xref: /freebsd/sys/vm/vnode_pager.c (revision 3fc36ee018bb836bd1796067cf4ef8683f166ebc)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include "opt_vm.h"
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/vnode.h>
62 #include <sys/mount.h>
63 #include <sys/bio.h>
64 #include <sys/buf.h>
65 #include <sys/vmmeter.h>
66 #include <sys/limits.h>
67 #include <sys/conf.h>
68 #include <sys/rwlock.h>
69 #include <sys/sf_buf.h>
70 
71 #include <machine/atomic.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_pager.h>
78 #include <vm/vm_map.h>
79 #include <vm/vnode_pager.h>
80 #include <vm/vm_extern.h>
81 
82 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
83     daddr_t *rtaddress, int *run);
84 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
85 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
86 static void vnode_pager_dealloc(vm_object_t);
87 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *);
88 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
89     int *, vop_getpages_iodone_t, void *);
90 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
91 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
92 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t,
93     vm_ooffset_t, struct ucred *cred);
94 static int vnode_pager_generic_getpages_done(struct buf *);
95 static void vnode_pager_generic_getpages_done_async(struct buf *);
96 
97 struct pagerops vnodepagerops = {
98 	.pgo_alloc =	vnode_pager_alloc,
99 	.pgo_dealloc =	vnode_pager_dealloc,
100 	.pgo_getpages =	vnode_pager_getpages,
101 	.pgo_getpages_async = vnode_pager_getpages_async,
102 	.pgo_putpages =	vnode_pager_putpages,
103 	.pgo_haspage =	vnode_pager_haspage,
104 };
105 
106 int vnode_pbuf_freecnt;
107 int vnode_async_pbuf_freecnt;
108 
109 /* Create the VM system backing object for this vnode */
110 int
111 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
112 {
113 	vm_object_t object;
114 	vm_ooffset_t size = isize;
115 	struct vattr va;
116 
117 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
118 		return (0);
119 
120 	while ((object = vp->v_object) != NULL) {
121 		VM_OBJECT_WLOCK(object);
122 		if (!(object->flags & OBJ_DEAD)) {
123 			VM_OBJECT_WUNLOCK(object);
124 			return (0);
125 		}
126 		VOP_UNLOCK(vp, 0);
127 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
128 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0);
129 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
130 	}
131 
132 	if (size == 0) {
133 		if (vn_isdisk(vp, NULL)) {
134 			size = IDX_TO_OFF(INT_MAX);
135 		} else {
136 			if (VOP_GETATTR(vp, &va, td->td_ucred))
137 				return (0);
138 			size = va.va_size;
139 		}
140 	}
141 
142 	object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred);
143 	/*
144 	 * Dereference the reference we just created.  This assumes
145 	 * that the object is associated with the vp.
146 	 */
147 	VM_OBJECT_WLOCK(object);
148 	object->ref_count--;
149 	VM_OBJECT_WUNLOCK(object);
150 	vrele(vp);
151 
152 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
153 
154 	return (0);
155 }
156 
157 void
158 vnode_destroy_vobject(struct vnode *vp)
159 {
160 	struct vm_object *obj;
161 
162 	obj = vp->v_object;
163 	if (obj == NULL)
164 		return;
165 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
166 	VM_OBJECT_WLOCK(obj);
167 	umtx_shm_object_terminated(obj);
168 	if (obj->ref_count == 0) {
169 		/*
170 		 * don't double-terminate the object
171 		 */
172 		if ((obj->flags & OBJ_DEAD) == 0) {
173 			vm_object_terminate(obj);
174 		} else {
175 			/*
176 			 * Waiters were already handled during object
177 			 * termination.  The exclusive vnode lock hopefully
178 			 * prevented new waiters from referencing the dying
179 			 * object.
180 			 */
181 			KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0,
182 			    ("OBJ_DISCONNECTWNT set obj %p flags %x",
183 			    obj, obj->flags));
184 			vp->v_object = NULL;
185 			VM_OBJECT_WUNLOCK(obj);
186 		}
187 	} else {
188 		/*
189 		 * Woe to the process that tries to page now :-).
190 		 */
191 		vm_pager_deallocate(obj);
192 		VM_OBJECT_WUNLOCK(obj);
193 	}
194 	KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object));
195 }
196 
197 
198 /*
199  * Allocate (or lookup) pager for a vnode.
200  * Handle is a vnode pointer.
201  *
202  * MPSAFE
203  */
204 vm_object_t
205 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
206     vm_ooffset_t offset, struct ucred *cred)
207 {
208 	vm_object_t object;
209 	struct vnode *vp;
210 
211 	/*
212 	 * Pageout to vnode, no can do yet.
213 	 */
214 	if (handle == NULL)
215 		return (NULL);
216 
217 	vp = (struct vnode *) handle;
218 
219 	/*
220 	 * If the object is being terminated, wait for it to
221 	 * go away.
