1 /* 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 * $FreeBSD$ 42 */ 43 44 /* 45 * Page to/from files (vnodes). 46 */ 47 48 /* 49 * TODO: 50 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 51 * greatly re-simplify the vnode_pager. 52 */ 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/proc.h> 57 #include <sys/vnode.h> 58 #include <sys/mount.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/vmmeter.h> 62 #include <sys/conf.h> 63 64 #include <vm/vm.h> 65 #include <vm/vm_object.h> 66 #include <vm/vm_page.h> 67 #include <vm/vm_pager.h> 68 #include <vm/vm_map.h> 69 #include <vm/vnode_pager.h> 70 #include <vm/vm_extern.h> 71 72 static vm_offset_t vnode_pager_addr __P((struct vnode *vp, vm_ooffset_t address, 73 int *run)); 74 static void vnode_pager_iodone __P((struct buf *bp)); 75 static int vnode_pager_input_smlfs __P((vm_object_t object, vm_page_t m)); 76 static int vnode_pager_input_old __P((vm_object_t object, vm_page_t m)); 77 static void vnode_pager_dealloc __P((vm_object_t)); 78 static int vnode_pager_getpages __P((vm_object_t, vm_page_t *, int, int)); 79 static void vnode_pager_putpages __P((vm_object_t, vm_page_t *, int, boolean_t, int *)); 80 static boolean_t vnode_pager_haspage __P((vm_object_t, vm_pindex_t, int *, int *)); 81 82 struct pagerops vnodepagerops = { 83 NULL, 84 vnode_pager_alloc, 85 vnode_pager_dealloc, 86 vnode_pager_getpages, 87 vnode_pager_putpages, 88 vnode_pager_haspage, 89 NULL 90 }; 91 92 int vnode_pbuf_freecnt = -1; /* start out unlimited */ 93 94 95 /* 96 * Allocate (or lookup) pager for a vnode. 97 * Handle is a vnode pointer. 98 */ 99 vm_object_t 100 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 101 vm_ooffset_t offset) 102 { 103 vm_object_t object; 104 struct vnode *vp; 105 106 mtx_assert(&Giant, MA_OWNED); 107 /* 108 * Pageout to vnode, no can do yet. 109 */ 110 if (handle == NULL) 111 return (NULL); 112 113 /* 114 * XXX hack - This initialization should be put somewhere else. 115 */ 116 if (vnode_pbuf_freecnt < 0) { 117 vnode_pbuf_freecnt = nswbuf / 2 + 1; 118 } 119 120 vp = (struct vnode *) handle; 121 122 /* 123 * Prevent race condition when allocating the object. This 124 * can happen with NFS vnodes since the nfsnode isn't locked. 125 */ 126 mtx_unlock(&vm_mtx); 127 while (vp->v_flag & VOLOCK) { 128 vp->v_flag |= VOWANT; 129 tsleep(vp, PVM, "vnpobj", 0); 130 } 131 vp->v_flag |= VOLOCK; 132 mtx_lock(&vm_mtx); 133 134 /* 135 * If the object is being terminated, wait for it to 136 * go away. 137 */ 138 while (((object = vp->v_object) != NULL) && 139 (object->flags & OBJ_DEAD)) { 140 msleep(object, &vm_mtx, PVM, "vadead", 0); 141 } 142 143 if (vp->v_usecount == 0) 144 panic("vnode_pager_alloc: no vnode reference"); 145 146 if (object == NULL) { 147 /* 148 * And an object of the appropriate size 149 */ 150 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 151 object->flags = 0; 152 153 object->un_pager.vnp.vnp_size = size; 154 155 object->handle = handle; 156 vp->v_object = object; 157 vp->v_usecount++; 158 } else { 159 object->ref_count++; 160 vp->v_usecount++; 161 } 162 163 mtx_unlock(&vm_mtx); 164 vp->v_flag &= ~VOLOCK; 165 if (vp->v_flag & VOWANT) { 166 vp->v_flag &= ~VOWANT; 167 wakeup(vp); 168 } 169 mtx_lock(&vm_mtx); 170 return (object); 171 } 172 173 static void 174 vnode_pager_dealloc(object) 175 vm_object_t object; 176 { 177 register struct vnode *vp = object->handle; 178 179 mtx_assert(&Giant, MA_OWNED); 180 if (vp == NULL) 181 panic("vnode_pager_dealloc: pager already dealloced"); 182 183 