xref: /freebsd/sys/vm/vnode_pager.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993, 1994 John S. Dyson
6  * Copyright (c) 1995, David Greenman
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  */
46 
47 /*
48  * TODO:
49  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50  *	greatly re-simplify the vnode_pager.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/vmmeter.h>
64 #include <sys/limits.h>
65 #include <sys/conf.h>
66 #include <sys/sf_buf.h>
67 
68 #include <machine/atomic.h>
69 
70 #include <vm/vm.h>
71 #include <vm/vm_object.h>
72 #include <vm/vm_page.h>
73 #include <vm/vm_pager.h>
74 #include <vm/vm_map.h>
75 #include <vm/vnode_pager.h>
76 #include <vm/vm_extern.h>
77 
78 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
79     daddr_t *rtaddress, int *run);
80 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
81 static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
82 static void vnode_pager_dealloc(vm_object_t);
83 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
84 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
85 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
86 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t);
87 
88 struct pagerops vnodepagerops = {
89 	.pgo_alloc =	vnode_pager_alloc,
90 	.pgo_dealloc =	vnode_pager_dealloc,
91 	.pgo_getpages =	vnode_pager_getpages,
92 	.pgo_putpages =	vnode_pager_putpages,
93 	.pgo_haspage =	vnode_pager_haspage,
94 };
95 
96 int vnode_pbuf_freecnt;
97 
98 /* Create the VM system backing object for this vnode */
99 int
100 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
101 {
102 	vm_object_t object;
103 	vm_ooffset_t size = isize;
104 	struct vattr va;
105 
106 	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
107 		return (0);
108 
109 	while ((object = vp->v_object) != NULL) {
110 		VM_OBJECT_LOCK(object);
111 		if (!(object->flags & OBJ_DEAD)) {
112 			VM_OBJECT_UNLOCK(object);
113 			return (0);
114 		}
115 		VOP_UNLOCK(vp, 0);
116 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
117 		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0);
118 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
119 	}
120 
121 	if (size == 0) {
122 		if (vn_isdisk(vp, NULL)) {
123 			size = IDX_TO_OFF(INT_MAX);
124 		} else {
125 			if (VOP_GETATTR(vp, &va, td->td_ucred, td) != 0)
126 				return (0);
127 			size = va.va_size;
128 		}
129 	}
130 
131 	object = vnode_pager_alloc(vp, size, 0, 0);
132 	/*
133 	 * Dereference the reference we just created.  This assumes
134 	 * that the object is associated with the vp.
135 	 */
136 	VM_OBJECT_LOCK(object);
137 	object->ref_count--;
138 	VM_OBJECT_UNLOCK(object);
139 	vrele(vp);
140 
141 	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
142 
143 	return (0);
144 }
145 
146 void
147 vnode_destroy_vobject(struct vnode *vp)
148 {
149 	struct vm_object *obj;
150 
151 	obj = vp->v_object;
152 	if (obj == NULL)
153 		return;
154 	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
155 	VM_OBJECT_LOCK(obj);
156 	if (obj->ref_count == 0) {
157 		/*
158 		 * vclean() may be called twice. The first time
159 		 * removes the primary reference to the object,
160 		 * the second time goes one further and is a
161 		 * special-case to terminate the object.
162 		 *
163 		 * don't double-terminate the object
164 		 */
165 		if ((obj->flags & OBJ_DEAD) == 0)
166 			vm_object_terminate(obj);
167 		else
168 			VM_OBJECT_UNLOCK(obj);
169 	} else {
170 		/*
171 		 * Woe to the process that tries to page now :-).
172 		 */
173 		vm_pager_deallocate(obj);
174 		VM_OBJECT_UNLOCK(obj);
175 	}
176 	vp->v_object = NULL;
177 }
178 
179 
180 /*
181  * Allocate (or lookup) pager for a vnode.
182  * Handle is a vnode pointer.
183  *
184  * MPSAFE
185  */
186 vm_object_t
187 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
188 		  vm_ooffset_t offset)
189 {
190 	vm_object_t object;
191 	struct vnode *vp;
192 
193 	/*
194 	 * Pageout to vnode, no can do yet.
195 	 */
196 	if (handle == NULL)
197 		return (NULL);
198 
199 	vp = (struct vnode *) handle;
200 
201 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_alloc");
202 
203 	/*
204 	 * If the object is being terminated, wait for it to
205 	 * go away.