222 	 */
223 retry:
224 	while ((object = vp->v_object) != NULL) {
225 		VM_OBJECT_WLOCK(object);
226 		if ((object->flags & OBJ_DEAD) == 0)
227 			break;
228 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
229 		VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0);
230 	}
231 
232 	KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference"));
233 
234 	if (object == NULL) {
235 		/*
236 		 * Add an object of the appropriate size
237 		 */
238 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
239 
240 		object->un_pager.vnp.vnp_size = size;
241 		object->un_pager.vnp.writemappings = 0;
242 
243 		object->handle = handle;
244 		VI_LOCK(vp);
245 		if (vp->v_object != NULL) {
246 			/*
247 			 * Object has been created while we were sleeping
248 			 */
249 			VI_UNLOCK(vp);
250 			VM_OBJECT_WLOCK(object);
251 			KASSERT(object->ref_count == 1,
252 			    ("leaked ref %p %d", object, object->ref_count));
253 			object->type = OBJT_DEAD;
254 			object->ref_count = 0;
255 			VM_OBJECT_WUNLOCK(object);
256 			vm_object_destroy(object);
257 			goto retry;
258 		}
259 		vp->v_object = object;
260 		VI_UNLOCK(vp);
261 	} else {
262 		object->ref_count++;
263 #if VM_NRESERVLEVEL > 0
264 		vm_object_color(object, 0);
265 #endif
266 		VM_OBJECT_WUNLOCK(object);
267 	}
268 	vref(vp);
269 	return (object);
270 }
271 
272 /*
273  *	The object must be locked.
274  */
275 static void
276 vnode_pager_dealloc(vm_object_t object)
277 {
278 	struct vnode *vp;
279 	int refs;
280 
281 	vp = object->handle;
282 	if (vp == NULL)
283 		panic("vnode_pager_dealloc: pager already dealloced");
284 
285 	VM_OBJECT_ASSERT_WLOCKED(object);
286 	vm_object_pip_wait(object, "vnpdea");
287 	refs = object->ref_count;
288 
289 	object->handle = NULL;
290 	object->type = OBJT_DEAD;
291 	if (object->flags & OBJ_DISCONNECTWNT) {
292 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
293 		wakeup(object);
294 	}
295 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
296 	if (object->un_pager.vnp.writemappings > 0) {
297 		object->un_pager.vnp.writemappings = 0;
298 		VOP_ADD_WRITECOUNT(vp, -1);
299 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
300 		    __func__, vp, vp->v_writecount);
301 	}
302 	vp->v_object = NULL;
303 	VOP_UNSET_TEXT(vp);
304 	VM_OBJECT_WUNLOCK(object);
305 	while (refs-- > 0)
306 		vunref(vp);
307 	VM_OBJECT_WLOCK(object);
308 }
309 
310 static boolean_t
311 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
312     int *after)
313 {
314 	struct vnode *vp = object->handle;
315 	daddr_t bn;
316 	int err;
317 	daddr_t reqblock;
318 	int poff;
319 	int bsize;
320 	int pagesperblock, blocksperpage;
321 
322 	VM_OBJECT_ASSERT_WLOCKED(object);
323 	/*
324 	 * If no vp or vp is doomed or marked transparent to VM, we do not
325 	 * have the page.
326 	 */
327 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
328 		return FALSE;
329 	/*
330 	 * If the offset is beyond end of file we do
331 	 * not have the page.
332 	 */
333 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
334 		return FALSE;
335 
336 	bsize = vp->v_mount->mnt_stat.f_iosize;
337 	pagesperblock = bsize / PAGE_SIZE;
338 	blocksperpage = 0;
339 	if (pagesperblock > 0) {
340 		reqblock = pindex / pagesperblock;
341 	} else {
342 		blocksperpage = (PAGE_SIZE / bsize);
343 		reqblock = pindex * blocksperpage;
344 	}
345 	VM_OBJECT_WUNLOCK(object);
346 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
347 	VM_OBJECT_WLOCK(object);
348 	if (err)
349 		return TRUE;
350 	if (bn == -1)
351 		return FALSE;
352 	if (pagesperblock > 0) {
353 		poff = pindex - (reqblock * pagesperblock);
354 		if (before) {
355 			*before *= pagesperblock;
356 			*before += poff;
357 		}
358 		if (after) {
359 			/*
360 			 * The BMAP vop can report a partial block in the
361 			 * 'after', but must not report blocks after EOF.
362 			 * Assert the latter, and truncate 'after' in case
363 			 * of the former.
364 			 */
365 			KASSERT((reqblock + *after) * pagesperblock <
366 			    roundup2(object->size, pagesperblock),
367 			    ("%s: reqblock %jd after %d size %ju", __func__,
368 			    (intmax_t )reqblock, *after,
369 			    (uintmax_t )object->size));
370 			*after *= pagesperblock;
371 			*after += pagesperblock - (poff + 1);
372 			if (pindex + *after >= object->size)
373 				*after = object->size - 1 - pindex;
374 		}
375 	} else {
376 		if (before) {
377 			*before /= blocksperpage;
378 		}
379 
380 		if (after) {
381 			*after /= blocksperpage;
382 		}
383 	}
384 	return TRUE;
385 }
386 
387 /*
388  * Lets the VM system know about a change in size for a file.
389  * We adjust our own internal size and flush any cached pages in
390  * the associated object that are affected by the size change.
391  *
392  * Note: this routine may be invoked as a result of a pager put
393  * operation (possibly at object termination time), so we must be careful.
394  */
395 void
396 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
397 {
398 	vm_object_t object;
399 	vm_page_t m;
400 	vm_pindex_t nobjsize;
401 
402 	if ((object = vp->v_object) == NULL)
403 		return;
404 /* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
405 	VM_OBJECT_WLOCK(object);
406 	if (object->type == OBJT_DEAD) {
407 		VM_OBJECT_WUNLOCK(object);
408 		return;
409 	}
410 	KASSERT(object->type == OBJT_VNODE,
411 	    ("not vnode-backed object %p", object));
412 	if (nsize == object->un_pager.vnp.vnp_size) {
413 		/*
414 		 * Hasn't changed size
415 		 */
416 		VM_OBJECT_WUNLOCK(object);
417 		return;
418 	}
419 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
420 	if (nsize < object->un_pager.vnp.vnp_size) {
421 		/*
422 		 * File has shrunk. Toss any cached pages beyond the new EOF.
