1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991 The Regents of the University of California. 6 * All rights reserved. 7 * Copyright (c) 1993, 1994 John S. Dyson 8 * Copyright (c) 1995, David Greenman 9 * 10 * This code is derived from software contributed to Berkeley by 11 * the Systems Programming Group of the University of Utah Computer 12 * Science Department. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 43 */ 44 45 /* 46 * Page to/from files (vnodes). 47 */ 48 49 /* 50 * TODO: 51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 52 * greatly re-simplify the vnode_pager. 53 */ 54 55 #include <sys/cdefs.h> 56 __FBSDID("$FreeBSD$"); 57 58 #include "opt_vm.h" 59 60 #include <sys/param.h> 61 #include <sys/kernel.h> 62 #include <sys/systm.h> 63 #include <sys/sysctl.h> 64 #include <sys/proc.h> 65 #include <sys/vnode.h> 66 #include <sys/mount.h> 67 #include <sys/bio.h> 68 #include <sys/buf.h> 69 #include <sys/vmmeter.h> 70 #include <sys/limits.h> 71 #include <sys/conf.h> 72 #include <sys/rwlock.h> 73 #include <sys/sf_buf.h> 74 #include <sys/domainset.h> 75 76 #include <machine/atomic.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_page.h> 82 #include <vm/vm_pager.h> 83 #include <vm/vm_map.h> 84 #include <vm/vnode_pager.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 89 daddr_t *rtaddress, int *run); 90 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 91 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 92 static void vnode_pager_dealloc(vm_object_t); 93 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *); 94 static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 95 int *, vop_getpages_iodone_t, void *); 96 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *); 97 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 98 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, 99 vm_ooffset_t, struct ucred *cred); 100 static int vnode_pager_generic_getpages_done(struct buf *); 101 static void vnode_pager_generic_getpages_done_async(struct buf *); 102 103 struct pagerops vnodepagerops = { 104 .pgo_alloc = vnode_pager_alloc, 105 .pgo_dealloc = vnode_pager_dealloc, 106 .pgo_getpages = vnode_pager_getpages, 107 .pgo_getpages_async = vnode_pager_getpages_async, 108 .pgo_putpages = vnode_pager_putpages, 109 .pgo_haspage = vnode_pager_haspage, 110 }; 111 112 static struct domainset *vnode_domainset = NULL; 113 114 SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_RW, 115 &vnode_domainset, 0, sysctl_handle_domainset, "A", 116 "Default vnode NUMA policy"); 117 118 static uma_zone_t vnode_pbuf_zone; 119 120 static void 121 vnode_pager_init(void *dummy) 122 { 123 124 vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nswbuf * 8); 125 } 126 SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL); 127 128 /* Create the VM system backing object for this vnode */ 129 int 130 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 131 { 132 vm_object_t object; 133 vm_ooffset_t size = isize; 134 struct vattr va; 135 136 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 137 return (0); 138 139 while ((object = vp->v_object) != NULL) { 140 VM_OBJECT_WLOCK(object); 141 if (!(object->flags & OBJ_DEAD)) { 142 VM_OBJECT_WUNLOCK(object); 143 return (0); 144 } 145 VOP_UNLOCK(vp, 0); 146 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 147 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0); 148 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 149 } 150 151 if (size == 0) { 152 if (vn_isdisk(vp, NULL)) { 153 size = IDX_TO_OFF(INT_MAX); 154 } else { 155 if (VOP_GETATTR(vp, &va, td->td_ucred)) 156 return (0); 157 size = va.va_size; 158 } 159 } 160 161 object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); 162 /* 163 * Dereference the reference we just created. This assumes 164 * that the object is associated with the vp. 165 */ 166 VM_OBJECT_WLOCK(object); 167 object->ref_count--; 168 VM_OBJECT_WUNLOCK(object); 169 vrele(vp); 170 171 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 172 173 return (0); 174 } 175 176 void 177 vnode_destroy_vobject(struct vnode *vp) 178 { 179 struct vm_object *obj; 180 181 obj = vp->v_object; 182 if (obj == NULL) 183 return; 184 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 185 VM_OBJECT_WLOCK(obj); 186 umtx_shm_object_terminated(obj); 187 if (obj->ref_count == 0) { 188 /* 189 * don't double-terminate the object 190 */ 191 if ((obj->flags & OBJ_DEAD) == 0) { 192 vm_object_terminate(obj); 193 } else { 194 /* 195 * Waiters were already handled during object 196 * termination. The exclusive vnode lock hopefully 197 * prevented new waiters from referencing the dying 198 * object. 199 */ 200 KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0, 201 ("OBJ_DISCONNECTWNT set obj %p flags %x", 202 obj, obj->flags)); 203 vp->v_object = NULL; 204 VM_OBJECT_WUNLOCK(obj); 205 } 206 } else { 207 /* 208 * Woe to the process that tries to page now :-). 209 */ 210 vm_pager_deallocate(obj); 211 VM_OBJECT_WUNLOCK(obj); 212 } 213 KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object)); 214 } 215 216 217 /* 218 * Allocate (or lookup) pager for a vnode. 219 * Handle is a vnode pointer. 