206 	 */
207 	while ((object = vp->v_object) != NULL) {
208 		VM_OBJECT_LOCK(object);
209 		if ((object->flags & OBJ_DEAD) == 0)
210 			break;
211 		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
212 		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
213 	}
214 
215 	if (vp->v_usecount == 0)
216 		panic("vnode_pager_alloc: no vnode reference");
217 
218 	if (object == NULL) {
219 		/*
220 		 * And an object of the appropriate size
221 		 */
222 		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
223 
224 		object->un_pager.vnp.vnp_size = size;
225 
226 		object->handle = handle;
227 		if (VFS_NEEDSGIANT(vp->v_mount))
228 			vm_object_set_flag(object, OBJ_NEEDGIANT);
229 		vp->v_object = object;
230 	} else {
231 		object->ref_count++;
232 		VM_OBJECT_UNLOCK(object);
233 	}
234 	vref(vp);
235 	return (object);
236 }
237 
238 /*
239  *	The object must be locked.
240  */
241 static void
242 vnode_pager_dealloc(object)
243 	vm_object_t object;
244 {
245 	struct vnode *vp = object->handle;
246 
247 	if (vp == NULL)
248 		panic("vnode_pager_dealloc: pager already dealloced");
249 
250 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
251 	vm_object_pip_wait(object, "vnpdea");
252 
253 	object->handle = NULL;
254 	object->type = OBJT_DEAD;
255 	if (object->flags & OBJ_DISCONNECTWNT) {
256 		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
257 		wakeup(object);
258 	}
259 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
260 	vp->v_object = NULL;
261 	vp->v_vflag &= ~VV_TEXT;
262 }
263 
264 static boolean_t
265 vnode_pager_haspage(object, pindex, before, after)
266 	vm_object_t object;
267 	vm_pindex_t pindex;
268 	int *before;
269 	int *after;
270 {
271 	struct vnode *vp = object->handle;
272 	daddr_t bn;
273 	int err;
274 	daddr_t reqblock;
275 	int poff;
276 	int bsize;
277 	int pagesperblock, blocksperpage;
278 	int vfslocked;
279 
280 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
281 	/*
282 	 * If no vp or vp is doomed or marked transparent to VM, we do not
283 	 * have the page.
284 	 */
285 	if (vp == NULL || vp->v_iflag & VI_DOOMED)
286 		return FALSE;
287 	/*
288 	 * If the offset is beyond end of file we do
289 	 * not have the page.
290 	 */
291 	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
292 		return FALSE;
293 
294 	bsize = vp->v_mount->mnt_stat.f_iosize;
295 	pagesperblock = bsize / PAGE_SIZE;
296 	blocksperpage = 0;
297 	if (pagesperblock > 0) {
298 		reqblock = pindex / pagesperblock;
299 	} else {
300 		blocksperpage = (PAGE_SIZE / bsize);
301 		reqblock = pindex * blocksperpage;
302 	}
303 	VM_OBJECT_UNLOCK(object);
304 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
305 	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
306 	VFS_UNLOCK_GIANT(vfslocked);
307 	VM_OBJECT_LOCK(object);
308 	if (err)
309 		return TRUE;
310 	if (bn == -1)
311 		return FALSE;
312 	if (pagesperblock > 0) {
313 		poff = pindex - (reqblock * pagesperblock);
314 		if (before) {
315 			*before *= pagesperblock;
316 			*before += poff;
317 		}
318 		if (after) {
319 			int numafter;
320 			*after *= pagesperblock;
321 			numafter = pagesperblock - (poff + 1);
322 			if (IDX_TO_OFF(pindex + numafter) >
323 			    object->un_pager.vnp.vnp_size) {
324 				numafter =
325 		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
326 				    pindex;
327 			}
328 			*after += numafter;
329 		}
330 	} else {
331 		if (before) {
332 			*before /= blocksperpage;
333 		}
334 
335 		if (after) {
336 			*after /= blocksperpage;
337 		}
338 	}
339 	return TRUE;
340 }
341 
342 /*
343  * Lets the VM system know about a change in size for a file.
344  * We adjust our own internal size and flush any cached pages in
345  * the associated object that are affected by the size change.
346  *
347  * Note: this routine may be invoked as a result of a pager put
348  * operation (possibly at object termination time), so we must be careful.
349  */
350 void
351 vnode_pager_setsize(vp, nsize)
352 	struct vnode *vp;
353 	vm_ooffset_t nsize;
354 {
355 	vm_object_t object;
356 	vm_page_t m;
357 	vm_pindex_t nobjsize;
358 
359 	if ((object = vp->v_object) == NULL)
360 		return;
361 	VM_OBJECT_LOCK(object);
362 	if (nsize == object->un_pager.vnp.vnp_size) {
363 		/*
364 		 * Hasn't changed size
365 		 */
366 		VM_OBJECT_UNLOCK(object);
367 		return;
368 	}
369 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
370 	if (nsize < object->un_pager.vnp.vnp_size) {
371 		/*
372 		 * File has shrunk. Toss any cached pages beyond the new EOF.
