243 } 244 vref(vp); 245 return (object); 246 } 247 248 /* 249 * The object must be locked. 250 */ 251 static void 252 vnode_pager_dealloc(object) 253 vm_object_t object; 254 { 255 struct vnode *vp; 256 int refs; 257 258 vp = object->handle; 259 if (vp == NULL) 260 panic("vnode_pager_dealloc: pager already dealloced"); 261 262 VM_OBJECT_ASSERT_WLOCKED(object); 263 vm_object_pip_wait(object, "vnpdea"); 264 refs = object->ref_count; 265 266 object->handle = NULL; 267 object->type = OBJT_DEAD; 268 if (object->flags & OBJ_DISCONNECTWNT) { 269 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 270 wakeup(object); 271 } 272 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 273 if (object->un_pager.vnp.writemappings > 0) { 274 object->un_pager.vnp.writemappings = 0; 275 VOP_ADD_WRITECOUNT(vp, -1); 276 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 277 __func__, vp, vp->v_writecount); 278 } 279 vp->v_object = NULL; 280 VOP_UNSET_TEXT(vp); 281 VM_OBJECT_WUNLOCK(object); 282 while (refs-- > 0) 283 vunref(vp); 284 VM_OBJECT_WLOCK(object); 285 } 286 287 static boolean_t 288 vnode_pager_haspage(object, pindex, before, after) 289 vm_object_t object; 290 vm_pindex_t pindex; 291 int *before; 292 int *after; 293 { 294 struct vnode *vp = object->handle; 295 daddr_t bn; 296 int err; 297 daddr_t reqblock; 298 int poff; 299 int bsize; 300 int pagesperblock, blocksperpage; 301 302 VM_OBJECT_ASSERT_WLOCKED(object); 303 /* 304 * If no vp or vp is doomed or marked transparent to VM, we do not 305 * have the page. 306 */ 307 if (vp == NULL || vp->v_iflag & VI_DOOMED) 308 return FALSE; 309 /* 310 * If the offset is beyond end of file we do 311 * not have the page. 312 */ 313 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 314 return FALSE; 315 316 bsize = vp->v_mount->mnt_stat.f_iosize; 317 pagesperblock = bsize / PAGE_SIZE; 318 blocksperpage = 0; 319 if (pagesperblock > 0) { 320 reqblock = pindex / pagesperblock; 321 } else { 322 blocksperpage = (PAGE_SIZE / bsize); 323 reqblock = pindex * blocksperpage; 324 } 325 VM_OBJECT_WUNLOCK(object); 326 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 327 VM_OBJECT_WLOCK(object); 328 if (err) 329 return TRUE; 330 if (bn == -1) 331 return FALSE; 332 if (pagesperblock > 0) { 333 poff = pindex - (reqblock * pagesperblock); 334 if (before) { 335 *before *= pagesperblock; 336 *before += poff; 337 } 338 if (after) { 339 int numafter; 340 *after *= pagesperblock; 341 numafter = pagesperblock - (poff + 1); 342 if (IDX_TO_OFF(pindex + numafter) > 343 object->un_pager.vnp.vnp_size) { 344 numafter = 345 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 346 pindex; 347 } 348 *after += numafter; 349 } 350 } else { 351 if (before) { 352 *before /= blocksperpage; 353 } 354 355 if (after) { 356 *after /= blocksperpage; 357 } 358 } 359 return TRUE; 360 } 361 362 /* 363 * Lets the VM system know about a change in size for a file. 364 * We adjust our own internal size and flush any cached pages in 365 * the associated object that are affected by the size change. 366 * 367 * Note: this routine may be invoked as a result of a pager put 368 * operation (possibly at object termination time), so we must be careful. 