220 * 221 * MPSAFE 222 */ 223 vm_object_t 224 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 225 vm_ooffset_t offset, struct ucred *cred) 226 { 227 vm_object_t object; 228 struct vnode *vp; 229 230 /* 231 * Pageout to vnode, no can do yet. 232 */ 233 if (handle == NULL) 234 return (NULL); 235 236 vp = (struct vnode *) handle; 237 238 /* 239 * If the object is being terminated, wait for it to 240 * go away. 241 */ 242 retry: 243 while ((object = vp->v_object) != NULL) { 244 VM_OBJECT_WLOCK(object); 245 if ((object->flags & OBJ_DEAD) == 0) 246 break; 247 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 248 VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0); 249 } 250 251 KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference")); 252 253 if (object == NULL) { 254 /* 255 * Add an object of the appropriate size 256 */ 257 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 258 259 object->un_pager.vnp.vnp_size = size; 260 object->un_pager.vnp.writemappings = 0; 261 object->domain.dr_policy = vnode_domainset; 262 263 object->handle = handle; 264 VI_LOCK(vp); 265 if (vp->v_object != NULL) { 266 /* 267 * Object has been created while we were sleeping 268 */ 269 VI_UNLOCK(vp); 270 VM_OBJECT_WLOCK(object); 271 KASSERT(object->ref_count == 1, 272 ("leaked ref %p %d", object, object->ref_count)); 273 object->type = OBJT_DEAD; 274 object->ref_count = 0; 275 VM_OBJECT_WUNLOCK(object); 276 vm_object_destroy(object); 277 goto retry; 278 } 279 vp->v_object = object; 280 VI_UNLOCK(vp); 281 } else { 282 object->ref_count++; 283 #if VM_NRESERVLEVEL > 0 284 vm_object_color(object, 0); 285 #endif 286 VM_OBJECT_WUNLOCK(object); 287 } 288 vrefact(vp); 289 return (object); 290 } 291 292 /* 293 * The object must be locked. 294 */ 295 static void 296 vnode_pager_dealloc(vm_object_t object) 297 { 298 struct vnode *vp; 299 int refs; 300 301 vp = object->handle; 302 if (vp == NULL) 303 panic("vnode_pager_dealloc: pager already dealloced"); 304 305 VM_OBJECT_ASSERT_WLOCKED(object); 306 vm_object_pip_wait(object, "vnpdea"); 307 refs = object->ref_count; 308 309 object->handle = NULL; 310 object->type = OBJT_DEAD; 311 if (object->flags & OBJ_DISCONNECTWNT) { 312 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 313 wakeup(object); 314 } 315 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 316 if (object->un_pager.vnp.writemappings > 0) { 317 object->un_pager.vnp.writemappings = 0; 318 VOP_ADD_WRITECOUNT(vp, -1); 319 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 320 __func__, vp, vp->v_writecount); 321 } 322 vp->v_object = NULL; 323 VOP_UNSET_TEXT(vp); 324 VM_OBJECT_WUNLOCK(object); 325 while (refs-- > 0) 326 vunref(vp); 327 VM_OBJECT_WLOCK(object); 328 } 329 330 static boolean_t 331 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 332 int *after) 333 { 334 struct vnode *vp = object->handle; 335 daddr_t bn; 336 int err; 337 daddr_t reqblock; 338 int poff; 339 int bsize; 340 int pagesperblock, blocksperpage; 341 342 VM_OBJECT_ASSERT_WLOCKED(object); 343 /* 344 * If no vp or vp is doomed or marked transparent to VM, we do not 345 * have the page. 346 */ 347 if (vp == NULL || vp->v_iflag & VI_DOOMED) 348 return FALSE; 349 /* 350 * If the offset is beyond end of file we do 351 * not have the page. 352 */ 353 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 354 return FALSE; 355 356 bsize = vp->v_mount->mnt_stat.f_iosize; 357 pagesperblock = bsize / PAGE_SIZE; 358 blocksperpage = 0; 359 if (pagesperblock > 0) { 360 reqblock = pindex / pagesperblock; 361 } else { 362 blocksperpage = (PAGE_SIZE / bsize); 363 reqblock = pindex * blocksperpage; 364 } 365 VM_OBJECT_WUNLOCK(object); 366 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 367 VM_OBJECT_WLOCK(object); 368 if (err) 369 return TRUE; 370 if (bn == -1) 371 return FALSE; 372 if (pagesperblock > 0) { 373 poff = pindex - (reqblock * pagesperblock); 374 if (before) { 375 *before *= pagesperblock; 376 *before += poff; 377 } 378 if (after) { 379 /* 380 * The BMAP vop can report a partial block in the 381 * 'after', but must not report blocks after EOF. 382 * Assert the latter, and truncate 'after' in case 383 * of the former. 384 */ 385 KASSERT((reqblock + *after) * pagesperblock < 386 roundup2(object->size, pagesperblock), 387 ("%s: reqblock %jd after %d size %ju", __func__, 388 (intmax_t )reqblock, *after, 389 (uintmax_t )object->size)); 390 *after *= pagesperblock; 391 *after += pagesperblock - (poff + 1); 392 if (pindex + *after >= object->size) 393 *after = object->size - 1 - pindex; 394 } 395 } else { 396 if (before) { 397 *before /= blocksperpage; 398 } 399 400 if (after) { 401 *after /= blocksperpage; 402 } 403 } 404 return TRUE; 405 } 406 407 /* 408 * Lets the VM system know about a change in size for a file. 409 * We adjust our own internal size and flush any cached pages in 410 * the associated object that are affected by the size change. 411 * 412 * Note: this routine may be invoked as a result of a pager put 413 * operation (possibly at object termination time), so we must be careful. 414 */ 415 void 416 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize) 417 { 418 vm_object_t object; 419 vm_page_t m; 420 vm_pindex_t nobjsize; 421 422 if ((object = vp->v_object) == NULL) 423 return; 424 /* ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */ 425 VM_OBJECT_WLOCK(object); 426 if (object->type == OBJT_DEAD) { 427 VM_OBJECT_WUNLOCK(object); 428 return; 429 } 430 KASSERT(object->type == OBJT_VNODE, 431 ("not vnode-backed object %p", object)); 432 if (nsize == object->un_pager.vnp.vnp_size) { 433 /* 434 * Hasn't changed size 435 */ 436 VM_OBJECT_WUNLOCK(object); 437 return; 438 } 439 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 440 if (nsize < object->un_pager.vnp.vnp_size) { 441 /* 442 * File has shrunk. Toss any cached pages beyond the new EOF. 443 */ 444 if (nobjsize < object->size) 445 vm_object_page_remove(object, nobjsize, object->size, 446 0); 447 /* 448 * this gets rid of garbage at the end of a page that is now 449 * only partially backed by the vnode. 