373 		 */
374 		if (nobjsize < object->size)
375 			vm_object_page_remove(object, nobjsize, object->size,
376 			    FALSE);
377 		/*
378 		 * this gets rid of garbage at the end of a page that is now
379 		 * only partially backed by the vnode.
380 		 *
381 		 * XXX for some reason (I don't know yet), if we take a
382 		 * completely invalid page and mark it partially valid
383 		 * it can screw up NFS reads, so we don't allow the case.
384 		 */
385 		if ((nsize & PAGE_MASK) &&
386 		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
387 		    m->valid != 0) {
388 			int base = (int)nsize & PAGE_MASK;
389 			int size = PAGE_SIZE - base;
390 
391 			/*
392 			 * Clear out partial-page garbage in case
393 			 * the page has been mapped.
394 			 */
395 			pmap_zero_page_area(m, base, size);
396 
397 			/*
398 			 * Clear out partial-page dirty bits.  This
399 			 * has the side effect of setting the valid
400 			 * bits, but that is ok.  There are a bunch
401 			 * of places in the VM system where we expected
402 			 * m->dirty == VM_PAGE_BITS_ALL.  The file EOF
403 			 * case is one of them.  If the page is still
404 			 * partially dirty, make it fully dirty.
405 			 *
406 			 * note that we do not clear out the valid
407 			 * bits.  This would prevent bogus_page
408 			 * replacement from working properly.
409 			 */
410 			vm_page_lock_queues();
411 			vm_page_set_validclean(m, base, size);
412 			if (m->dirty != 0)
413 				m->dirty = VM_PAGE_BITS_ALL;
414 			vm_page_unlock_queues();
415 		} else if ((nsize & PAGE_MASK) &&
416 		    __predict_false(object->cache != NULL)) {
417 			vm_page_cache_free(object, OFF_TO_IDX(nsize),
418 			    nobjsize);
419 		}
420 	}
421 	object->un_pager.vnp.vnp_size = nsize;
422 	object->size = nobjsize;
423 	VM_OBJECT_UNLOCK(object);
424 }
425 
426 /*
427  * calculate the linear (byte) disk address of specified virtual
428  * file address
429  */
430 static int
431 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
432     int *run)
433 {
434 	int bsize;
435 	int err;
436 	daddr_t vblock;
437 	daddr_t voffset;
438 
439 	if (address < 0)
440 		return -1;
441 
442 	if (vp->v_iflag & VI_DOOMED)
443 		return -1;
444 
445 	bsize = vp->v_mount->mnt_stat.f_iosize;
446 	vblock = address / bsize;
447 	voffset = address % bsize;
448 
449 	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
450 	if (err == 0) {
451 		if (*rtaddress != -1)
452 			*rtaddress += voffset / DEV_BSIZE;
453 		if (run) {
454 			*run += 1;
455 			*run *= bsize/PAGE_SIZE;
456 			*run -= voffset/PAGE_SIZE;
457 		}
458 	}
459 
460 	return (err);
461 }
462 
463 /*
464  * small block filesystem vnode pager input
465  */
466 static int
467 vnode_pager_input_smlfs(object, m)
468 	vm_object_t object;
469 	vm_page_t m;
470 {
471 	int i;
472 	struct vnode *vp;
473 	struct bufobj *bo;
474 	struct buf *bp;
475 	struct sf_buf *sf;
476 	daddr_t fileaddr;
477 	vm_offset_t bsize;
478 	int error = 0;
479 
480 	vp = object->handle;
481 	if (vp->v_iflag & VI_DOOMED)
482 		return VM_PAGER_BAD;
483 
484 	bsize = vp->v_mount->mnt_stat.f_iosize;
485 
486 	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
487 
488 	sf = sf_buf_alloc(m, 0);
489 
490 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
491 		vm_ooffset_t address;
492 
493 		if (vm_page_bits(i * bsize, bsize) & m->valid)
494 			continue;
495 
496 		address = IDX_TO_OFF(m->pindex) + i * bsize;
497 		if (address >= object->un_pager.vnp.vnp_size) {
498 			fileaddr = -1;
499 		} else {
500 			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
501 			if (error)
502 				break;
503 		}
504 		if (fileaddr != -1) {
505 			bp = getpbuf(&vnode_pbuf_freecnt);
506 
507 			/* build a minimal buffer header */
508 			bp->b_iocmd = BIO_READ;
509 			bp->b_iodone = bdone;
510 			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
511 			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
512 			bp->b_rcred = crhold(curthread->td_ucred);
513 			bp->b_wcred = crhold(curthread->td_ucred);
514 			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
515 			bp->b_blkno = fileaddr;
516 			pbgetbo(bo, bp);
517 			bp->b_bcount = bsize;