423 		 */
424 		if (nobjsize < object->size)
425 			vm_object_page_remove(object, nobjsize, object->size,
426 			    0);
427 		/*
428 		 * this gets rid of garbage at the end of a page that is now
429 		 * only partially backed by the vnode.
430 		 *
431 		 * XXX for some reason (I don't know yet), if we take a
432 		 * completely invalid page and mark it partially valid
433 		 * it can screw up NFS reads, so we don't allow the case.
434 		 */
435 		if ((nsize & PAGE_MASK) &&
436 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
437 		    m->valid != 0) {
438 			int base = (int)nsize & PAGE_MASK;
439 			int size = PAGE_SIZE - base;
440 
441 			/*
442 			 * Clear out partial-page garbage in case
443 			 * the page has been mapped.
444 			 */
445 			pmap_zero_page_area(m, base, size);
446 
447 			/*
448 			 * Update the valid bits to reflect the blocks that
449 			 * have been zeroed.  Some of these valid bits may
450 			 * have already been set.
451 			 */
452 			vm_page_set_valid_range(m, base, size);
453 
454 			/*
455 			 * Round "base" to the next block boundary so that the
456 			 * dirty bit for a partially zeroed block is not
457 			 * cleared.
458 			 */
459 			base = roundup2(base, DEV_BSIZE);
460 
461 			/*
462 			 * Clear out partial-page dirty bits.
463 			 *
464 			 * note that we do not clear out the valid
465 			 * bits.  This would prevent bogus_page
466 			 * replacement from working properly.
467 			 */
468 			vm_page_clear_dirty(m, base, PAGE_SIZE - base);
469 		} else if ((nsize & PAGE_MASK) &&
470 		    vm_page_is_cached(object, OFF_TO_IDX(nsize))) {
471 			vm_page_cache_free(object, OFF_TO_IDX(nsize),
472 			    nobjsize);
473 		}
474 	}
475 	object->un_pager.vnp.vnp_size = nsize;
476 	object->size = nobjsize;
477 	VM_OBJECT_WUNLOCK(object);
478 }
479 
480 /*
481  * calculate the linear (byte) disk address of specified virtual
482  * file address
483  */
484 static int
485 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
486     int *run)
487 {
488 	int bsize;
489 	int err;
490 	daddr_t vblock;
491 	daddr_t voffset;
492 
493 	if (address < 0)
494 		return -1;
495 
496 	if (vp->v_iflag & VI_DOOMED)
497 		return -1;
498 
499 	bsize = vp->v_mount->mnt_stat.f_iosize;
500 	vblock = address / bsize;
501 	voffset = address % bsize;
502 
503 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
504 	if (err == 0) {
505 		if (*rtaddress != -1)
506 			*rtaddress += voffset / DEV_BSIZE;
507 		if (run) {
508 			*run += 1;
509 			*run *= bsize/PAGE_SIZE;
510 			*run -= voffset/PAGE_SIZE;
511 		}
512 	}
513 
514 	return (err);
515 }
516 
517 /*
518  * small block filesystem vnode pager input
519  */
520 static int
521 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
522 {
523 	struct vnode *vp;
524 	struct bufobj *bo;
525 	struct buf *bp;
526 	struct sf_buf *sf;
527 	daddr_t fileaddr;
528 	vm_offset_t bsize;
529 	vm_page_bits_t bits;
530 	int error, i;
531 
532 	error = 0;
533 	vp = object->handle;
534 	if (vp->v_iflag & VI_DOOMED)
535 		return VM_PAGER_BAD;
536 
537 	bsize = vp->v_mount->mnt_stat.f_iosize;
538 
539 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
540 
541 	sf = sf_buf_alloc(m, 0);
542 
543 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
544 		vm_ooffset_t address;
545 
546 		bits = vm_page_bits(i * bsize, bsize);
547 		if (m->valid & bits)
548 			continue;
549 
550 		address = IDX_TO_OFF(m->pindex) + i * bsize;
551 		if (address >= object->un_pager.vnp.vnp_size) {
552 			fileaddr = -1;
553 		} else {
554 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
555 			if (error)
556 				break;
557 		}
558 		if (fileaddr != -1) {
559 			bp = getpbuf(&vnode_pbuf_freecnt);
560 
561 			/* build a minimal buffer header */
562 			bp->b_iocmd = BIO_READ;
563 			bp->b_iodone = bdone;
564 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
565 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
566 			bp->b_rcred = crhold(curthread->td_ucred);
567 			bp->b_wcred = crhold(curthread->td_ucred);
568 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
569 			bp->b_blkno = fileaddr;
570 			pbgetbo(bo, bp);
571 			bp->b_vp = vp;
572 			bp->b_bcount = bsize;
573 			bp->b_bufsize = bsize;
574 			bp->b_runningbufspace = bp->b_bufsize;
575 			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
576 
577 			/* do the input */
578 			bp->b_iooffset = dbtob(bp->b_blkno);
579 			bstrategy(bp);
580 
581 			bwait(bp, PVM, "vnsrd");
582 
583 			if ((bp->b_ioflags & BIO_ERROR) != 0)
584 				error = EIO;
585 
586 			/*
587 			 * free the buffer header back to the swap buffer pool
588 			 */
589 			bp->b_vp = NULL;
590 			pbrelbo(bp);
591 			relpbuf(bp, &vnode_pbuf_freecnt);
592 			if (error)
593 				break;
594 		} else
595 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
596 		KASSERT((m->dirty & bits) == 0,
597 		    ("vnode_pager_input_smlfs: page %p is dirty", m));
598 		VM_OBJECT_WLOCK(object);
599 		m->valid |= bits;
600 		VM_OBJECT_WUNLOCK(object);
601 	}
602 	sf_buf_free(sf);
603 	if (error) {
604 		return VM_PAGER_ERROR;
605 	}
606 	return VM_PAGER_OK;
607 }
608 
609 /*
610  * old style vnode pager input routine
611  */
612 static int
613 vnode_pager_input_old(vm_object_t object, vm_page_t m)
614 {
615 	struct uio auio;
616 	struct iovec aiov;
617 	int error;
618 	int size;
619 	struct sf_buf *sf;
620 	struct vnode *vp;
621 
622 	VM_OBJECT_ASSERT_WLOCKED(object);
623 	error = 0;
624 
625 	/*
626 	 * Return failure if beyond current EOF
627 	 */
628 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
629 		return VM_PAGER_BAD;
630 	} else {
631 		size = PAGE_SIZE;
632 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
633 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
634 		vp = object->handle;
635 		VM_OBJECT_WUNLOCK(object);
636 
637 		/*
638 		 * Allocate a kernel virtual address and initialize so that
639 		 * we can use VOP_READ/WRITE routines.