369 */ 370 void 371 vnode_pager_setsize(vp, nsize) 372 struct vnode *vp; 373 vm_ooffset_t nsize; 374 { 375 vm_object_t object; 376 vm_page_t m; 377 vm_pindex_t nobjsize; 378 379 if ((object = vp->v_object) == NULL) 380 return; 381 /* ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */ 382 VM_OBJECT_WLOCK(object); 383 if (object->type == OBJT_DEAD) { 384 VM_OBJECT_WUNLOCK(object); 385 return; 386 } 387 KASSERT(object->type == OBJT_VNODE, 388 ("not vnode-backed object %p", object)); 389 if (nsize == object->un_pager.vnp.vnp_size) { 390 /* 391 * Hasn't changed size 392 */ 393 VM_OBJECT_WUNLOCK(object); 394 return; 395 } 396 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 397 if (nsize < object->un_pager.vnp.vnp_size) { 398 /* 399 * File has shrunk. Toss any cached pages beyond the new EOF. 400 */ 401 if (nobjsize < object->size) 402 vm_object_page_remove(object, nobjsize, object->size, 403 0); 404 /* 405 * this gets rid of garbage at the end of a page that is now 406 * only partially backed by the vnode. 407 * 408 * XXX for some reason (I don't know yet), if we take a 409 * completely invalid page and mark it partially valid 410 * it can screw up NFS reads, so we don't allow the case. 411 */ 412 if ((nsize & PAGE_MASK) && 413 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 414 m->valid != 0) { 415 int base = (int)nsize & PAGE_MASK; 416 int size = PAGE_SIZE - base; 417 418 /* 419 * Clear out partial-page garbage in case 420 * the page has been mapped. 421 */ 422 pmap_zero_page_area(m, base, size); 423 424 /* 425 * Update the valid bits to reflect the blocks that 426 * have been zeroed. Some of these valid bits may 427 * have already been set. 428 */ 429 vm_page_set_valid_range(m, base, size); 430 431 /* 432 * Round "base" to the next block boundary so that the 433 * dirty bit for a partially zeroed block is not 434 * cleared. 435 */ 436 base = roundup2(base, DEV_BSIZE); 437 438 /* 439 * Clear out partial-page dirty bits. 440 * 441 * note that we do not clear out the valid 442 * bits. This would prevent bogus_page 443 * replacement from working properly. 444 */ 445 vm_page_clear_dirty(m, base, PAGE_SIZE - base); 446 } else if ((nsize & PAGE_MASK) && 447 vm_page_is_cached(object, OFF_TO_IDX(nsize))) { 448 vm_page_cache_free(object, OFF_TO_IDX(nsize), 449 nobjsize); 450 } 451 } 452 object->un_pager.vnp.vnp_size = nsize; 453 object->size = nobjsize; 454 VM_OBJECT_WUNLOCK(object); 455 } 456 457 /* 458 * calculate the linear (byte) disk address of specified virtual 459 * file address 460 */ 461 static int 462 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 463 int *run) 464 { 465 int bsize; 466 int err; 467 daddr_t vblock; 468 daddr_t voffset; 469 470 if (address < 0) 471 return -1; 472 473 if (vp->v_iflag & VI_DOOMED) 474 return -1; 475 476 bsize = vp->v_mount->mnt_stat.f_iosize; 477 vblock = address / bsize; 478 voffset = address % bsize; 479 480 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 481 if (err == 0) { 482 if (*rtaddress != -1) 483 *rtaddress += voffset / DEV_BSIZE; 484 if (run) { 485 *run += 1; 486 *run *= bsize/PAGE_SIZE; 487 *run -= voffset/PAGE_SIZE; 488 } 489 } 490 491 return (err); 492 } 493 494 /* 495 * small block filesystem vnode pager input 496 */ 497 static int 498 vnode_pager_input_smlfs(object, m) 499 vm_object_t object; 500 vm_page_t m; 501 { 502 struct vnode *vp; 503 struct bufobj *bo; 504 struct buf *bp; 505 struct sf_buf *sf; 506 daddr_t fileaddr; 507 vm_offset_t bsize; 508 vm_page_bits_t bits; 509 int error, i; 510 511 error = 0; 512 vp = object->handle; 513 if (vp->v_iflag & VI_DOOMED) 514 return VM_PAGER_BAD; 515 516 bsize = vp->v_mount->mnt_stat.f_iosize; 517 518 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 519 520 sf = sf_buf_alloc(m, 0); 521 522 for (i = 0; i < PAGE_SIZE / bsize; i++) { 523 vm_ooffset_t address; 524 525 bits = vm_page_bits(i * bsize, bsize); 526 if (m->valid & bits) 527 continue; 528 529 address = IDX_TO_OFF(m->pindex) + i * bsize; 530 if (address >= object->un_pager.vnp.vnp_size) { 531 fileaddr = -1; 532 } else { 533 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 534 if (error) 535 break; 536 } 537 if (fileaddr != -1) { 538 bp = getpbuf(&vnode_pbuf_freecnt); 539 540 /* build a minimal buffer header */ 541 bp->b_iocmd = BIO_READ; 542 bp->b_iodone = bdone; 543 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 544 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 545 bp->b_rcred = crhold(curthread->td_ucred); 546 bp->b_wcred = crhold(curthread->td_ucred); 547 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 548 bp->b_blkno = fileaddr; 549 pbgetbo(bo, bp); 550 bp->b_vp = vp; 551 bp->b_bcount = bsize; 552 bp->b_bufsize = bsize; 553 bp->b_runningbufspace = bp->b_bufsize; 554 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 555 556 /* do the input */ 557 bp->b_iooffset = dbtob(bp->b_blkno); 558 bstrategy(bp); 559 560 bwait(bp, PVM, "vnsrd"); 561 562 if ((bp->b_ioflags & BIO_ERROR) != 0) 563 error = EIO; 564 565 /* 566 * free the buffer header back to the swap buffer pool 567 */ 568 bp->b_vp = NULL; 569 pbrelbo(bp); 570 relpbuf(bp, &vnode_pbuf_freecnt); 571 if (error) 572 break; 573 } else 574 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 575 KASSERT((m->dirty & bits) == 0, 576 ("vnode_pager_input_smlfs: page %p is dirty", m)); 577 VM_OBJECT_WLOCK(object); 578 m->valid |= bits; 579 VM_OBJECT_WUNLOCK(object); 580 } 581 sf_buf_free(sf); 582 if (error) { 583 return VM_PAGER_ERROR; 584 } 585 return VM_PAGER_OK; 586 } 587 588 /* 589 * old style vnode pager input routine 590 */ 591 static int 592 vnode_pager_input_old(object, m) 593 vm_object_t object; 594 vm_page_t m; 595 { 596 struct uio auio; 597 struct iovec aiov; 598 int error; 599 int size; 600 struct sf_buf *sf; 601 struct vnode *vp; 602 603 VM_OBJECT_ASSERT_WLOCKED(object); 604 error = 0; 605 606 /* 607 * Return failure if beyond current EOF 608 */ 609 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 610 return VM_PAGER_BAD; 611 } else { 612 size = PAGE_SIZE; 613 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 614 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 615 vp = object->handle; 616 VM_OBJECT_WUNLOCK(object); 617 618 /* 619 * Allocate a kernel virtual address and initialize so that 620 * we can use VOP_READ/WRITE routines. 621 */ 622 sf = sf_buf_alloc(m, 0); 623 624 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 625 aiov.iov_len = size; 626 auio.uio_iov = &aiov; 627 auio.uio_iovcnt = 1; 628 auio.uio_offset = IDX_TO_OFF(m->pindex); 629 auio.uio_segflg = UIO_SYSSPACE; 630 auio.uio_rw = UIO_READ; 631 auio.uio_resid = size; 632 auio.uio_td = curthread; 633 634 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 635 if (!error) { 636 int count = size - auio.uio_resid; 637 638 if (count == 0) 639 error = EINVAL; 640 else if (count != PAGE_SIZE) 641 bzero((caddr_t)sf_buf_kva(sf) + count, 642 PAGE_SIZE - count); 643 } 644 sf_buf_free(sf); 645 646 VM_OBJECT_WLOCK(object); 647 } 648 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); 649 if (!error) 650 m->valid = VM_PAGE_BITS_ALL; 651 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 652 } 653 654 /* 655 * generic vnode pager input routine 656 */ 657 658 /* 659 * Local media VFS's that do not implement their own VOP_GETPAGES 660 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 661 * to implement the previous behaviour. 662 * 663 * All other FS's should use the bypass to get to the local media 664 * backing vp's VOP_GETPAGES. 