518 			bp->b_bufsize = bsize;
519 			bp->b_runningbufspace = bp->b_bufsize;
520 			atomic_add_int(&runningbufspace, bp->b_runningbufspace);
521 
522 			/* do the input */
523 			bp->b_iooffset = dbtob(bp->b_blkno);
524 			bstrategy(bp);
525 
526 			bwait(bp, PVM, "vnsrd");
527 
528 			if ((bp->b_ioflags & BIO_ERROR) != 0)
529 				error = EIO;
530 
531 			/*
532 			 * free the buffer header back to the swap buffer pool
533 			 */
534 			pbrelbo(bp);
535 			relpbuf(bp, &vnode_pbuf_freecnt);
536 			if (error)
537 				break;
538 
539 			VM_OBJECT_LOCK(object);
540 			vm_page_lock_queues();
541 			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
542 			vm_page_unlock_queues();
543 			VM_OBJECT_UNLOCK(object);
544 		} else {
545 			VM_OBJECT_LOCK(object);
546 			vm_page_lock_queues();
547 			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
548 			vm_page_unlock_queues();
549 			VM_OBJECT_UNLOCK(object);
550 			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
551 		}
552 	}
553 	sf_buf_free(sf);
554 	vm_page_lock_queues();
555 	pmap_clear_modify(m);
556 	vm_page_unlock_queues();
557 	if (error) {
558 		return VM_PAGER_ERROR;
559 	}
560 	return VM_PAGER_OK;
561 
562 }
563 
564 
565 /*
566  * old style vnode pager input routine
567  */
568 static int
569 vnode_pager_input_old(object, m)
570 	vm_object_t object;
571 	vm_page_t m;
572 {
573 	struct uio auio;
574 	struct iovec aiov;
575 	int error;
576 	int size;
577 	struct sf_buf *sf;
578 	struct vnode *vp;
579 
580 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
581 	error = 0;
582 
583 	/*
584 	 * Return failure if beyond current EOF
585 	 */
586 	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
587 		return VM_PAGER_BAD;
588 	} else {
589 		size = PAGE_SIZE;
590 		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
591 			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
592 		vp = object->handle;
593 		VM_OBJECT_UNLOCK(object);
594 
595 		/*
596 		 * Allocate a kernel virtual address and initialize so that
597 		 * we can use VOP_READ/WRITE routines.
598 		 */
599 		sf = sf_buf_alloc(m, 0);
600 
601 		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
602 		aiov.iov_len = size;
603 		auio.uio_iov = &aiov;
604 		auio.uio_iovcnt = 1;
605 		auio.uio_offset = IDX_TO_OFF(m->pindex);
606 		auio.uio_segflg = UIO_SYSSPACE;
607 		auio.uio_rw = UIO_READ;
608 		auio.uio_resid = size;
609 		auio.uio_td = curthread;
610 
611 		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
612 		if (!error) {
613 			int count = size - auio.uio_resid;
614 
615 			if (count == 0)
616 				error = EINVAL;
617 			else if (count != PAGE_SIZE)
618 				bzero((caddr_t)sf_buf_kva(sf) + count,
619 				    PAGE_SIZE - count);
620 		}
621 		sf_buf_free(sf);
622 
623 		VM_OBJECT_LOCK(object);
624 	}
625 	vm_page_lock_queues();
626 	pmap_clear_modify(m);
627 	vm_page_undirty(m);
628 	vm_page_unlock_queues();
629 	if (!error)
630 		m->valid = VM_PAGE_BITS_ALL;
631 	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
632 }
633 
634 /*
635  * generic vnode pager input routine
636  */
637 
638 /*
639  * Local media VFS's that do not implement their own VOP_GETPAGES
640  * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
641  * to implement the previous behaviour.
642  *
643  * All other FS's should use the bypass to get to the local media
644  * backing vp's VOP_GETPAGES.
645  */
646 static int
647 vnode_pager_getpages(object, m, count, reqpage)
648 	vm_object_t object;
649 	vm_page_t *m;
650 	int count;
651 	int reqpage;
652 {
653 	int rtval;
654 	struct vnode *vp;
655 	int bytes = count * PAGE_SIZE;
656 	int vfslocked;
657 
658 	vp = object->handle;
659 	VM_OBJECT_UNLOCK(object);
660 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
661 	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
662 	KASSERT(rtval != EOPNOTSUPP,
663 	    ("vnode_pager: FS getpages not implemented\n"));
664 	VFS_UNLOCK_GIANT(vfslocked);
665 	VM_OBJECT_LOCK(object);
666 	return rtval;
667 }
668 
669 /*
670  * This is now called from local media FS's to operate against their
671  * own vnodes if they fail to implement VOP_GETPAGES.