450 * 451 * XXX for some reason (I don't know yet), if we take a 452 * completely invalid page and mark it partially valid 453 * it can screw up NFS reads, so we don't allow the case. 454 */ 455 if ((nsize & PAGE_MASK) && 456 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 457 m->valid != 0) { 458 int base = (int)nsize & PAGE_MASK; 459 int size = PAGE_SIZE - base; 460 461 /* 462 * Clear out partial-page garbage in case 463 * the page has been mapped. 464 */ 465 pmap_zero_page_area(m, base, size); 466 467 /* 468 * Update the valid bits to reflect the blocks that 469 * have been zeroed. Some of these valid bits may 470 * have already been set. 471 */ 472 vm_page_set_valid_range(m, base, size); 473 474 /* 475 * Round "base" to the next block boundary so that the 476 * dirty bit for a partially zeroed block is not 477 * cleared. 478 */ 479 base = roundup2(base, DEV_BSIZE); 480 481 /* 482 * Clear out partial-page dirty bits. 483 * 484 * note that we do not clear out the valid 485 * bits. This would prevent bogus_page 486 * replacement from working properly. 487 */ 488 vm_page_clear_dirty(m, base, PAGE_SIZE - base); 489 } 490 } 491 object->un_pager.vnp.vnp_size = nsize; 492 object->size = nobjsize; 493 VM_OBJECT_WUNLOCK(object); 494 } 495 496 /* 497 * calculate the linear (byte) disk address of specified virtual 498 * file address 499 */ 500 static int 501 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 502 int *run) 503 { 504 int bsize; 505 int err; 506 daddr_t vblock; 507 daddr_t voffset; 508 509 if (address < 0) 510 return -1; 511 512 if (vp->v_iflag & VI_DOOMED) 513 return -1; 514 515 bsize = vp->v_mount->mnt_stat.f_iosize; 516 vblock = address / bsize; 517 voffset = address % bsize; 518 519 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 520 if (err == 0) { 521 if (*rtaddress != -1) 522 *rtaddress += voffset / DEV_BSIZE; 523 if (run) { 524 *run += 1; 525 *run *= bsize/PAGE_SIZE; 526 *run -= voffset/PAGE_SIZE; 527 } 528 } 529 530 return (err); 531 } 532 533 /* 534 * small block filesystem vnode pager input 535 */ 536 static int 537 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m) 538 { 539 struct vnode *vp; 540 struct bufobj *bo; 541 struct buf *bp; 542 struct sf_buf *sf; 543 daddr_t fileaddr; 544 vm_offset_t bsize; 545 vm_page_bits_t bits; 546 int error, i; 547 548 error = 0; 549 vp = object->handle; 550 if (vp->v_iflag & VI_DOOMED) 551 return VM_PAGER_BAD; 552 553 bsize = vp->v_mount->mnt_stat.f_iosize; 554 555 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 556 557 sf = sf_buf_alloc(m, 0); 558 559 for (i = 0; i < PAGE_SIZE / bsize; i++) { 560 vm_ooffset_t address; 561 562 bits = vm_page_bits(i * bsize, bsize); 563 if (m->valid & bits) 564 continue; 565 566 address = IDX_TO_OFF(m->pindex) + i * bsize; 567 if (address >= object->un_pager.vnp.vnp_size) { 568 fileaddr = -1; 569 } else { 570 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 571 if (error) 572 break; 573 } 574 if (fileaddr != -1) { 575 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 576 577 /* build a minimal buffer header */ 578 bp->b_iocmd = BIO_READ; 579 bp->b_iodone = bdone; 580 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 581 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 582 bp->b_rcred = crhold(curthread->td_ucred); 583 bp->b_wcred = crhold(curthread->td_ucred); 584 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 585 bp->b_blkno = fileaddr; 586 pbgetbo(bo, bp); 587 bp->b_vp = vp; 588 bp->b_bcount = bsize; 589 bp->b_bufsize = bsize; 590 bp->b_runningbufspace = bp->b_bufsize; 591 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 592 593 /* do the input */ 594 bp->b_iooffset = dbtob(bp->b_blkno); 595 bstrategy(bp); 596 597 bwait(bp, PVM, "vnsrd"); 598 599 if ((bp->b_ioflags & BIO_ERROR) != 0) 600 error = EIO; 601 602 /* 603 * free the buffer header back to the swap buffer pool 604 */ 605 bp->b_vp = NULL; 606 pbrelbo(bp); 607 uma_zfree(vnode_pbuf_zone, bp); 608 if (error) 609 break; 610 } else 611 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 612 KASSERT((m->dirty & bits) == 0, 613 ("vnode_pager_input_smlfs: page %p is dirty", m)); 614 VM_OBJECT_WLOCK(object); 615 m->valid |= bits; 616 VM_OBJECT_WUNLOCK(object); 617 } 618 sf_buf_free(sf); 619 if (error) { 620 return VM_PAGER_ERROR; 621 } 622 return VM_PAGER_OK; 623 } 624 625 /* 626 * old style vnode pager input routine 627 */ 628 static int 629 vnode_pager_input_old(vm_object_t object, vm_page_t m) 630 { 631 struct uio auio; 632 struct iovec aiov; 633 int error; 634 int size; 635 struct sf_buf *sf; 636 struct vnode *vp; 637 638 VM_OBJECT_ASSERT_WLOCKED(object); 639 error = 0; 640 641 /* 642 * Return failure if beyond current EOF 643 */ 644 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 645 return VM_PAGER_BAD; 646 } else { 647 size = PAGE_SIZE; 648 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 649 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 650 vp = object->handle; 651 VM_OBJECT_WUNLOCK(object); 652 653 /* 654 * Allocate a kernel virtual address and initialize so that 655 * we can use VOP_READ/WRITE routines. 