vm_object_pip_wait(object, "vnpdea"); 184 185 object->handle = NULL; 186 object->type = OBJT_DEAD; 187 vp->v_object = NULL; 188 vp->v_flag &= ~(VTEXT | VOBJBUF); 189 } 190 191 static boolean_t 192 vnode_pager_haspage(object, pindex, before, after) 193 vm_object_t object; 194 vm_pindex_t pindex; 195 int *before; 196 int *after; 197 { 198 struct vnode *vp = object->handle; 199 daddr_t bn; 200 int err; 201 daddr_t reqblock; 202 int poff; 203 int bsize; 204 int pagesperblock, blocksperpage; 205 206 mtx_assert(&Giant, MA_OWNED); 207 /* 208 * If no vp or vp is doomed or marked transparent to VM, we do not 209 * have the page. 210 */ 211 if ((vp == NULL) || (vp->v_flag & VDOOMED)) 212 return FALSE; 213 214 /* 215 * If filesystem no longer mounted or offset beyond end of file we do 216 * not have the page. 217 */ 218 if ((vp->v_mount == NULL) || 219 (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)) 220 return FALSE; 221 222 bsize = vp->v_mount->mnt_stat.f_iosize; 223 pagesperblock = bsize / PAGE_SIZE; 224 blocksperpage = 0; 225 if (pagesperblock > 0) { 226 reqblock = pindex / pagesperblock; 227 } else { 228 blocksperpage = (PAGE_SIZE / bsize); 229 reqblock = pindex * blocksperpage; 230 } 231 mtx_unlock(&vm_mtx); 232 err = VOP_BMAP(vp, reqblock, (struct vnode **) 0, &bn, 233 after, before); 234 mtx_lock(&vm_mtx); 235 if (err) 236 return TRUE; 237 if ( bn == -1) 238 return FALSE; 239 if (pagesperblock > 0) { 240 poff = pindex - (reqblock * pagesperblock); 241 if (before) { 242 *before *= pagesperblock; 243 *before += poff; 244 } 245 if (after) { 246 int numafter; 247 *after *= pagesperblock; 248 numafter = pagesperblock - (poff + 1); 249 if (IDX_TO_OFF(pindex + numafter) > object->un_pager.vnp.vnp_size) { 250 numafter = OFF_TO_IDX((object->un_pager.vnp.vnp_size - IDX_TO_OFF(pindex))); 251 } 252 *after += numafter; 253 } 254 } else { 255 if (before) { 256 *before /= blocksperpage; 257 } 258 259 if (after) { 260 *after /= blocksperpage; 261 } 262 } 263 return TRUE; 264 } 265 266 /* 267 * Lets the VM system know about a change in size for a file. 268 * We adjust our own internal size and flush any cached pages in 269 * the associated object that are affected by the size change. 270 * 271 * Note: this routine may be invoked as a result of a pager put 272 * operation (possibly at object termination time), so we must be careful. 273 */ 274 void 275 vnode_pager_setsize(vp, nsize) 276 struct vnode *vp; 277 vm_ooffset_t nsize; 278 { 279 vm_pindex_t nobjsize; 280 vm_object_t object = vp->v_object; 281 282 if (object == NULL) 283 return; 284 285 /* 286 * Hasn't changed size 287 */ 288 if (nsize == object->un_pager.vnp.vnp_size) 289 return; 290 291 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 292 293 /* 294 * File has shrunk. Toss any cached pages beyond the new EOF. 295 */ 296 if (nsize < object->un_pager.vnp.vnp_size) { 297 int hadvmlock; 298 299 hadvmlock = mtx_owned(&vm_mtx); 300 if (!hadvmlock) 301 mtx_lock(&vm_mtx); 302 vm_freeze_copyopts(object, OFF_TO_IDX(nsize), object->size); 303 if (nobjsize < object->size) { 304 vm_object_page_remove(object, nobjsize, object->size, 305 FALSE); 306 } 307 /* 308 * this gets rid of garbage at the end of a page that is now 309 * only partially backed by the vnode... 310 */ 311 if (nsize & PAGE_MASK) { 312 vm_offset_t kva; 313 vm_page_t m; 314 315 m = vm_page_lookup(object, OFF_TO_IDX(nsize)); 316 if (m) { 317 int base = (int)nsize & PAGE_MASK; 318 int size = PAGE_SIZE - base; 319 320 /* 321 * Clear out partial-page garbage in case 322 * the page has been mapped. 