672  */
673 int
674 vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
675 	struct vnode *vp;
676 	vm_page_t *m;
677 	int bytecount;
678 	int reqpage;
679 {
680 	vm_object_t object;
681 	vm_offset_t kva;
682 	off_t foff, tfoff, nextoff;
683 	int i, j, size, bsize, first;
684 	daddr_t firstaddr, reqblock;
685 	struct bufobj *bo;
686 	int runpg;
687 	int runend;
688 	struct buf *bp;
689 	int count;
690 	int error;
691 
692 	object = vp->v_object;
693 	count = bytecount / PAGE_SIZE;
694 
695 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
696 	    ("vnode_pager_generic_getpages does not support devices"));
697 	if (vp->v_iflag & VI_DOOMED)
698 		return VM_PAGER_BAD;
699 
700 	bsize = vp->v_mount->mnt_stat.f_iosize;
701 
702 	/* get the UNDERLYING device for the file with VOP_BMAP() */
703 
704 	/*
705 	 * originally, we did not check for an error return value -- assuming
706 	 * an fs always has a bmap entry point -- that assumption is wrong!!!
707 	 */
708 	foff = IDX_TO_OFF(m[reqpage]->pindex);
709 
710 	/*
711 	 * if we can't bmap, use old VOP code
712 	 */
713 	error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL);
714 	if (error == EOPNOTSUPP) {
715 		VM_OBJECT_LOCK(object);
716 		vm_page_lock_queues();
717 		for (i = 0; i < count; i++)
718 			if (i != reqpage)
719 				vm_page_free(m[i]);
720 		vm_page_unlock_queues();
721 		PCPU_INC(cnt.v_vnodein);
722 		PCPU_INC(cnt.v_vnodepgsin);
723 		error = vnode_pager_input_old(object, m[reqpage]);
724 		VM_OBJECT_UNLOCK(object);
725 		return (error);
726 	} else if (error != 0) {
727 		VM_OBJECT_LOCK(object);
728 		vm_page_lock_queues();
729 		for (i = 0; i < count; i++)
730 			if (i != reqpage)
731 				vm_page_free(m[i]);
732 		vm_page_unlock_queues();
733 		VM_OBJECT_UNLOCK(object);
734 		return (VM_PAGER_ERROR);
735 
736 		/*
737 		 * if the blocksize is smaller than a page size, then use
738 		 * special small filesystem code.  NFS sometimes has a small
739 		 * blocksize, but it can handle large reads itself.
740 		 */
741 	} else if ((PAGE_SIZE / bsize) > 1 &&
742 	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
743 		VM_OBJECT_LOCK(object);
744 		vm_page_lock_queues();
745 		for (i = 0; i < count; i++)
746 			if (i != reqpage)
747 				vm_page_free(m[i]);
748 		vm_page_unlock_queues();
749 		VM_OBJECT_UNLOCK(object);
750 		PCPU_INC(cnt.v_vnodein);
751 		PCPU_INC(cnt.v_vnodepgsin);
752 		return vnode_pager_input_smlfs(object, m[reqpage]);
753 	}
754 
755 	/*
756 	 * If we have a completely valid page available to us, we can
757 	 * clean up and return.  Otherwise we have to re-read the
758 	 * media.
759 	 */
760 	VM_OBJECT_LOCK(object);
761 	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
762 		vm_page_lock_queues();
763 		for (i = 0; i < count; i++)
764 			if (i != reqpage)
765 				vm_page_free(m[i]);
766 		vm_page_unlock_queues();
767 		VM_OBJECT_UNLOCK(object);
768 		return VM_PAGER_OK;
769 	} else if (reqblock == -1) {
770 		pmap_zero_page(m[reqpage]);
771 		vm_page_undirty(m[reqpage]);
772 		m[reqpage]->valid = VM_PAGE_BITS_ALL;
773 		vm_page_lock_queues();
774 		for (i = 0; i < count; i++)
775 			if (i != reqpage)
776 				vm_page_free(m[i]);
777 		vm_page_unlock_queues();
778 		VM_OBJECT_UNLOCK(object);
779 		return (VM_PAGER_OK);
780 	}
781 	m[reqpage]->valid = 0;
782 	VM_OBJECT_UNLOCK(object);
783 
784 	/*
785 	 * here on direct device I/O
786 	 */
787 	firstaddr = -1;
788 
789 	/*
790 	 * calculate the run that includes the required page
791 	 */
792 	for (first = 0, i = 0; i < count; i = runend) {
793 		if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr,
794 		    &runpg) != 0) {
795 			VM_OBJECT_LOCK(object);
796 			vm_page_lock_queues();
797 			for (; i < count; i++)
798 				if (i != reqpage)
799 					vm_page_free(m[i]);
800 			vm_page_unlock_queues();
801 			VM_OBJECT_UNLOCK(object);
802 			return (VM_PAGER_ERROR);
803 		}
804 		if (firstaddr == -1) {
805 			VM_OBJECT_LOCK(object);
806 			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