656 */ 657 sf = sf_buf_alloc(m, 0); 658 659 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 660 aiov.iov_len = size; 661 auio.uio_iov = &aiov; 662 auio.uio_iovcnt = 1; 663 auio.uio_offset = IDX_TO_OFF(m->pindex); 664 auio.uio_segflg = UIO_SYSSPACE; 665 auio.uio_rw = UIO_READ; 666 auio.uio_resid = size; 667 auio.uio_td = curthread; 668 669 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 670 if (!error) { 671 int count = size - auio.uio_resid; 672 673 if (count == 0) 674 error = EINVAL; 675 else if (count != PAGE_SIZE) 676 bzero((caddr_t)sf_buf_kva(sf) + count, 677 PAGE_SIZE - count); 678 } 679 sf_buf_free(sf); 680 681 VM_OBJECT_WLOCK(object); 682 } 683 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); 684 if (!error) 685 m->valid = VM_PAGE_BITS_ALL; 686 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 687 } 688 689 /* 690 * generic vnode pager input routine 691 */ 692 693 /* 694 * Local media VFS's that do not implement their own VOP_GETPAGES 695 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 696 * to implement the previous behaviour. 697 * 698 * All other FS's should use the bypass to get to the local media 699 * backing vp's VOP_GETPAGES. 700 */ 701 static int 702 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, 703 int *rahead) 704 { 705 struct vnode *vp; 706 int rtval; 707 708 vp = object->handle; 709 VM_OBJECT_WUNLOCK(object); 710 rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead); 711 KASSERT(rtval != EOPNOTSUPP, 712 ("vnode_pager: FS getpages not implemented\n")); 713 VM_OBJECT_WLOCK(object); 714 return rtval; 715 } 716 717 static int 718 vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 719 int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg) 720 { 721 struct vnode *vp; 722 int rtval; 723 724 vp = object->handle; 725 VM_OBJECT_WUNLOCK(object); 726 rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg); 727 KASSERT(rtval != EOPNOTSUPP, 728 ("vnode_pager: FS getpages_async not implemented\n")); 729 VM_OBJECT_WLOCK(object); 730 return (rtval); 731 } 732 733 /* 734 * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for 735 * local filesystems, where partially valid pages can only occur at 736 * the end of file. 737 */ 738 int 739 vnode_pager_local_getpages(struct vop_getpages_args *ap) 740 { 741 742 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 743 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 744 } 745 746 int 747 vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap) 748 { 749 750 return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, 751 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg)); 752 } 753 754 /* 755 * This is now called from local media FS's to operate against their 756 * own vnodes if they fail to implement VOP_GETPAGES. 757 */ 758 int 759 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count, 760 int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg) 761 { 762 vm_object_t object; 763 struct bufobj *bo; 764 struct buf *bp; 765 off_t foff; 766 #ifdef INVARIANTS 767 off_t blkno0; 768 #endif 769 int bsize, pagesperblock; 770 int error, before, after, rbehind, rahead, poff, i; 771 int bytecount, secmask; 772 773 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 774 ("%s does not support devices", __func__)); 775 776 if (vp->v_iflag & VI_DOOMED) 777 return (VM_PAGER_BAD); 778 779 object = vp->v_object; 780 foff = IDX_TO_OFF(m[0]->pindex); 781 bsize = vp->v_mount->mnt_stat.f_iosize; 782 pagesperblock = bsize / PAGE_SIZE; 783 784 KASSERT(foff < object->un_pager.vnp.vnp_size, 785 ("%s: page %p offset beyond vp %p size", __func__, m[0], vp)); 786 KASSERT(count <= sizeof(bp->b_pages), 787 ("%s: requested %d pages", __func__, count)); 788 789 /* 790 * The last page has valid blocks. Invalid part can only 791 * exist at the end of file, and the page is made fully valid 792 * by zeroing in vm_pager_get_pages(). 793 */ 794 if (m[count - 1]->valid != 0 && --count == 0) { 795 if (iodone != NULL) 796 iodone(arg, m, 1, 0); 797 return (VM_PAGER_OK); 798 } 799 800 bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); 801 802 /* 803 * Get the underlying device blocks for the file with VOP_BMAP(). 804 * If the file system doesn't support VOP_BMAP, use old way of 805 * getting pages via VOP_READ. 806 */ 807 error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before); 808 if (error == EOPNOTSUPP) { 809 uma_zfree(vnode_pbuf_zone, bp); 810 VM_OBJECT_WLOCK(object); 811 for (i = 0; i < count; i++) { 812 VM_CNT_INC(v_vnodein); 813 VM_CNT_INC(v_vnodepgsin); 814 error = vnode_pager_input_old(object, m[i]); 815 if (error) 816 break; 817 } 818 VM_OBJECT_WUNLOCK(object); 819 return (error); 820 } else if (error != 0) { 821 uma_zfree(vnode_pbuf_zone, bp); 822 return (VM_PAGER_ERROR); 823 } 824 825 /* 826 * If the file system supports BMAP, but blocksize is smaller 827 * than a page size, then use special small filesystem code. 828 */ 829 if (pagesperblock == 0) { 830 uma_zfree(vnode_pbuf_zone, bp); 831 for (i = 0; i < count; i++) { 832 VM_CNT_INC(v_vnodein); 833 VM_CNT_INC(v_vnodepgsin); 834 error = vnode_pager_input_smlfs(object, m[i]); 835 if (error) 836 break; 837 } 838 return (error); 839 } 840 841 /* 842 * A sparse file can be encountered only for a single page request, 843 * which may not be preceded by call to vm_pager_haspage(). 