640 		 */
641 		sf = sf_buf_alloc(m, 0);
642 
643 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
644 		aiov.iov_len = size;
645 		auio.uio_iov = &aiov;
646 		auio.uio_iovcnt = 1;
647 		auio.uio_offset = IDX_TO_OFF(m->pindex);
648 		auio.uio_segflg = UIO_SYSSPACE;
649 		auio.uio_rw = UIO_READ;
650 		auio.uio_resid = size;
651 		auio.uio_td = curthread;
652 
653 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
654 		if (!error) {
655 			int count = size - auio.uio_resid;
656 
657 			if (count == 0)
658 				error = EINVAL;
659 			else if (count != PAGE_SIZE)
660 				bzero((caddr_t)sf_buf_kva(sf) + count,
661 				    PAGE_SIZE - count);
662 		}
663 		sf_buf_free(sf);
664 
665 		VM_OBJECT_WLOCK(object);
666 	}
667 	KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m));
668 	if (!error)
669 		m->valid = VM_PAGE_BITS_ALL;
670 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
671 }
672 
673 /*
674  * generic vnode pager input routine
675  */
676 
677 /*
678  * Local media VFS's that do not implement their own VOP_GETPAGES
679  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
680  * to implement the previous behaviour.
681  *
682  * All other FS's should use the bypass to get to the local media
683  * backing vp's VOP_GETPAGES.
684  */
685 static int
686 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
687     int *rahead)
688 {
689 	struct vnode *vp;
690 	int rtval;
691 
692 	vp = object->handle;
693 	VM_OBJECT_WUNLOCK(object);
694 	rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead);
695 	KASSERT(rtval != EOPNOTSUPP,
696 	    ("vnode_pager: FS getpages not implemented\n"));
697 	VM_OBJECT_WLOCK(object);
698 	return rtval;
699 }
700 
701 static int
702 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
703     int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg)
704 {
705 	struct vnode *vp;
706 	int rtval;
707 
708 	vp = object->handle;
709 	VM_OBJECT_WUNLOCK(object);
710 	rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg);
711 	KASSERT(rtval != EOPNOTSUPP,
712 	    ("vnode_pager: FS getpages_async not implemented\n"));
713 	VM_OBJECT_WLOCK(object);
714 	return (rtval);
715 }
716 
717 /*
718  * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for
719  * local filesystems, where partially valid pages can only occur at
720  * the end of file.
721  */
722 int
723 vnode_pager_local_getpages(struct vop_getpages_args *ap)
724 {
725 
726 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
727 	    ap->a_rbehind, ap->a_rahead, NULL, NULL));
728 }
729 
730 int
731 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap)
732 {
733 
734 	return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count,
735 	    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg));
736 }
737 
738 /*
739  * This is now called from local media FS's to operate against their
740  * own vnodes if they fail to implement VOP_GETPAGES.
741  */
742 int
743 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count,
744     int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg)
745 {
746 	vm_object_t object;
747 	struct bufobj *bo;
748 	struct buf *bp;
749 	off_t foff;
750 	int bsize, pagesperblock, *freecnt;
751 	int error, before, after, rbehind, rahead, poff, i;
752 	int bytecount, secmask;
753 
754 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
755 	    ("%s does not support devices", __func__));
756 
757 	if (vp->v_iflag & VI_DOOMED)
758 		return (VM_PAGER_BAD);
759 
760 	object = vp->v_object;
761 	foff = IDX_TO_OFF(m[0]->pindex);
762 	bsize = vp->v_mount->mnt_stat.f_iosize;
763 	pagesperblock = bsize / PAGE_SIZE;
764 
765 	KASSERT(foff < object->un_pager.vnp.vnp_size,
766 	    ("%s: page %p offset beyond vp %p size", __func__, m[0], vp));
767 	KASSERT(count <= sizeof(bp->b_pages),
768 	    ("%s: requested %d pages", __func__, count));
769 
770 	/*
771 	 * The last page has valid blocks.  Invalid part can only
772 	 * exist at the end of file, and the page is made fully valid
773 	 * by zeroing in vm_pager_get_pages().
774 	 */
775 	if (m[count - 1]->valid != 0 && --count == 0) {
776 		if (iodone != NULL)
777 			iodone(arg, m, 1, 0);
778 		return (VM_PAGER_OK);
779 	}
780 
781 	/*
782 	 * Synchronous and asynchronous paging operations use different
783 	 * free pbuf counters.  This is done to avoid asynchronous requests
784 	 * to consume all pbufs.