807 				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
808 				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
809 				    (uintmax_t)foff,
810 				    (uintmax_t)
811 				    (object->un_pager.vnp.vnp_size >> 32),
812 				    (uintmax_t)object->un_pager.vnp.vnp_size);
813 			}
814 			vm_page_lock_queues();
815 			vm_page_free(m[i]);
816 			vm_page_unlock_queues();
817 			VM_OBJECT_UNLOCK(object);
818 			runend = i + 1;
819 			first = runend;
820 			continue;
821 		}
822 		runend = i + runpg;
823 		if (runend <= reqpage) {
824 			VM_OBJECT_LOCK(object);
825 			vm_page_lock_queues();
826 			for (j = i; j < runend; j++)
827 				vm_page_free(m[j]);
828 			vm_page_unlock_queues();
829 			VM_OBJECT_UNLOCK(object);
830 		} else {
831 			if (runpg < (count - first)) {
832 				VM_OBJECT_LOCK(object);
833 				vm_page_lock_queues();
834 				for (i = first + runpg; i < count; i++)
835 					vm_page_free(m[i]);
836 				vm_page_unlock_queues();
837 				VM_OBJECT_UNLOCK(object);
838 				count = first + runpg;
839 			}
840 			break;
841 		}
842 		first = runend;
843 	}
844 
845 	/*
846 	 * the first and last page have been calculated now, move input pages
847 	 * to be zero based...
848 	 */
849 	if (first != 0) {
850 		m += first;
851 		count -= first;
852 		reqpage -= first;
853 	}
854 
855 	/*
856 	 * calculate the file virtual address for the transfer
857 	 */
858 	foff = IDX_TO_OFF(m[0]->pindex);
859 
860 	/*
861 	 * calculate the size of the transfer
862 	 */
863 	size = count * PAGE_SIZE;
864 	KASSERT(count > 0, ("zero count"));
865 	if ((foff + size) > object->un_pager.vnp.vnp_size)
866 		size = object->un_pager.vnp.vnp_size - foff;
867 	KASSERT(size > 0, ("zero size"));
868 
869 	/*
870 	 * round up physical size for real devices.
871 	 */
872 	if (1) {
873 		int secmask = bo->bo_bsize - 1;
874 		KASSERT(secmask < PAGE_SIZE && secmask > 0,
875 		    ("vnode_pager_generic_getpages: sector size %d too large",
876 		    secmask + 1));
877 		size = (size + secmask) & ~secmask;
878 	}
879 
880 	bp = getpbuf(&vnode_pbuf_freecnt);
881 	kva = (vm_offset_t) bp->b_data;
882 
883 	/*
884 	 * and map the pages to be read into the kva
885 	 */
886 	pmap_qenter(kva, m, count);
887 
888 	/* build a minimal buffer header */
889 	bp->b_iocmd = BIO_READ;
890 	bp->b_iodone = bdone;
891 	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
892 	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
893 	bp->b_rcred = crhold(curthread->td_ucred);
894 	bp->b_wcred = crhold(curthread->td_ucred);
895 	bp->b_blkno = firstaddr;
896 	pbgetbo(bo, bp);
897 	bp->b_bcount = size;
898 	bp->b_bufsize = size;
899 	bp->b_runningbufspace = bp->b_bufsize;
900 	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
901 
902 	PCPU_INC(cnt.v_vnodein);
903 	PCPU_ADD(cnt.v_vnodepgsin, count);
904 
905 	/* do the input */
906 	bp->b_iooffset = dbtob(bp->b_blkno);
907 	bstrategy(bp);
908 
909 	bwait(bp, PVM, "vnread");
910 
911 	if ((bp->b_ioflags & BIO_ERROR) != 0)
912 		error = EIO;
913 
914 	if (!error) {
915 		if (size != count * PAGE_SIZE)
916 			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
917 	}
918 	pmap_qremove(kva, count);
919 
920 	/*
921 	 * free the buffer header back to the swap buffer pool
922 	 */
923 	pbrelbo(bp);
924 	relpbuf(bp, &vnode_pbuf_freecnt);
925 
926 	VM_OBJECT_LOCK(object);
927 	vm_page_lock_queues();
928 	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
929 		vm_page_t mt;
930 
931 		nextoff = tfoff + PAGE_SIZE;
932 		mt = m[i];
933 
934 		if (nextoff <= object->un_pager.vnp.vnp_size) {
935 			/*
936 			 * Read filled up entire page.
937 			 */
938 			mt->valid = VM_PAGE_BITS_ALL;
939 			vm_page_undirty(mt);	/* should be an assert? XXX */
940 			pmap_clear_modify(mt);
941 		} else {
942 			/*
943 			 * Read did not fill up entire page.  Since this
944 			 * is getpages, the page may be mapped, so we have
945 			 * to zero the invalid portions of the page even
946 			 * though we aren't setting them valid.