665 */ 666 static int 667 vnode_pager_getpages(object, m, count, reqpage) 668 vm_object_t object; 669 vm_page_t *m; 670 int count; 671 int reqpage; 672 { 673 int rtval; 674 struct vnode *vp; 675 int bytes = count * PAGE_SIZE; 676 677 vp = object->handle; 678 VM_OBJECT_WUNLOCK(object); 679 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 680 KASSERT(rtval != EOPNOTSUPP, 681 ("vnode_pager: FS getpages not implemented\n")); 682 VM_OBJECT_WLOCK(object); 683 return rtval; 684 } 685 686 /* 687 * This is now called from local media FS's to operate against their 688 * own vnodes if they fail to implement VOP_GETPAGES. 689 */ 690 int 691 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 692 struct vnode *vp; 693 vm_page_t *m; 694 int bytecount; 695 int reqpage; 696 { 697 vm_object_t object; 698 vm_offset_t kva; 699 off_t foff, tfoff, nextoff; 700 int i, j, size, bsize, first; 701 daddr_t firstaddr, reqblock; 702 struct bufobj *bo; 703 int runpg; 704 int runend; 705 struct buf *bp; 706 struct mount *mp; 707 int count; 708 int error; 709 710 object = vp->v_object; 711 count = bytecount / PAGE_SIZE; 712 713 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 714 ("vnode_pager_generic_getpages does not support devices")); 715 if (vp->v_iflag & VI_DOOMED) 716 return VM_PAGER_BAD; 717 718 bsize = vp->v_mount->mnt_stat.f_iosize; 719 720 /* get the UNDERLYING device for the file with VOP_BMAP() */ 721 722 /* 723 * originally, we did not check for an error return value -- assuming 724 * an fs always has a bmap entry point -- that assumption is wrong!!! 725 */ 726 foff = IDX_TO_OFF(m[reqpage]->pindex); 727 728 /* 729 * if we can't bmap, use old VOP code 730 */ 731 error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL); 732 if (error == EOPNOTSUPP) { 733 VM_OBJECT_WLOCK(object); 734 735 for (i = 0; i < count; i++) 736 if (i != reqpage) { 737 vm_page_lock(m[i]); 738 vm_page_free(m[i]); 739 vm_page_unlock(m[i]); 740 } 741 PCPU_INC(cnt.v_vnodein); 742 PCPU_INC(cnt.v_vnodepgsin); 743 error = vnode_pager_input_old(object, m[reqpage]); 744 VM_OBJECT_WUNLOCK(object); 745 return (error); 746 } else if (error != 0) { 747 VM_OBJECT_WLOCK(object); 748 for (i = 0; i < count; i++) 749 if (i != reqpage) { 750 vm_page_lock(m[i]); 751 vm_page_free(m[i]); 752 vm_page_unlock(m[i]); 753 } 754 VM_OBJECT_WUNLOCK(object); 755 return (VM_PAGER_ERROR); 756 757 /* 758 * if the blocksize is smaller than a page size, then use 759 * special small filesystem code. NFS sometimes has a small 760 * blocksize, but it can handle large reads itself. 761 */ 762 } else if ((PAGE_SIZE / bsize) > 1 && 763 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 764 VM_OBJECT_WLOCK(object); 765 for (i = 0; i < count; i++) 766 if (i != reqpage) { 767 vm_page_lock(m[i]); 768 vm_page_free(m[i]); 769 vm_page_unlock(m[i]); 770 } 771 VM_OBJECT_WUNLOCK(object); 772 PCPU_INC(cnt.v_vnodein); 773 PCPU_INC(cnt.v_vnodepgsin); 774 return vnode_pager_input_smlfs(object, m[reqpage]); 775 } 776 777 /* 778 * If we have a completely valid page available to us, we can 779 * clean up and return. Otherwise we have to re-read the 780 * media. 781 */ 782 VM_OBJECT_WLOCK(object); 783 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 784 for (i = 0; i < count; i++) 785 if (i != reqpage) { 786 vm_page_lock(m[i]); 787 vm_page_free(m[i]); 788 vm_page_unlock(m[i]); 789 } 790 VM_OBJECT_WUNLOCK(object); 791 return VM_PAGER_OK; 792 } else if (reqblock == -1) { 793 pmap_zero_page(m[reqpage]); 794 KASSERT(m[reqpage]->dirty == 0, 795 ("vnode_pager_generic_getpages: page %p is dirty", m)); 796 m[reqpage]->valid = VM_PAGE_BITS_ALL; 797 for (i = 0; i < count; i++) 798 if (i != reqpage) { 799 vm_page_lock(m[i]); 800 vm_page_free(m[i]); 801 vm_page_unlock(m[i]); 802 } 803 VM_OBJECT_WUNLOCK(object); 