323 */ 324 kva = vm_pager_map_page(m); 325 bzero((caddr_t)kva + base, size); 326 vm_pager_unmap_page(kva); 327 328 /* 329 * Clear out partial-page dirty bits. This 330 * has the side effect of setting the valid 331 * bits, but that is ok. There are a bunch 332 * of places in the VM system where we expected 333 * m->dirty == VM_PAGE_BITS_ALL. The file EOF 334 * case is one of them. If the page is still 335 * partially dirty, make it fully dirty. 336 */ 337 vm_page_set_validclean(m, base, size); 338 if (m->dirty != 0) 339 m->dirty = VM_PAGE_BITS_ALL; 340 } 341 } 342 if (!hadvmlock) 343 mtx_unlock(&vm_mtx); 344 } 345 object->un_pager.vnp.vnp_size = nsize; 346 object->size = nobjsize; 347 } 348 349 /* 350 * calculate the linear (byte) disk address of specified virtual 351 * file address 352 */ 353 static vm_offset_t 354 vnode_pager_addr(vp, address, run) 355 struct vnode *vp; 356 vm_ooffset_t address; 357 int *run; 358 { 359 int rtaddress; 360 int bsize; 361 daddr_t block; 362 struct vnode *rtvp; 363 int err; 364 daddr_t vblock; 365 int voffset; 366 367 mtx_assert(&Giant, MA_OWNED); 368 if ((int) address < 0) 369 return -1; 370 371 if (vp->v_mount == NULL) 372 return -1; 373 374 bsize = vp->v_mount->mnt_stat.f_iosize; 375 vblock = address / bsize; 376 voffset = address % bsize; 377 mtx_unlock(&vm_mtx); 378 379 err = VOP_BMAP(vp, vblock, &rtvp, &block, run, NULL); 380 381 mtx_lock(&vm_mtx); 382 if (err || (block == -1)) 383 rtaddress = -1; 384 else { 385 rtaddress = block + voffset / DEV_BSIZE; 386 if( run) { 387 *run += 1; 388 *run *= bsize/PAGE_SIZE; 389 *run -= voffset/PAGE_SIZE; 390 } 391 } 392 393 return rtaddress; 394 } 395 396 /* 397 * interrupt routine for I/O completion 398 */ 399 static void 400 vnode_pager_iodone(bp) 401 struct buf *bp; 402 { 403 bp->b_flags |= B_DONE; 404 wakeup(bp); 405 } 406 407 /* 408 * small block file system vnode pager input 409 */ 410 static int 411 vnode_pager_input_smlfs(object, m) 412 vm_object_t object; 413 vm_page_t m; 414 { 415 int i; 416 int s; 417 struct vnode *dp, *vp; 418 struct buf *bp; 419 vm_offset_t kva; 420 int fileaddr; 421 vm_offset_t bsize; 422 int error = 0; 423 424 mtx_assert(&Giant, MA_OWNED); 425 vp = object->handle; 426 if (vp->v_mount == NULL) 427 return VM_PAGER_BAD; 428 429 bsize = vp->v_mount->mnt_stat.f_iosize; 430 mtx_unlock(&vm_mtx); 431 432 VOP_BMAP(vp, 0, &dp, 0, NULL, NULL); 433 434 mtx_lock(&vm_mtx); 435 kva = vm_pager_map_page(m); 436 437 for (i = 0; i < PAGE_SIZE / bsize; i++) { 438 439 if (vm_page_bits(i * bsize, bsize) & m->valid) 440 continue; 441 442 fileaddr = vnode_pager_addr(vp, 443 IDX_TO_OFF(m->pindex) + i * bsize, (int *)0); 444 if (fileaddr != -1) { 445 mtx_unlock(&vm_mtx); 446 bp = getpbuf(&vnode_pbuf_freecnt); 447 448 /* build a minimal buffer header */ 449 bp->b_iocmd = BIO_READ; 450 bp->b_iodone = vnode_pager_iodone; 451 bp->b_rcred = bp->b_wcred = curproc->p_ucred; 452 if (bp->b_rcred != NOCRED) 453 crhold(bp->b_rcred); 454 if (bp->b_wcred != NOCRED) 455 crhold(bp->b_wcred); 456 bp->b_data = (caddr_t) kva + i * bsize; 457 bp->b_blkno = fileaddr; 458 pbgetvp(dp, bp); 459 bp->b_bcount = bsize; 460 bp->b_bufsize = bsize; 461 bp->b_runningbufspace = bp->b_bufsize; 462 runningbufspace += bp->b_runningbufspace; 463 464 /* do the input */ 465 BUF_STRATEGY(bp); 466 467 /* we definitely need to be at splvm here */ 468 469 s = splvm(); 470 while ((bp->b_flags & B_DONE) == 0) { 471 tsleep(bp, PVM, "vnsrd", 0); 472 } 473 splx(s); 474 if ((bp->b_ioflags & BIO_ERROR) != 0) 475 error = EIO; 476 477 /* 478 * free the buffer