947 			 *
948 			 * Currently we do not set the entire page valid,
949 			 * we just try to clear the piece that we couldn't
950 			 * read.
951 			 */
952 			vm_page_set_validclean(mt, 0,
953 			    object->un_pager.vnp.vnp_size - tfoff);
954 			/* handled by vm_fault now */
955 			/* vm_page_zero_invalid(mt, FALSE); */
956 		}
957 
958 		if (i != reqpage) {
959 
960 			/*
961 			 * whether or not to leave the page activated is up in
962 			 * the air, but we should put the page on a page queue
963 			 * somewhere. (it already is in the object). Result:
964 			 * It appears that empirical results show that
965 			 * deactivating pages is best.
966 			 */
967 
968 			/*
969 			 * just in case someone was asking for this page we
970 			 * now tell them that it is ok to use
971 			 */
972 			if (!error) {
973 				if (mt->oflags & VPO_WANTED)
974 					vm_page_activate(mt);
975 				else
976 					vm_page_deactivate(mt);
977 				vm_page_wakeup(mt);
978 			} else {
979 				vm_page_free(mt);
980 			}
981 		}
982 	}
983 	vm_page_unlock_queues();
984 	VM_OBJECT_UNLOCK(object);
985 	if (error) {
986 		printf("vnode_pager_getpages: I/O read error\n");
987 	}
988 	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
989 }
990 
991 /*
992  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
993  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
994  * vnode_pager_generic_putpages() to implement the previous behaviour.
995  *
996  * All other FS's should use the bypass to get to the local media
997  * backing vp's VOP_PUTPAGES.
998  */
999 static void
1000 vnode_pager_putpages(object, m, count, sync, rtvals)
1001 	vm_object_t object;
1002 	vm_page_t *m;
1003 	int count;
1004 	boolean_t sync;
1005 	int *rtvals;
1006 {
1007 	int rtval;
1008 	struct vnode *vp;
1009 	struct mount *mp;
1010 	int bytes = count * PAGE_SIZE;
1011 
1012 	/*
1013 	 * Force synchronous operation if we are extremely low on memory
1014 	 * to prevent a low-memory deadlock.  VOP operations often need to
1015 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1016 	 * operation ).  The swapper handles the case by limiting the amount
1017 	 * of asynchronous I/O, but that sort of solution doesn't scale well
1018 	 * for the vnode pager without a lot of work.
1019 	 *
1020 	 * Also, the backing vnode's iodone routine may not wake the pageout
1021 	 * daemon up.  This should be probably be addressed XXX.
1022 	 */
1023 
1024 	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
1025 		sync |= OBJPC_SYNC;
1026 
1027 	/*
1028 	 * Call device-specific putpages function
1029 	 */
1030 	vp = object->handle;
1031 	VM_OBJECT_UNLOCK(object);
1032 	if (vp->v_type != VREG)
1033 		mp = NULL;
1034 	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
1035 	KASSERT(rtval != EOPNOTSUPP,
1036 	    ("vnode_pager: stale FS putpages\n"));
1037 	VM_OBJECT_LOCK(object);
1038 }
1039 
1040 
1041 /*
1042  * This is now called from local media FS's to operate against their
1043  * own vnodes if they fail to implement VOP_PUTPAGES.
1044  *
1045  * This is typically called indirectly via the pageout daemon and
1046  * clustering has already typically occured, so in general we ask the
1047  * underlying filesystem to write the data out asynchronously rather
1048  * then delayed.
1049  */
1050 int
1051 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals)
1052 	struct vnode *vp;
1053 	vm_page_t *m;
1054 	int bytecount;
1055 	int flags;
1056 	int *rtvals;
1057 {
1058 	int i;
1059 	vm_object_t object;
1060 	int count;
1061 
1062 	int maxsize, ncount;
1063 	vm_ooffset_t poffset;
1064 	struct uio auio;
1065 	struct iovec aiov;
1066 	int error;
1067 	int ioflags;
1068 	int ppscheck = 0;
1069 	static struct timeval lastfail;
1070 	static int curfail;
1071 
1072 	object = vp->v_object;
1073 	count = bytecount / PAGE_SIZE;
1074 
1075 	for (i = 0; i < count; i++)
1076 		rtvals[i] = VM_PAGER_AGAIN;
1077 
1078 	if ((int64_t)m[0]->pindex < 0) {
1079 		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1080 			(long)m[0]->pindex, (u_long)m[0]->dirty);
1081 		rtvals[0] = VM_PAGER_BAD;
1082 		return VM_PAGER_BAD;
1083 	}
1084 
1085 	maxsize = count * PAGE_SIZE;
1086 	ncount = count;
1087 
1088 	poffset = IDX_TO_OFF(m[0]->pindex);
1089 
1090 	/*
1091 	 * If the page-aligned write is larger then the actual file we
1092 	 * have to invalidate pages occuring beyond the file EOF.  However,
1093 	 * there is an edge case where a file may not be page-aligned where
1094 	 * the last page is partially invalid.  In this case the filesystem
1095 	 * may not properly clear the dirty bits for the entire page (which
1096 	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1097 	 * With the page locked we are free to fix-up the dirty bits here.