804 return (VM_PAGER_OK); 805 } 806 m[reqpage]->valid = 0; 807 VM_OBJECT_WUNLOCK(object); 808 809 /* 810 * here on direct device I/O 811 */ 812 firstaddr = -1; 813 814 /* 815 * calculate the run that includes the required page 816 */ 817 for (first = 0, i = 0; i < count; i = runend) { 818 if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr, 819 &runpg) != 0) { 820 VM_OBJECT_WLOCK(object); 821 for (; i < count; i++) 822 if (i != reqpage) { 823 vm_page_lock(m[i]); 824 vm_page_free(m[i]); 825 vm_page_unlock(m[i]); 826 } 827 VM_OBJECT_WUNLOCK(object); 828 return (VM_PAGER_ERROR); 829 } 830 if (firstaddr == -1) { 831 VM_OBJECT_WLOCK(object); 832 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 833 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 834 (intmax_t)firstaddr, (uintmax_t)(foff >> 32), 835 (uintmax_t)foff, 836 (uintmax_t) 837 (object->un_pager.vnp.vnp_size >> 32), 838 (uintmax_t)object->un_pager.vnp.vnp_size); 839 } 840 vm_page_lock(m[i]); 841 vm_page_free(m[i]); 842 vm_page_unlock(m[i]); 843 VM_OBJECT_WUNLOCK(object); 844 runend = i + 1; 845 first = runend; 846 continue; 847 } 848 runend = i + runpg; 849 if (runend <= reqpage) { 850 VM_OBJECT_WLOCK(object); 851 for (j = i; j < runend; j++) { 852 vm_page_lock(m[j]); 853 vm_page_free(m[j]); 854 vm_page_unlock(m[j]); 855 } 856 VM_OBJECT_WUNLOCK(object); 857 } else { 858 if (runpg < (count - first)) { 859 VM_OBJECT_WLOCK(object); 860 for (i = first + runpg; i < count; i++) { 861 vm_page_lock(m[i]); 862 vm_page_free(m[i]); 863 vm_page_unlock(m[i]); 864 } 865 VM_OBJECT_WUNLOCK(object); 866 count = first + runpg; 867 } 868 break; 869 } 870 first = runend; 871 } 872 873 /* 874 * the first and last page have been calculated now, move input pages 875 * to be zero based... 876 */ 877 if (first != 0) { 878 m += first; 879 count -= first; 880 reqpage -= first; 881 } 882 883 /* 884 * calculate the file virtual address for the transfer 885 */ 886 foff = IDX_TO_OFF(m[0]->pindex); 887 888 /* 889 * calculate the size of the transfer 890 */ 891 size = count * PAGE_SIZE; 892 KASSERT(count > 0, ("zero count")); 893 if ((foff + size) > object->un_pager.vnp.vnp_size) 894 size = object->un_pager.vnp.vnp_size - foff; 895 KASSERT(size > 0, ("zero size")); 896 897 /* 898 * round up physical size for real devices. 899 */ 900 if (1) { 901 int secmask = bo->bo_bsize - 1; 902 KASSERT(secmask < PAGE_SIZE && secmask > 0, 903 ("vnode_pager_generic_getpages: sector size %d too large", 904 secmask + 1)); 905 size = (size + secmask) & ~secmask; 906 } 907 908 bp = getpbuf(&vnode_pbuf_freecnt); 909 kva = (vm_offset_t)bp->b_data; 910 911 /* 912 * and map the pages to be read into the kva, if the filesystem 913 * requires mapped buffers. 914 */ 915 mp = vp->v_mount; 916 if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 && 917 unmapped_buf_allowed) { 918 bp->b_data = unmapped_buf; 919 bp->b_kvabase = unmapped_buf; 920 bp->b_offset = 0; 921 bp->b_flags |= B_UNMAPPED; 922 bp->b_npages = count; 923 for (i = 0; i < count; i++) 924 bp->b_pages[i] = m[i]; 925 } else 926 pmap_qenter(kva, m, count); 927 928 /* build a minimal buffer header */ 929 bp->b_iocmd = BIO_READ; 930 bp->b_iodone = bdone; 931 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 932 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 933 bp->b_rcred = crhold(curthread->td_ucred); 934 bp->b_wcred = crhold(curthread->td_ucred); 935 bp->b_blkno = firstaddr; 936 pbgetbo(bo, bp); 937 bp->b_vp = vp; 938 bp->b_bcount = size; 939 bp->b_bufsize = size; 940 bp->b_runningbufspace = bp->b_bufsize; 941 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 