844 */ 845 if (bp->b_blkno == -1) { 846 KASSERT(count == 1, 847 ("%s: array[%d] request to a sparse file %p", __func__, 848 count, vp)); 849 uma_zfree(vnode_pbuf_zone, bp); 850 pmap_zero_page(m[0]); 851 KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty", 852 __func__, m[0])); 853 VM_OBJECT_WLOCK(object); 854 m[0]->valid = VM_PAGE_BITS_ALL; 855 VM_OBJECT_WUNLOCK(object); 856 return (VM_PAGER_OK); 857 } 858 859 #ifdef INVARIANTS 860 blkno0 = bp->b_blkno; 861 #endif 862 bp->b_blkno += (foff % bsize) / DEV_BSIZE; 863 864 /* Recalculate blocks available after/before to pages. */ 865 poff = (foff % bsize) / PAGE_SIZE; 866 before *= pagesperblock; 867 before += poff; 868 after *= pagesperblock; 869 after += pagesperblock - (poff + 1); 870 if (m[0]->pindex + after >= object->size) 871 after = object->size - 1 - m[0]->pindex; 872 KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d", 873 __func__, count, after + 1)); 874 after -= count - 1; 875 876 /* Trim requested rbehind/rahead to possible values. */ 877 rbehind = a_rbehind ? *a_rbehind : 0; 878 rahead = a_rahead ? *a_rahead : 0; 879 rbehind = min(rbehind, before); 880 rbehind = min(rbehind, m[0]->pindex); 881 rahead = min(rahead, after); 882 rahead = min(rahead, object->size - m[count - 1]->pindex); 883 /* 884 * Check that total amount of pages fit into buf. Trim rbehind and 885 * rahead evenly if not. 886 */ 887 if (rbehind + rahead + count > nitems(bp->b_pages)) { 888 int trim, sum; 889 890 trim = rbehind + rahead + count - nitems(bp->b_pages) + 1; 891 sum = rbehind + rahead; 892 if (rbehind == before) { 893 /* Roundup rbehind trim to block size. */ 894 rbehind -= roundup(trim * rbehind / sum, pagesperblock); 895 if (rbehind < 0) 896 rbehind = 0; 897 } else 898 rbehind -= trim * rbehind / sum; 899 rahead -= trim * rahead / sum; 900 } 901 KASSERT(rbehind + rahead + count <= nitems(bp->b_pages), 902 ("%s: behind %d ahead %d count %d", __func__, 903 rbehind, rahead, count)); 904 905 /* 906 * Fill in the bp->b_pages[] array with requested and optional 907 * read behind or read ahead pages. Read behind pages are looked 908 * up in a backward direction, down to a first cached page. Same 909 * for read ahead pages, but there is no need to shift the array 910 * in case of encountering a cached page. 911 */ 912 i = bp->b_npages = 0; 913 if (rbehind) { 914 vm_pindex_t startpindex, tpindex; 915 vm_page_t p; 916 917 VM_OBJECT_WLOCK(object); 918 startpindex = m[0]->pindex - rbehind; 919 if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL && 920 p->pindex >= startpindex) 921 startpindex = p->pindex + 1; 922 923 /* tpindex is unsigned; beware of numeric underflow. */ 924 for (tpindex = m[0]->pindex - 1; 925 tpindex >= startpindex && tpindex < m[0]->pindex; 926 tpindex--, i++) { 927 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 928 if (p == NULL) { 929 /* Shift the array. */ 930 for (int j = 0; j < i; j++) 931 bp->b_pages[j] = bp->b_pages[j + 932 tpindex + 1 - startpindex]; 933 break; 934 } 935 bp->b_pages[tpindex - startpindex] = p; 936 } 937 938 bp->b_pgbefore = i; 939 bp->b_npages += i; 940 bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE; 941 } else 942 bp->b_pgbefore = 0; 943 944 /* Requested pages. */ 945 for (int j = 0; j < count; j++, i++) 946 bp->b_pages[i] = m[j]; 947 bp->b_npages += count; 948 949 if (rahead) { 950 vm_pindex_t endpindex, tpindex; 951 vm_page_t p; 952 953 if (!VM_OBJECT_WOWNED(object)) 954 VM_OBJECT_WLOCK(object); 955 endpindex = m[count - 1]->pindex + rahead + 1; 956 if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL && 957 p->pindex < endpindex) 958 endpindex = p->pindex; 959 if (endpindex > object->size) 960 endpindex = object->size; 961 962 for (tpindex = m[count - 1]->pindex + 1; 963 tpindex < endpindex; i++, tpindex++) { 964 p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 965 if (p == NULL) 966 break; 967 bp->b_pages[i] = p; 968 } 969 970 bp->b_pgafter = i - bp->b_npages; 971 bp->b_npages = i; 972 } else 973 bp->b_pgafter = 0; 974 975 if (VM_OBJECT_WOWNED(object)) 976 VM_OBJECT_WUNLOCK(object); 977 978 /* Report back actual behind/ahead read. */ 979 if (a_rbehind) 980 *a_rbehind = bp->b_pgbefore; 981 if (a_rahead) 982 *a_rahead = bp->b_pgafter; 983 984 #ifdef INVARIANTS 985 KASSERT(bp->b_npages <= nitems(bp->b_pages), 986 ("%s: buf %p overflowed", __func__, bp)); 987 for (int j = 1, prev = 0; j < bp->b_npages; j++) { 988 if (bp->b_pages[j] == bogus_page) 989 continue; 990 KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex == 991 j - prev, ("%s: pages array not consecutive, bp %p", 992 __func__, bp)); 993 prev = j; 994 } 995 #endif 996 997 /* 998 * Recalculate first offset and bytecount with regards to read behind. 999 * Truncate bytecount to vnode real size and round up physical size 1000 * for real devices. 1001 */ 1002 foff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1003 bytecount = bp->b_npages << PAGE_SHIFT; 1004 if ((foff + bytecount) > object->un_pager.vnp.vnp_size) 1005 bytecount = object->un_pager.vnp.vnp_size - foff; 1006 secmask = bo->bo_bsize - 1; 1007 KASSERT(secmask < PAGE_SIZE && secmask > 0, 1008 ("%s: sector size %d too large", __func__, secmask + 1)); 1009 bytecount = (bytecount + secmask) & ~secmask; 1010 1011 /* 1012 * And map the pages to be read into the kva, if the filesystem 1013 * requires mapped buffers. 