785 	 * Allocate the pbuf at the very beginning of the function, so that
786 	 * if we are low on certain kind of pbufs don't even proceed to BMAP,
787 	 * but sleep.
788 	 */
789 	freecnt = iodone != NULL ?
790 	    &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt;
791 	bp = getpbuf(freecnt);
792 
793 	/*
794 	 * Get the underlying device blocks for the file with VOP_BMAP().
795 	 * If the file system doesn't support VOP_BMAP, use old way of
796 	 * getting pages via VOP_READ.
797 	 */
798 	error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before);
799 	if (error == EOPNOTSUPP) {
800 		relpbuf(bp, freecnt);
801 		VM_OBJECT_WLOCK(object);
802 		for (i = 0; i < count; i++) {
803 			PCPU_INC(cnt.v_vnodein);
804 			PCPU_INC(cnt.v_vnodepgsin);
805 			error = vnode_pager_input_old(object, m[i]);
806 			if (error)
807 				break;
808 		}
809 		VM_OBJECT_WUNLOCK(object);
810 		return (error);
811 	} else if (error != 0) {
812 		relpbuf(bp, freecnt);
813 		return (VM_PAGER_ERROR);
814 	}
815 
816 	/*
817 	 * If the file system supports BMAP, but blocksize is smaller
818 	 * than a page size, then use special small filesystem code.
819 	 */
820 	if (pagesperblock == 0) {
821 		relpbuf(bp, freecnt);
822 		for (i = 0; i < count; i++) {
823 			PCPU_INC(cnt.v_vnodein);
824 			PCPU_INC(cnt.v_vnodepgsin);
825 			error = vnode_pager_input_smlfs(object, m[i]);
826 			if (error)
827 				break;
828 		}
829 		return (error);
830 	}
831 
832 	/*
833 	 * A sparse file can be encountered only for a single page request,
834 	 * which may not be preceded by call to vm_pager_haspage().
835 	 */
836 	if (bp->b_blkno == -1) {
837 		KASSERT(count == 1,
838 		    ("%s: array[%d] request to a sparse file %p", __func__,
839 		    count, vp));
840 		relpbuf(bp, freecnt);
841 		pmap_zero_page(m[0]);
842 		KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty",
843 		    __func__, m[0]));
844 		VM_OBJECT_WLOCK(object);
845 		m[0]->valid = VM_PAGE_BITS_ALL;
846 		VM_OBJECT_WUNLOCK(object);
847 		return (VM_PAGER_OK);
848 	}
849 
850 	bp->b_blkno += (foff % bsize) / DEV_BSIZE;
851 
852 	/* Recalculate blocks available after/before to pages. */
853 	poff = (foff % bsize) / PAGE_SIZE;
854 	before *= pagesperblock;
855 	before += poff;
856 	after *= pagesperblock;
857 	after += pagesperblock - (poff + 1);
858 	if (m[0]->pindex + after >= object->size)
859 		after = object->size - 1 - m[0]->pindex;
860 	KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d",
861 	    __func__, count, after + 1));
862 	after -= count - 1;
863 
864 	/* Trim requested rbehind/rahead to possible values. */
865 	rbehind = a_rbehind ? *a_rbehind : 0;
866 	rahead = a_rahead ? *a_rahead : 0;
867 	rbehind = min(rbehind, before);
868 	rbehind = min(rbehind, m[0]->pindex);
869 	rahead = min(rahead, after);
870 	rahead = min(rahead, object->size - m[count - 1]->pindex);
871 	KASSERT(rbehind + rahead + count <= sizeof(bp->b_pages),
872 	    ("%s: behind %d ahead %d count %d", __func__,
873 	    rbehind, rahead, count));
874 
875 	/*
876 	 * Fill in the bp->b_pages[] array with requested and optional
877 	 * read behind or read ahead pages.  Read behind pages are looked
878 	 * up in a backward direction, down to a first cached page.  Same
879 	 * for read ahead pages, but there is no need to shift the array
880 	 * in case of encountering a cached page.
881 	 */
882 	i = bp->b_npages = 0;
883 	if (rbehind) {
884 		vm_pindex_t startpindex, tpindex;
885 		vm_page_t p;
886 
887 		VM_OBJECT_WLOCK(object);
888 		startpindex = m[0]->pindex - rbehind;
889 		if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL &&
890 		    p->pindex >= startpindex)
891 			startpindex = p->pindex + 1;
892 
893 		/* tpindex is unsigned; beware of numeric underflow. */
894 		for (tpindex = m[0]->pindex - 1;
895 		    tpindex >= startpindex && tpindex < m[0]->pindex;
896 		    tpindex--, i++) {
897 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
898 			    VM_ALLOC_IFNOTCACHED);
899 			if (p == NULL) {
900 				/* Shift the array. */
901 				for (int j = 0; j < i; j++)
902 					bp->b_pages[j] = bp->b_pages[j +
903 					    tpindex + 1 - startpindex];
904 				break;
905 			}
906 			bp->b_pages[tpindex - startpindex] = p;
907 		}
908 
909 		bp->b_pgbefore = i;
910 		bp->b_npages += i;
911 		bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE;
912 	} else
913 		bp->b_pgbefore = 0;
914 
915 	/* Requested pages. */
916 	for (int j = 0; j < count; j++, i++)
917 		bp->b_pages[i] = m[j];
918 	bp->b_npages += count;
919 
920 	if (rahead) {
921 		vm_pindex_t endpindex, tpindex;
922 		vm_page_t p;
923 
924 		if (!VM_OBJECT_WOWNED(object))
925 			VM_OBJECT_WLOCK(object);
926 		endpindex = m[count - 1]->pindex + rahead + 1;
927 		if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL &&
928 		    p->pindex < endpindex)
929 			endpindex = p->pindex;
930 		if (endpindex > object->size)
931 			endpindex = object->size;
932 
933 		for (tpindex = m[count - 1]->pindex + 1;
934 		    tpindex < endpindex; i++, tpindex++) {
935 			p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
936 			    VM_ALLOC_IFNOTCACHED);
937 			if (p == NULL)
938 				break;
939 			bp->b_pages[i] = p;
940 		}
941 
942 		bp->b_pgafter = i - bp->b_npages;
943 		bp->b_npages = i;
944 	} else
945 		bp->b_pgafter = 0;
946 
947 	if (VM_OBJECT_WOWNED(object))
948 		VM_OBJECT_WUNLOCK(object);
949 
950 	/* Report back actual behind/ahead read. */
951 	if (a_rbehind)
952 		*a_rbehind = bp->b_pgbefore;
953 	if (a_rahead)
954 		*a_rahead = bp->b_pgafter;
955 
956 	KASSERT(bp->b_npages <= sizeof(bp->b_pages),
957 	    ("%s: buf %p overflowed", __func__, bp));
958 
959 	/*
960 	 * Recalculate first offset and bytecount with regards to read behind.