942 943 PCPU_INC(cnt.v_vnodein); 944 PCPU_ADD(cnt.v_vnodepgsin, count); 945 946 /* do the input */ 947 bp->b_iooffset = dbtob(bp->b_blkno); 948 bstrategy(bp); 949 950 bwait(bp, PVM, "vnread"); 951 952 if ((bp->b_ioflags & BIO_ERROR) != 0) 953 error = EIO; 954 955 if (error == 0 && size != count * PAGE_SIZE) { 956 if ((bp->b_flags & B_UNMAPPED) != 0) { 957 bp->b_flags &= ~B_UNMAPPED; 958 pmap_qenter(kva, m, count); 959 } 960 bzero((caddr_t)kva + size, PAGE_SIZE * count - size); 961 } 962 if ((bp->b_flags & B_UNMAPPED) == 0) 963 pmap_qremove(kva, count); 964 if (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0) { 965 bp->b_data = (caddr_t)kva; 966 bp->b_kvabase = (caddr_t)kva; 967 bp->b_flags &= ~B_UNMAPPED; 968 for (i = 0; i < count; i++) 969 bp->b_pages[i] = NULL; 970 } 971 972 /* 973 * free the buffer header back to the swap buffer pool 974 */ 975 bp->b_vp = NULL; 976 pbrelbo(bp); 977 relpbuf(bp, &vnode_pbuf_freecnt); 978 979 VM_OBJECT_WLOCK(object); 980 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 981 vm_page_t mt; 982 983 nextoff = tfoff + PAGE_SIZE; 984 mt = m[i]; 985 986 if (nextoff <= object->un_pager.vnp.vnp_size) { 987 /* 988 * Read filled up entire page. 989 */ 990 mt->valid = VM_PAGE_BITS_ALL; 991 KASSERT(mt->dirty == 0, 992 ("vnode_pager_generic_getpages: page %p is dirty", 993 mt)); 994 KASSERT(!pmap_page_is_mapped(mt), 995 ("vnode_pager_generic_getpages: page %p is mapped", 996 mt)); 997 } else { 998 /* 999 * Read did not fill up entire page. 1000 * 1001 * Currently we do not set the entire page valid, 1002 * we just try to clear the piece that we couldn't 1003 * read. 1004 */ 1005 vm_page_set_valid_range(mt, 0, 1006 object->un_pager.vnp.vnp_size - tfoff); 1007 KASSERT((mt->dirty & vm_page_bits(0, 1008 object->un_pager.vnp.vnp_size - tfoff)) == 0, 1009 ("vnode_pager_generic_getpages: page %p is dirty", 1010 mt)); 1011 } 1012 1013 if (i != reqpage) 1014 vm_page_readahead_finish(mt); 1015 } 1016 VM_OBJECT_WUNLOCK(object); 1017 if (error) { 1018 printf("vnode_pager_getpages: I/O read error\n"); 1019 } 1020 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 1021 } 1022 1023 /* 1024 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 1025 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 1026 * vnode_pager_generic_putpages() to implement the previous behaviour. 1027 * 1028 * All other FS's should use the bypass to get to the local media 1029 * backing vp's VOP_PUTPAGES. 1030 */ 1031 static void 1032 vnode_pager_putpages(object, m, count, sync, rtvals) 1033 vm_object_t object; 1034 vm_page_t *m; 1035 int count; 1036 boolean_t sync; 1037 int *rtvals; 1038 { 1039 int rtval; 1040 struct vnode *vp; 1041 int bytes = count * PAGE_SIZE; 1042 1043 /* 1044 * Force synchronous operation if we are extremely low on memory 1045 * to prevent a low-memory deadlock. VOP operations often need to 1046 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1047 * operation ). The swapper handles the case by limiting the amount 1048 * of asynchronous I/O, but that sort of solution doesn't scale well 1049 * for the vnode pager without a lot of work. 1050 * 1051 * Also, the backing vnode's iodone routine may not wake the pageout 1052 * daemon up. This should be probably be addressed XXX. 1053 */ 1054 1055 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 1056 sync |= OBJPC_SYNC; 1057 1058 /* 1059 * Call device-specific putpages function 1060 */ 1061 vp = object->handle; 1062 VM_OBJECT_WUNLOCK(object); 1063 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 1064 KASSERT(rtval != EOPNOTSUPP, 1065 ("vnode_pager: stale FS putpages\n")); 1066 VM_OBJECT_WLOCK(object); 1067 } 1068 1069 1070 /* 1071 * This is now called from local media FS's to operate against their 1072 * own vnodes if they fail to implement VOP_PUTPAGES. 