1098 	 *
1099 	 * We do not under any circumstances truncate the valid bits, as
1100 	 * this will screw up bogus page replacement.
1101 	 */
1102 	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1103 		if (object->un_pager.vnp.vnp_size > poffset) {
1104 			int pgoff;
1105 
1106 			maxsize = object->un_pager.vnp.vnp_size - poffset;
1107 			ncount = btoc(maxsize);
1108 			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1109 				vm_page_lock_queues();
1110 				vm_page_clear_dirty(m[ncount - 1], pgoff,
1111 					PAGE_SIZE - pgoff);
1112 				vm_page_unlock_queues();
1113 			}
1114 		} else {
1115 			maxsize = 0;
1116 			ncount = 0;
1117 		}
1118 		if (ncount < count) {
1119 			for (i = ncount; i < count; i++) {
1120 				rtvals[i] = VM_PAGER_BAD;
1121 			}
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
1127 	 * rather then a bdwrite() to prevent paging I/O from saturating
1128 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1129 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1130 	 * the system decides how to cluster.
1131 	 */
1132 	ioflags = IO_VMIO;
1133 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1134 		ioflags |= IO_SYNC;
1135 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1136 		ioflags |= IO_ASYNC;
1137 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1138 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1139 
1140 	aiov.iov_base = (caddr_t) 0;
1141 	aiov.iov_len = maxsize;
1142 	auio.uio_iov = &aiov;
1143 	auio.uio_iovcnt = 1;
1144 	auio.uio_offset = poffset;
1145 	auio.uio_segflg = UIO_NOCOPY;
1146 	auio.uio_rw = UIO_WRITE;
1147 	auio.uio_resid = maxsize;
1148 	auio.uio_td = (struct thread *) 0;
1149 	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1150 	PCPU_INC(cnt.v_vnodeout);
1151 	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1152 
1153 	if (error) {
1154 		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1155 			printf("vnode_pager_putpages: I/O error %d\n", error);
1156 	}
1157 	if (auio.uio_resid) {
1158 		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1159 			printf("vnode_pager_putpages: residual I/O %d at %lu\n",
1160 			    auio.uio_resid, (u_long)m[0]->pindex);
1161 	}
1162 	for (i = 0; i < ncount; i++) {
1163 		rtvals[i] = VM_PAGER_OK;
1164 	}
1165 	return rtvals[0];
1166 }
1167 
1168 struct vnode *
1169 vnode_pager_lock(vm_object_t first_object)
1170 {
1171 	struct vnode *vp;
1172 	vm_object_t backing_object, object;
1173 
1174 	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
1175 	for (object = first_object; object != NULL; object = backing_object) {
1176 		if (object->type != OBJT_VNODE) {
1177 			if ((backing_object = object->backing_object) != NULL)
1178 				VM_OBJECT_LOCK(backing_object);
1179 			if (object != first_object)
1180 				VM_OBJECT_UNLOCK(object);
1181 			continue;
1182 		}
1183 	retry:
1184 		if (object->flags & OBJ_DEAD) {
1185 			if (object != first_object)
1186 				VM_OBJECT_UNLOCK(object);
1187 			return NULL;
1188 		}
1189 		vp = object->handle;
1190 		VI_LOCK(vp);
1191 		VM_OBJECT_UNLOCK(object);
1192 		if (first_object != object)
1193 			VM_OBJECT_UNLOCK(first_object);
1194 		VFS_ASSERT_GIANT(vp->v_mount);
1195 		if (vget(vp, LK_CANRECURSE | LK_INTERLOCK |
1196 		    LK_RETRY | LK_SHARED, curthread)) {
1197 			VM_OBJECT_LOCK(first_object);
1198 			if (object != first_object)
1199 				VM_OBJECT_LOCK(object);
1200 			if (object->type != OBJT_VNODE) {
1201 				if (object != first_object)
1202 					VM_OBJECT_UNLOCK(object);
1203 				return NULL;
1204 			}
1205 			printf("vnode_pager_lock: retrying\n");
1206 			goto retry;
1207 		}
1208 		VM_OBJECT_LOCK(first_object);
1209 		return (vp);
1210 	}
1211 	return NULL;
1212 }
1213