1014 */ 1015 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 && 1016 unmapped_buf_allowed) { 1017 bp->b_data = unmapped_buf; 1018 bp->b_offset = 0; 1019 } else { 1020 bp->b_data = bp->b_kvabase; 1021 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); 1022 } 1023 1024 /* Build a minimal buffer header. */ 1025 bp->b_iocmd = BIO_READ; 1026 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 1027 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 1028 bp->b_rcred = crhold(curthread->td_ucred); 1029 bp->b_wcred = crhold(curthread->td_ucred); 1030 pbgetbo(bo, bp); 1031 bp->b_vp = vp; 1032 bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount; 1033 bp->b_iooffset = dbtob(bp->b_blkno); 1034 KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) == 1035 (blkno0 - bp->b_blkno) * DEV_BSIZE + 1036 IDX_TO_OFF(m[0]->pindex) % bsize, 1037 ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju " 1038 "blkno0 %ju b_blkno %ju", bsize, 1039 (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex, 1040 (uintmax_t)blkno0, (uintmax_t)bp->b_blkno)); 1041 1042 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 1043 VM_CNT_INC(v_vnodein); 1044 VM_CNT_ADD(v_vnodepgsin, bp->b_npages); 1045 1046 if (iodone != NULL) { /* async */ 1047 bp->b_pgiodone = iodone; 1048 bp->b_caller1 = arg; 1049 bp->b_iodone = vnode_pager_generic_getpages_done_async; 1050 bp->b_flags |= B_ASYNC; 1051 BUF_KERNPROC(bp); 1052 bstrategy(bp); 1053 return (VM_PAGER_OK); 1054 } else { 1055 bp->b_iodone = bdone; 1056 bstrategy(bp); 1057 bwait(bp, PVM, "vnread"); 1058 error = vnode_pager_generic_getpages_done(bp); 1059 for (i = 0; i < bp->b_npages; i++) 1060 bp->b_pages[i] = NULL; 1061 bp->b_vp = NULL; 1062 pbrelbo(bp); 1063 uma_zfree(vnode_pbuf_zone, bp); 1064 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); 1065 } 1066 } 1067 1068 static void 1069 vnode_pager_generic_getpages_done_async(struct buf *bp) 1070 { 1071 int error; 1072 1073 error = vnode_pager_generic_getpages_done(bp); 1074 /* Run the iodone upon the requested range. */ 1075 bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore, 1076 bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error); 1077 for (int i = 0; i < bp->b_npages; i++) 1078 bp->b_pages[i] = NULL; 1079 bp->b_vp = NULL; 1080 pbrelbo(bp); 1081 uma_zfree(vnode_pbuf_zone, bp); 1082 } 1083 1084 static int 1085 vnode_pager_generic_getpages_done(struct buf *bp) 1086 { 1087 vm_object_t object; 1088 off_t tfoff, nextoff; 1089 int i, error; 1090 1091 error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0; 1092 object = bp->b_vp->v_object; 1093 1094 if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) { 1095 if (!buf_mapped(bp)) { 1096 bp->b_data = bp->b_kvabase; 1097 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, 1098 bp->b_npages); 1099 } 1100 bzero(bp->b_data + bp->b_bcount, 1101 PAGE_SIZE * bp->b_npages - bp->b_bcount); 1102 } 1103 if (buf_mapped(bp)) { 1104 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1105 bp->b_data = unmapped_buf; 1106 } 1107 1108 VM_OBJECT_WLOCK(object); 1109 for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex); 1110 i < bp->b_npages; i++, tfoff = nextoff) { 1111 vm_page_t mt; 1112 1113 nextoff = tfoff + PAGE_SIZE; 1114 mt = bp->b_pages[i]; 1115 1116 if (nextoff <= object->un_pager.vnp.vnp_size) { 1117 /* 1118 * Read filled up entire page. 1119 */ 1120 mt->valid = VM_PAGE_BITS_ALL; 1121 KASSERT(mt->dirty == 0, 1122 ("%s: page %p is dirty", __func__, mt)); 1123 KASSERT(!pmap_page_is_mapped(mt), 1124 ("%s: page %p is mapped", __func__, mt)); 1125 } else { 1126 /* 1127 * Read did not fill up entire page. 1128 * 1129 * Currently we do not set the entire page valid, 1130 * we just try to clear the piece that we couldn't 1131 * read. 1132 */ 1133 vm_page_set_valid_range(mt, 0, 1134 object->un_pager.vnp.vnp_size - tfoff); 1135 KASSERT((mt->dirty & vm_page_bits(0, 1136 object->un_pager.vnp.vnp_size - tfoff)) == 0, 1137 ("%s: page %p is dirty", __func__, mt)); 1138 } 1139 1140 if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter) 1141 vm_page_readahead_finish(mt); 1142 } 1143 VM_OBJECT_WUNLOCK(object); 1144 if (error != 0) 1145 printf("%s: I/O read error %d\n", __func__, error); 1146 1147 return (error); 1148 } 1149 1150 /* 1151 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 1152 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 1153 * vnode_pager_generic_putpages() to implement the previous behaviour. 1154 * 1155 * All other FS's should use the bypass to get to the local media 1156 * backing vp's VOP_PUTPAGES. 1157 */ 1158 static void 1159 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1160 int flags, int *rtvals) 1161 { 1162 int rtval; 1163 struct vnode *vp; 1164 int bytes = count * PAGE_SIZE; 1165 1166 /* 1167 * Force synchronous operation if we are extremely low on memory 1168 * to prevent a low-memory deadlock. VOP operations often need to 1169 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1170 * operation ). The swapper handles the case by limiting the amount 1171 * of asynchronous I/O, but that sort of solution doesn't scale well 1172 * for the vnode pager without a lot of work. 1173 * 1174 * Also, the backing vnode's iodone routine may not wake the pageout 1175 * daemon up. This should be probably be addressed XXX. 1176 */ 1177 1178 if (vm_page_count_min()) 1179 flags |= VM_PAGER_PUT_SYNC; 1180 1181 /* 1182 * Call device-specific putpages function 1183 */ 1184 vp = object->handle; 1185 VM_OBJECT_WUNLOCK(object); 1186 rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals); 1187 KASSERT(rtval != EOPNOTSUPP, 1188 ("vnode_pager: stale FS putpages\n")); 1189 VM_OBJECT_WLOCK(object); 1190 } 1191 1192 static int 1193 vn_off2bidx(vm_ooffset_t offset) 1194 { 1195 1196 return ((offset & PAGE_MASK) / DEV_BSIZE); 1197 } 1198 1199 static bool 1200 vn_dirty_blk(vm_page_t m, vm_ooffset_t offset) 1201 { 1202 1203 KASSERT(IDX_TO_OFF(m->pindex) <= offset && 1204 offset < IDX_TO_OFF(m->pindex + 1), 1205 ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex, 1206 (uintmax_t)offset)); 1207 return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0); 1208 } 1209 1210 /* 1211 * This is now called from local media FS's to operate against their 1212 * own vnodes if they fail to implement VOP_PUTPAGES. 