1073 * 1074 * This is typically called indirectly via the pageout daemon and 1075 * clustering has already typically occured, so in general we ask the 1076 * underlying filesystem to write the data out asynchronously rather 1077 * then delayed. 1078 */ 1079 int 1080 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, 1081 int flags, int *rtvals) 1082 { 1083 int i; 1084 vm_object_t object; 1085 vm_page_t m; 1086 int count; 1087 1088 int maxsize, ncount; 1089 vm_ooffset_t poffset; 1090 struct uio auio; 1091 struct iovec aiov; 1092 int error; 1093 int ioflags; 1094 int ppscheck = 0; 1095 static struct timeval lastfail; 1096 static int curfail; 1097 1098 object = vp->v_object; 1099 count = bytecount / PAGE_SIZE; 1100 1101 for (i = 0; i < count; i++) 1102 rtvals[i] = VM_PAGER_ERROR; 1103 1104 if ((int64_t)ma[0]->pindex < 0) { 1105 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", 1106 (long)ma[0]->pindex, (u_long)ma[0]->dirty); 1107 rtvals[0] = VM_PAGER_BAD; 1108 return VM_PAGER_BAD; 1109 } 1110 1111 maxsize = count * PAGE_SIZE; 1112 ncount = count; 1113 1114 poffset = IDX_TO_OFF(ma[0]->pindex); 1115 1116 /* 1117 * If the page-aligned write is larger then the actual file we 1118 * have to invalidate pages occuring beyond the file EOF. However, 1119 * there is an edge case where a file may not be page-aligned where 1120 * the last page is partially invalid. In this case the filesystem 1121 * may not properly clear the dirty bits for the entire page (which 1122 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1123 * With the page locked we are free to fix-up the dirty bits here. 1124 * 1125 * We do not under any circumstances truncate the valid bits, as 1126 * this will screw up bogus page replacement. 1127 */ 1128 VM_OBJECT_WLOCK(object); 1129 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1130 if (object->un_pager.vnp.vnp_size > poffset) { 1131 int pgoff; 1132 1133 maxsize = object->un_pager.vnp.vnp_size - poffset; 1134 ncount = btoc(maxsize); 1135 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1136 /* 1137 * If the object is locked and the following 1138 * conditions hold, then the page's dirty 1139 * field cannot be concurrently changed by a 1140 * pmap operation. 1141 */ 1142 m = ma[ncount - 1]; 1143 KASSERT(m->busy > 0, 1144 ("vnode_pager_generic_putpages: page %p is not busy", m)); 1145 KASSERT(!pmap_page_is_write_mapped(m), 1146 ("vnode_pager_generic_putpages: page %p is not read-only", m)); 1147 vm_page_clear_dirty(m, pgoff, PAGE_SIZE - 1148 pgoff); 1149 } 1150 } else { 1151 maxsize = 0; 1152 ncount = 0; 1153 } 1154 if (ncount < count) { 1155 for (i = ncount; i < count; i++) { 1156 rtvals[i] = VM_PAGER_BAD; 1157 } 1158 } 1159 } 1160 VM_OBJECT_WUNLOCK(object); 1161 1162 /* 1163 * pageouts are already clustered, use IO_ASYNC to force a bawrite() 1164 * rather then a bdwrite() to prevent paging I/O from saturating 1165 * the buffer cache. Dummy-up the sequential heuristic to cause 1166 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1167 * the system decides how to cluster. 