961 	 * Truncate bytecount to vnode real size and round up physical size
962 	 * for real devices.
963 	 */
964 	foff = IDX_TO_OFF(bp->b_pages[0]->pindex);
965 	bytecount = bp->b_npages << PAGE_SHIFT;
966 	if ((foff + bytecount) > object->un_pager.vnp.vnp_size)
967 		bytecount = object->un_pager.vnp.vnp_size - foff;
968 	secmask = bo->bo_bsize - 1;
969 	KASSERT(secmask < PAGE_SIZE && secmask > 0,
970 	    ("%s: sector size %d too large", __func__, secmask + 1));
971 	bytecount = (bytecount + secmask) & ~secmask;
972 
973 	/*
974 	 * And map the pages to be read into the kva, if the filesystem
975 	 * requires mapped buffers.
976 	 */
977 	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 &&
978 	    unmapped_buf_allowed) {
979 		bp->b_data = unmapped_buf;
980 		bp->b_offset = 0;
981 	} else {
982 		bp->b_data = bp->b_kvabase;
983 		pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
984 	}
985 
986 	/* Build a minimal buffer header. */
987 	bp->b_iocmd = BIO_READ;
988 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
989 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
990 	bp->b_rcred = crhold(curthread->td_ucred);
991 	bp->b_wcred = crhold(curthread->td_ucred);
992 	pbgetbo(bo, bp);
993 	bp->b_vp = vp;
994 	bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount;
995 	bp->b_iooffset = dbtob(bp->b_blkno);
996 
997 	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
998 	PCPU_INC(cnt.v_vnodein);
999 	PCPU_ADD(cnt.v_vnodepgsin, bp->b_npages);
1000 
1001 	if (iodone != NULL) { /* async */
1002 		bp->b_pgiodone = iodone;
1003 		bp->b_caller1 = arg;
1004 		bp->b_iodone = vnode_pager_generic_getpages_done_async;
1005 		bp->b_flags |= B_ASYNC;
1006 		BUF_KERNPROC(bp);
1007 		bstrategy(bp);
1008 		return (VM_PAGER_OK);
1009 	} else {
1010 		bp->b_iodone = bdone;
1011 		bstrategy(bp);
1012 		bwait(bp, PVM, "vnread");
1013 		error = vnode_pager_generic_getpages_done(bp);
1014 		for (i = 0; i < bp->b_npages; i++)
1015 			bp->b_pages[i] = NULL;
1016 		bp->b_vp = NULL;
1017 		pbrelbo(bp);
1018 		relpbuf(bp, &vnode_pbuf_freecnt);
1019 		return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
1020 	}
1021 }
1022 
1023 static void
1024 vnode_pager_generic_getpages_done_async(struct buf *bp)
1025 {
1026 	int error;
1027 
1028 	error = vnode_pager_generic_getpages_done(bp);
1029 	/* Run the iodone upon the requested range. */
1030 	bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore,
1031 	    bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error);
1032 	for (int i = 0; i < bp->b_npages; i++)
1033 		bp->b_pages[i] = NULL;
1034 	bp->b_vp = NULL;
1035 	pbrelbo(bp);
1036 	relpbuf(bp, &vnode_async_pbuf_freecnt);
1037 }
1038 
1039 static int
1040 vnode_pager_generic_getpages_done(struct buf *bp)
1041 {
1042 	vm_object_t object;
1043 	off_t tfoff, nextoff;
1044 	int i, error;
1045 
1046 	error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0;
1047 	object = bp->b_vp->v_object;
1048 
1049 	if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) {
1050 		if (!buf_mapped(bp)) {
1051 			bp->b_data = bp->b_kvabase;
1052 			pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages,
1053 			    bp->b_npages);
1054 		}
1055 		bzero(bp->b_data + bp->b_bcount,
1056 		    PAGE_SIZE * bp->b_npages - bp->b_bcount);
1057 	}
1058 	if (buf_mapped(bp)) {
1059 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1060 		bp->b_data = unmapped_buf;
1061 	}
1062 
1063 	VM_OBJECT_WLOCK(object);
1064 	for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex);
1065 	    i < bp->b_npages; i++, tfoff = nextoff) {
1066 		vm_page_t mt;
1067 
1068 		nextoff = tfoff + PAGE_SIZE;
1069 		mt = bp->b_pages[i];
1070 
1071 		if (nextoff <= object->un_pager.vnp.vnp_size) {
1072 			/*
1073 			 * Read filled up entire page.