1213 * 1214 * This is typically called indirectly via the pageout daemon and 1215 * clustering has already typically occurred, so in general we ask the 1216 * underlying filesystem to write the data out asynchronously rather 1217 * then delayed. 1218 */ 1219 int 1220 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, 1221 int flags, int *rtvals) 1222 { 1223 vm_object_t object; 1224 vm_page_t m; 1225 vm_ooffset_t maxblksz, next_offset, poffset, prev_offset; 1226 struct uio auio; 1227 struct iovec aiov; 1228 off_t prev_resid, wrsz; 1229 int count, error, i, maxsize, ncount, pgoff, ppscheck; 1230 bool in_hole; 1231 static struct timeval lastfail; 1232 static int curfail; 1233 1234 object = vp->v_object; 1235 count = bytecount / PAGE_SIZE; 1236 1237 for (i = 0; i < count; i++) 1238 rtvals[i] = VM_PAGER_ERROR; 1239 1240 if ((int64_t)ma[0]->pindex < 0) { 1241 printf("vnode_pager_generic_putpages: " 1242 "attempt to write meta-data 0x%jx(%lx)\n", 1243 (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty); 1244 rtvals[0] = VM_PAGER_BAD; 1245 return (VM_PAGER_BAD); 1246 } 1247 1248 maxsize = count * PAGE_SIZE; 1249 ncount = count; 1250 1251 poffset = IDX_TO_OFF(ma[0]->pindex); 1252 1253 /* 1254 * If the page-aligned write is larger then the actual file we 1255 * have to invalidate pages occurring beyond the file EOF. However, 1256 * there is an edge case where a file may not be page-aligned where 1257 * the last page is partially invalid. In this case the filesystem 1258 * may not properly clear the dirty bits for the entire page (which 1259 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1260 * With the page locked we are free to fix-up the dirty bits here. 1261 * 1262 * We do not under any circumstances truncate the valid bits, as 1263 * this will screw up bogus page replacement. 1264 */ 1265 VM_OBJECT_RLOCK(object); 1266 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1267 if (!VM_OBJECT_TRYUPGRADE(object)) { 1268 VM_OBJECT_RUNLOCK(object); 1269 VM_OBJECT_WLOCK(object); 1270 if (maxsize + poffset <= object->un_pager.vnp.vnp_size) 1271 goto downgrade; 1272 } 1273 if (object->un_pager.vnp.vnp_size > poffset) { 1274 maxsize = object->un_pager.vnp.vnp_size - poffset; 1275 ncount = btoc(maxsize); 1276 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1277 pgoff = roundup2(pgoff, DEV_BSIZE); 1278 1279 /* 1280 * If the object is locked and the following 1281 * conditions hold, then the page's dirty 1282 * field cannot be concurrently changed by a 1283 * pmap operation. 1284 */ 1285 m = ma[ncount - 1]; 1286 vm_page_assert_sbusied(m); 1287 KASSERT(!pmap_page_is_write_mapped(m), 1288 ("vnode_pager_generic_putpages: page %p is not read-only", m)); 1289 MPASS(m->dirty != 0); 1290 vm_page_clear_dirty(m, pgoff, PAGE_SIZE - 1291 pgoff); 1292 } 1293 } else { 1294 maxsize = 0; 1295 ncount = 0; 1296 } 1297 for (i = ncount; i < count; i++) 1298 rtvals[i] = VM_PAGER_BAD; 1299 downgrade: 1300 VM_OBJECT_LOCK_DOWNGRADE(object); 1301 } 1302 1303 auio.uio_iov = &aiov; 1304 auio.uio_segflg = UIO_NOCOPY; 1305 auio.uio_rw = UIO_WRITE; 1306 auio.uio_td = NULL; 1307 maxblksz = roundup2(poffset + maxsize, DEV_BSIZE); 1308 1309 for (prev_offset = poffset; prev_offset < maxblksz;) { 1310 /* Skip clean blocks. */ 1311 for (in_hole = true; in_hole && prev_offset < maxblksz;) { 1312 m = ma[OFF_TO_IDX(prev_offset - poffset)]; 1313 for (i = vn_off2bidx(prev_offset); 1314 i < sizeof(vm_page_bits_t) * NBBY && 1315 prev_offset < maxblksz; i++) { 1316 if (vn_dirty_blk(m, prev_offset)) { 1317 in_hole = false; 1318 break; 1319 } 1320 prev_offset += DEV_BSIZE; 1321 } 1322 } 1323 if (in_hole) 1324 goto write_done; 1325 1326 /* Find longest run of dirty blocks. */ 1327 for (next_offset = prev_offset; next_offset < maxblksz;) { 1328 m = ma[OFF_TO_IDX(next_offset - poffset)]; 1329 for (i = vn_off2bidx(next_offset); 1330 i < sizeof(vm_page_bits_t) * NBBY && 1331 next_offset < maxblksz; i++) { 1332 if (!vn_dirty_blk(m, next_offset)) 1333 goto start_write; 1334 next_offset += DEV_BSIZE; 1335 } 1336 } 1337 start_write: 1338 if (next_offset > poffset + maxsize) 1339 next_offset = poffset + maxsize; 1340 1341 /* 1342 * Getting here requires finding a dirty block in the 1343 * 'skip clean blocks' loop. 1344 */ 1345 MPASS(prev_offset < next_offset); 1346 1347 VM_OBJECT_RUNLOCK(object); 1348 aiov.iov_base = NULL; 1349 auio.uio_iovcnt = 1; 1350 auio.uio_offset = prev_offset; 1351 prev_resid = auio.uio_resid = aiov.iov_len = next_offset - 1352 prev_offset; 1353 error = VOP_WRITE(vp, &auio, 1354 vnode_pager_putpages_ioflags(flags), curthread->td_ucred); 1355 1356 wrsz = prev_resid - auio.uio_resid; 1357 if (wrsz == 0) { 1358 if (ppsratecheck(&lastfail, &curfail, 1) != 0) { 1359 vn_printf(vp, "vnode_pager_putpages: " 1360 "zero-length write at %ju resid %zd\n", 1361 auio.uio_offset, auio.uio_resid); 1362 } 1363 VM_OBJECT_RLOCK(object); 1364 break; 1365 } 1366 1367 /* Adjust the starting offset for next iteration. */ 1368 prev_offset += wrsz; 1369 MPASS(auio.uio_offset == prev_offset); 1370 1371 ppscheck = 0; 1372 if (error != 0 && (ppscheck = ppsratecheck(&lastfail, 1373 &curfail, 1)) != 0) 1374 vn_printf(vp, "vnode_pager_putpages: I/O error %d\n", 1375 error); 1376 if (auio.uio_resid != 0 && (ppscheck != 0 || 1377 ppsratecheck(&lastfail, &curfail, 1) != 0)) 1378 vn_printf(vp, "vnode_pager_putpages: residual I/O %zd " 1379 "at %ju\n", auio.uio_resid, 1380 (uintmax_t)ma[0]->pindex); 1381 VM_OBJECT_RLOCK(object); 1382 if (error != 0 || auio.uio_resid != 0) 1383 break; 1384 } 1385 write_done: 1386 /* Mark completely processed pages. */ 1387 for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++) 