1168 */ 1169 ioflags = IO_VMIO; 1170 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1171 ioflags |= IO_SYNC; 1172 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1173 ioflags |= IO_ASYNC; 1174 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1175 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1176 1177 aiov.iov_base = (caddr_t) 0; 1178 aiov.iov_len = maxsize; 1179 auio.uio_iov = &aiov; 1180 auio.uio_iovcnt = 1; 1181 auio.uio_offset = poffset; 1182 auio.uio_segflg = UIO_NOCOPY; 1183 auio.uio_rw = UIO_WRITE; 1184 auio.uio_resid = maxsize; 1185 auio.uio_td = (struct thread *) 0; 1186 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1187 PCPU_INC(cnt.v_vnodeout); 1188 PCPU_ADD(cnt.v_vnodepgsout, ncount); 1189 1190 if (error) { 1191 if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1))) 1192 printf("vnode_pager_putpages: I/O error %d\n", error); 1193 } 1194 if (auio.uio_resid) { 1195 if (ppscheck || ppsratecheck(&lastfail, &curfail, 1)) 1196 printf("vnode_pager_putpages: residual I/O %zd at %lu\n", 1197 auio.uio_resid, (u_long)ma[0]->pindex); 1198 } 1199 for (i = 0; i < ncount; i++) { 1200 rtvals[i] = VM_PAGER_OK; 1201 } 1202 return rtvals[0]; 1203 } 1204 1205 void 1206 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written) 1207 { 1208 vm_object_t obj; 1209 int i, pos; 1210 1211 if (written == 0) 1212 return; 1213 obj = ma[0]->object; 1214 VM_OBJECT_WLOCK(obj); 1215 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { 1216 if (pos < trunc_page(written)) { 1217 rtvals[i] = VM_PAGER_OK; 1218 vm_page_undirty(ma[i]); 1219 } else { 1220 /* Partially written page. */ 1221 rtvals[i] = VM_PAGER_AGAIN; 1222 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); 1223 } 1224 } 1225 VM_OBJECT_WUNLOCK(obj); 1226 } 1227 1228 void 1229 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, 1230 vm_offset_t end) 1231 { 1232 struct vnode *vp; 1233 vm_ooffset_t old_wm; 1234 1235 VM_OBJECT_WLOCK(object); 1236 if (object->type != OBJT_VNODE) { 1237 VM_OBJECT_WUNLOCK(object); 1238 return; 1239 } 1240 old_wm = object->un_pager.vnp.writemappings; 1241 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; 1242 vp = object->handle; 1243 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { 1244 ASSERT_VOP_ELOCKED(vp, "v_writecount inc"); 1245 VOP_ADD_WRITECOUNT(vp, 1); 1246 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 1247 __func__, vp, vp->v_writecount); 1248 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { 1249 ASSERT_VOP_ELOCKED(vp, "v_writecount dec"); 1250 VOP_ADD_WRITECOUNT(vp, -1); 1251 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 1252 __func__, vp, vp->v_writecount); 1253 } 1254 VM_OBJECT_WUNLOCK(object); 1255 } 1256 1257 void 1258 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, 1259 vm_offset_t end) 1260 { 1261 struct vnode *vp; 1262 struct mount *mp; 1263 vm_offset_t inc; 1264 1265 VM_OBJECT_WLOCK(object); 1266 1267 /* 1268 * First, recheck the object type to account for the race when 1269 * the vnode is reclaimed. 1270 */ 1271 if (object->type != OBJT_VNODE) { 1272 VM_OBJECT_WUNLOCK(object); 1273 return; 1274 } 1275 1276 /* 1277 * Optimize for the case when writemappings is not going to 1278 * zero. 1279 */ 1280 inc = end - start; 1281 if (object->un_pager.vnp.writemappings != inc) { 1282 object->un_pager.vnp.writemappings -= inc; 1283 VM_OBJECT_WUNLOCK(object); 1284 return; 1285 } 1286 1287 vp = object->handle; 1288 vhold(vp); 1289 VM_OBJECT_WUNLOCK(object); 1290 mp = NULL; 1291 vn_start_write(vp, &mp, V_WAIT); 1292 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1293 1294 /* 1295 * Decrement the object's writemappings, by swapping the start 1296 * and end arguments for vnode_pager_update_writecount(). If 1297 * there was not a race with vnode reclaimation, then the 1298 * vnode's v_writecount is decremented. 1299 */ 1300 vnode_pager_update_writecount(object, end, start); 1301 VOP_UNLOCK(vp, 0); 1302 vdrop(vp); 1303 if (mp != NULL) 1304 vn_finished_write(mp); 1305 } 1306