1074 			 */
1075 			mt->valid = VM_PAGE_BITS_ALL;
1076 			KASSERT(mt->dirty == 0,
1077 			    ("%s: page %p is dirty", __func__, mt));
1078 			KASSERT(!pmap_page_is_mapped(mt),
1079 			    ("%s: page %p is mapped", __func__, mt));
1080 		} else {
1081 			/*
1082 			 * Read did not fill up entire page.
1083 			 *
1084 			 * Currently we do not set the entire page valid,
1085 			 * we just try to clear the piece that we couldn't
1086 			 * read.
1087 			 */
1088 			vm_page_set_valid_range(mt, 0,
1089 			    object->un_pager.vnp.vnp_size - tfoff);
1090 			KASSERT((mt->dirty & vm_page_bits(0,
1091 			    object->un_pager.vnp.vnp_size - tfoff)) == 0,
1092 			    ("%s: page %p is dirty", __func__, mt));
1093 		}
1094 
1095 		if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter)
1096 			vm_page_readahead_finish(mt);
1097 	}
1098 	VM_OBJECT_WUNLOCK(object);
1099 	if (error != 0)
1100 		printf("%s: I/O read error %d\n", __func__, error);
1101 
1102 	return (error);
1103 }
1104 
1105 /*
1106  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1107  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1108  * vnode_pager_generic_putpages() to implement the previous behaviour.
1109  *
1110  * All other FS's should use the bypass to get to the local media
1111  * backing vp's VOP_PUTPAGES.
1112  */
1113 static void
1114 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1115     int flags, int *rtvals)
1116 {
1117 	int rtval;
1118 	struct vnode *vp;
1119 	int bytes = count * PAGE_SIZE;
1120 
1121 	/*
1122 	 * Force synchronous operation if we are extremely low on memory
1123 	 * to prevent a low-memory deadlock.  VOP operations often need to
1124 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1125 	 * operation ).  The swapper handles the case by limiting the amount
1126 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1127 	 * for the vnode pager without a lot of work.
1128 	 *
1129 	 * Also, the backing vnode's iodone routine may not wake the pageout
1130 	 * daemon up.  This should be probably be addressed XXX.
1131 	 */
1132 
1133 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count <
1134 	    vm_cnt.v_pageout_free_min)
1135 		flags |= VM_PAGER_PUT_SYNC;
1136 
1137 	/*
1138 	 * Call device-specific putpages function
1139 	 */
1140 	vp = object->handle;
1141 	VM_OBJECT_WUNLOCK(object);
1142 	rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals);
1143 	KASSERT(rtval != EOPNOTSUPP,
1144 	    ("vnode_pager: stale FS putpages\n"));
1145 	VM_OBJECT_WLOCK(object);
1146 }
1147 
1148 
1149 /*
1150  * This is now called from local media FS's to operate against their
1151  * own vnodes if they fail to implement VOP_PUTPAGES.
1152  *
1153  * This is typically called indirectly via the pageout daemon and
1154  * clustering has already typically occurred, so in general we ask the
1155  * underlying filesystem to write the data out asynchronously rather
1156  * then delayed.
1157  */
1158 int
1159 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount,
1160     int flags, int *rtvals)
1161 {
1162 	int i;
1163 	vm_object_t object;
1164 	vm_page_t m;
1165 	int count;
1166 
1167 	int maxsize, ncount;
1168 	vm_ooffset_t poffset;
1169 	struct uio auio;
1170 	struct iovec aiov;
1171 	int error;
1172 	int ioflags;
1173 	int ppscheck = 0;
1174 	static struct timeval lastfail;
1175 	static int curfail;
1176 
1177 	object = vp->v_object;
1178 	count = bytecount / PAGE_SIZE;
1179 
1180 	for (i = 0; i < count; i++)
1181 		rtvals[i] = VM_PAGER_ERROR;
1182 
1183 	if ((int64_t)ma[0]->pindex < 0) {
1184 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1185 		    (long)ma[0]->pindex, (u_long)ma[0]->dirty);
1186 		rtvals[0] = VM_PAGER_BAD;
1187 		return VM_PAGER_BAD;
1188 	}
1189 
1190 	maxsize = count * PAGE_SIZE;
1191 	ncount = count;
1192 
1193 	poffset = IDX_TO_OFF(ma[0]->pindex);
1194 
1195 	/*
1196 	 * If the page-aligned write is larger then the actual file we
1197 	 * have to invalidate pages occurring beyond the file EOF.  However,
1198 	 * there is an edge case where a file may not be page-aligned where
1199 	 * the last page is partially invalid.  In this case the filesystem
1200 	 * may not properly clear the dirty bits for the entire page (which
1201 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1202 	 * With the page locked we are free to fix-up the dirty bits here.
1203 	 *
1204 	 * We do not under any circumstances truncate the valid bits, as
1205 	 * this will screw up bogus page replacement.
1206 	 */
1207 	VM_OBJECT_WLOCK(object);
1208 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1209 		if (object->un_pager.vnp.vnp_size > poffset) {
1210 			int pgoff;
1211 
1212 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1213 			ncount = btoc(maxsize);
1214 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1215 				/*
1216 				 * If the object is locked and the following
1217 				 * conditions hold, then the page's dirty
1218 				 * field cannot be concurrently changed by a
1219 				 * pmap operation.