1388 rtvals[i] = VM_PAGER_OK; 1389 /* Mark partial EOF page. */ 1390 if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0) 1391 rtvals[i++] = VM_PAGER_OK; 1392 /* Unwritten pages in range, free bonus if the page is clean. */ 1393 for (; i < ncount; i++) 1394 rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR; 1395 VM_OBJECT_RUNLOCK(object); 1396 VM_CNT_ADD(v_vnodepgsout, i); 1397 VM_CNT_INC(v_vnodeout); 1398 return (rtvals[0]); 1399 } 1400 1401 int 1402 vnode_pager_putpages_ioflags(int pager_flags) 1403 { 1404 int ioflags; 1405 1406 /* 1407 * Pageouts are already clustered, use IO_ASYNC to force a 1408 * bawrite() rather then a bdwrite() to prevent paging I/O 1409 * from saturating the buffer cache. Dummy-up the sequential 1410 * heuristic to cause large ranges to cluster. If neither 1411 * IO_SYNC or IO_ASYNC is set, the system decides how to 1412 * cluster. 1413 */ 1414 ioflags = IO_VMIO; 1415 if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0) 1416 ioflags |= IO_SYNC; 1417 else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0) 1418 ioflags |= IO_ASYNC; 1419 ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0; 1420 ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0; 1421 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1422 return (ioflags); 1423 } 1424 1425 /* 1426 * vnode_pager_undirty_pages(). 1427 * 1428 * A helper to mark pages as clean after pageout that was possibly 1429 * done with a short write. The lpos argument specifies the page run 1430 * length in bytes, and the written argument specifies how many bytes 1431 * were actually written. eof is the offset past the last valid byte 1432 * in the vnode using the absolute file position of the first byte in 1433 * the run as the base from which it is computed. 1434 */ 1435 void 1436 vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof, 1437 int lpos) 1438 { 1439 vm_object_t obj; 1440 int i, pos, pos_devb; 1441 1442 if (written == 0 && eof >= lpos) 1443 return; 1444 obj = ma[0]->object; 1445 VM_OBJECT_WLOCK(obj); 1446 for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { 1447 if (pos < trunc_page(written)) { 1448 rtvals[i] = VM_PAGER_OK; 1449 vm_page_undirty(ma[i]); 1450 } else { 1451 /* Partially written page. */ 1452 rtvals[i] = VM_PAGER_AGAIN; 1453 vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); 1454 } 1455 } 1456 if (eof >= lpos) /* avoid truncation */ 1457 goto done; 1458 for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) { 1459 if (pos != trunc_page(pos)) { 1460 /* 1461 * The page contains the last valid byte in 1462 * the vnode, mark the rest of the page as 1463 * clean, potentially making the whole page 1464 * clean. 1465 */ 1466 pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE); 1467 vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE - 1468 pos_devb); 1469 1470 /* 1471 * If the page was cleaned, report the pageout 1472 * on it as successful. msync() no longer 1473 * needs to write out the page, endlessly 1474 * creating write requests and dirty buffers. 1475 */ 1476 if (ma[i]->dirty == 0) 1477 rtvals[i] = VM_PAGER_OK; 1478 1479 pos = round_page(pos); 1480 } else { 1481 /* vm_pageout_flush() clears dirty */ 1482 rtvals[i] = VM_PAGER_BAD; 1483 pos += PAGE_SIZE; 1484 } 1485 } 1486 done: 1487 VM_OBJECT_WUNLOCK(obj); 1488 } 1489 1490 void 1491 vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, 1492 vm_offset_t end) 1493 { 1494 struct vnode *vp; 1495 vm_ooffset_t old_wm; 1496 1497 VM_OBJECT_WLOCK(object); 1498 if (object->type != OBJT_VNODE) { 1499 VM_OBJECT_WUNLOCK(object); 1500 return; 1501 } 1502 old_wm = object->un_pager.vnp.writemappings; 1503 object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; 1504 vp = object->handle; 1505 if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { 1506 ASSERT_VOP_ELOCKED(vp, "v_writecount inc"); 1507 VOP_ADD_WRITECOUNT(vp, 1); 1508 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 1509 __func__, vp, vp->v_writecount); 1510 } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { 1511 ASSERT_VOP_ELOCKED(vp, "v_writecount dec"); 1512 VOP_ADD_WRITECOUNT(vp, -1); 1513 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 1514 __func__, vp, vp->v_writecount); 1515 } 1516 VM_OBJECT_WUNLOCK(object); 1517 } 1518 1519 void 1520 vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, 1521 vm_offset_t end) 1522 { 1523 struct vnode *vp; 1524 struct mount *mp; 1525 vm_offset_t inc; 1526 1527 VM_OBJECT_WLOCK(object); 1528 1529 /* 1530 * First, recheck the object type to account for the race when 1531 * the vnode is reclaimed. 1532 */ 1533 if (object->type != OBJT_VNODE) { 1534 VM_OBJECT_WUNLOCK(object); 1535 return; 1536 } 1537 1538 /* 1539 * Optimize for the case when writemappings is not going to 1540 * zero. 1541 */ 1542 inc = end - start; 1543 if (object->un_pager.vnp.writemappings != inc) { 1544 object->un_pager.vnp.writemappings -= inc; 1545 VM_OBJECT_WUNLOCK(object); 1546 return; 1547 } 1548 1549 vp = object->handle; 1550 vhold(vp); 1551 VM_OBJECT_WUNLOCK(object); 1552 mp = NULL; 1553 vn_start_write(vp, &mp, V_WAIT); 1554 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1555 1556 /* 1557 * Decrement the object's writemappings, by swapping the start 1558 * and end arguments for vnode_pager_update_writecount(). If 1559 * there was not a race with vnode reclaimation, then the 1560 * vnode's v_writecount is decremented. 1561 */ 1562 vnode_pager_update_writecount(object, end, start); 1563 VOP_UNLOCK(vp, 0); 1564 vdrop(vp); 1565 if (mp != NULL) 1566 vn_finished_write(mp); 1567 } 1568