1220 				 */
1221 				m = ma[ncount - 1];
1222 				vm_page_assert_sbusied(m);
1223 				KASSERT(!pmap_page_is_write_mapped(m),
1224 		("vnode_pager_generic_putpages: page %p is not read-only", m));
1225 				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
1226 				    pgoff);
1227 			}
1228 		} else {
1229 			maxsize = 0;
1230 			ncount = 0;
1231 		}
1232 		if (ncount < count) {
1233 			for (i = ncount; i < count; i++) {
1234 				rtvals[i] = VM_PAGER_BAD;
1235 			}
1236 		}
1237 	}
1238 	VM_OBJECT_WUNLOCK(object);
1239 
1240 	/*
1241 	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
1242 	 * rather then a bdwrite() to prevent paging I/O from saturating
1243 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1244 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1245 	 * the system decides how to cluster.
1246 	 */
1247 	ioflags = IO_VMIO;
1248 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1249 		ioflags |= IO_SYNC;
1250 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1251 		ioflags |= IO_ASYNC;
1252 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1253 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1254 
1255 	aiov.iov_base = (caddr_t) 0;
1256 	aiov.iov_len = maxsize;
1257 	auio.uio_iov = &aiov;
1258 	auio.uio_iovcnt = 1;
1259 	auio.uio_offset = poffset;
1260 	auio.uio_segflg = UIO_NOCOPY;
1261 	auio.uio_rw = UIO_WRITE;
1262 	auio.uio_resid = maxsize;
1263 	auio.uio_td = (struct thread *) 0;
1264 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1265 	PCPU_INC(cnt.v_vnodeout);
1266 	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1267 
1268 	if (error) {
1269 		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1270 			printf("vnode_pager_putpages: I/O error %d\n", error);
1271 	}
1272 	if (auio.uio_resid) {
1273 		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1274 			printf("vnode_pager_putpages: residual I/O %zd at %lu\n",
1275 			    auio.uio_resid, (u_long)ma[0]->pindex);
1276 	}
1277 	for (i = 0; i < ncount; i++) {
1278 		rtvals[i] = VM_PAGER_OK;
1279 	}
1280 	return rtvals[0];
1281 }
1282 
1283 void
1284 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written)
1285 {
1286 	vm_object_t obj;
1287 	int i, pos;
1288 
1289 	if (written == 0)
1290 		return;
1291 	obj = ma[0]->object;
1292 	VM_OBJECT_WLOCK(obj);
1293 	for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) {
1294 		if (pos < trunc_page(written)) {
1295 			rtvals[i] = VM_PAGER_OK;
1296 			vm_page_undirty(ma[i]);
1297 		} else {
1298 			/* Partially written page. */
1299 			rtvals[i] = VM_PAGER_AGAIN;
1300 			vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK);
1301 		}
1302 	}
1303 	VM_OBJECT_WUNLOCK(obj);
1304 }
1305 
1306 void
1307 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start,
1308     vm_offset_t end)
1309 {
1310 	struct vnode *vp;
1311 	vm_ooffset_t old_wm;
1312 
1313 	VM_OBJECT_WLOCK(object);
1314 	if (object->type != OBJT_VNODE) {
1315 		VM_OBJECT_WUNLOCK(object);
1316 		return;
1317 	}
1318 	old_wm = object->un_pager.vnp.writemappings;
1319 	object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start;
1320 	vp = object->handle;
1321 	if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) {
1322 		ASSERT_VOP_ELOCKED(vp, "v_writecount inc");
1323 		VOP_ADD_WRITECOUNT(vp, 1);
1324 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
1325 		    __func__, vp, vp->v_writecount);
1326 	} else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) {
1327 		ASSERT_VOP_ELOCKED(vp, "v_writecount dec");
1328 		VOP_ADD_WRITECOUNT(vp, -1);
1329 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
1330 		    __func__, vp, vp->v_writecount);
1331 	}
1332 	VM_OBJECT_WUNLOCK(object);
1333 }
1334 
1335 void
1336 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start,
1337     vm_offset_t end)
1338 {
1339 	struct vnode *vp;
1340 	struct mount *mp;
1341 	vm_offset_t inc;
1342 
1343 	VM_OBJECT_WLOCK(object);
1344 
1345 	/*
1346 	 * First, recheck the object type to account for the race when
1347 	 * the vnode is reclaimed.
1348 	 */
1349 	if (object->type != OBJT_VNODE) {
1350 		VM_OBJECT_WUNLOCK(object);
1351 		return;
1352 	}
1353 
1354 	/*
1355 	 * Optimize for the case when writemappings is not going to
1356 	 * zero.
1357 	 */
1358 	inc = end - start;
1359 	if (object->un_pager.vnp.writemappings != inc) {
1360 		object->un_pager.vnp.writemappings -= inc;
1361 		VM_OBJECT_WUNLOCK(object);
1362 		return;
1363 	}
1364 
1365 	vp = object->handle;
1366 	vhold(vp);
1367 	VM_OBJECT_WUNLOCK(object);
1368 	mp = NULL;
1369 	vn_start_write(vp, &mp, V_WAIT);
1370 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1371 
1372 	/*
1373 	 * Decrement the object's writemappings, by swapping the start
1374 	 * and end arguments for vnode_pager_update_writecount().  If
1375 	 * there was not a race with vnode reclaimation, then the
1376 	 * vnode's v_writecount is decremented.
1377 	 */
1378 	vnode_pager_update_writecount(object, end, start);
1379 	VOP_UNLOCK(vp, 0);
1380 	vdrop(vp);
1381 	if (mp != NULL)
1382 		vn_finished_write(mp);
1383 }
1384