header back to the swap buffer pool 479 */ 480 relpbuf(bp, &vnode_pbuf_freecnt); 481 mtx_lock(&vm_mtx); 482 if (error) 483 break; 484 485 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 486 } else { 487 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize); 488 bzero((caddr_t) kva + i * bsize, bsize); 489 } 490 } 491 vm_pager_unmap_page(kva); 492 pmap_clear_modify(m); 493 vm_page_flag_clear(m, PG_ZERO); 494 if (error) { 495 return VM_PAGER_ERROR; 496 } 497 return VM_PAGER_OK; 498 499 } 500 501 502 /* 503 * old style vnode pager output routine 504 */ 505 static int 506 vnode_pager_input_old(object, m) 507 vm_object_t object; 508 vm_page_t m; 509 { 510 struct uio auio; 511 struct iovec aiov; 512 int error; 513 int size; 514 vm_offset_t kva; 515 struct vnode *vp; 516 517 mtx_assert(&Giant, MA_OWNED); 518 error = 0; 519 520 /* 521 * Return failure if beyond current EOF 522 */ 523 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 524 return VM_PAGER_BAD; 525 } else { 526 size = PAGE_SIZE; 527 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 528 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 529 530 /* 531 * Allocate a kernel virtual address and initialize so that 532 * we can use VOP_READ/WRITE routines. 533 */ 534 kva = vm_pager_map_page(m); 535 536 vp = object->handle; 537 mtx_unlock(&vm_mtx); 538 aiov.iov_base = (caddr_t) kva; 539 aiov.iov_len = size; 540 auio.uio_iov = &aiov; 541 auio.uio_iovcnt = 1; 542 auio.uio_offset = IDX_TO_OFF(m->pindex); 543 auio.uio_segflg = UIO_SYSSPACE; 544 auio.uio_rw = UIO_READ; 545 auio.uio_resid = size; 546 auio.uio_procp = curproc; 547 548 error = VOP_READ(vp, &auio, 0, curproc->p_ucred); 549 if (!error) { 550 register int count = size - auio.uio_resid; 551 552 if (count == 0) 553 error = EINVAL; 554 else if (count != PAGE_SIZE) 555 bzero((caddr_t) kva + count, PAGE_SIZE - count); 556 } 557 mtx_lock(&vm_mtx); 558 vm_pager_unmap_page(kva); 559 } 560 pmap_clear_modify(m); 561 vm_page_undirty(m); 562 vm_page_flag_clear(m, PG_ZERO); 563 if (!error) 564 m->valid = VM_PAGE_BITS_ALL; 565 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 566 } 567 568 /* 569 * generic vnode pager input routine 570 */ 571 572 /* 573 * Local media VFS's that do not implement their own VOP_GETPAGES 574 * should have their VOP_GETPAGES should call to 575 * vnode_pager_generic_getpages() to implement the previous behaviour. 576 * 577 * All other FS's should use the bypass to get to the local media 578 * backing vp's VOP_GETPAGES. 579 */ 580 static int 581 vnode_pager_getpages(object, m, count, reqpage) 582 vm_object_t object; 583 vm_page_t *m; 584 int count; 585 int reqpage; 586 { 587 int rtval; 588 struct vnode *vp; 589 int bytes = count * PAGE_SIZE; 590 591 mtx_assert(&Giant, MA_OWNED); 592 vp = object->handle; 593 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 594 KASSERT(rtval != EOPNOTSUPP, 595 ("vnode_pager: FS getpages not implemented\n")); 596 return rtval; 597 } 598 599 600 /* 601 * This is now called from local media FS's to operate against their 602 * own vnodes if they fail to implement VOP_GETPAGES. 603 */ 604 int 605 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 606 struct vnode *vp; 607 vm_page_t *m; 608 int bytecount; 609 int reqpage; 610 { 611 vm_object_t object; 612 vm_offset_t kva; 613 off_t foff, tfoff, nextoff; 614 int i, size, bsize, first, firstaddr; 615 struct vnode *dp; 616 int runpg; 617 int runend; 618 struct buf *bp; 619 int s; 620 int count; 621 int error = 0; 622 623 mtx_assert(&Giant, MA_OWNED); 624 object = vp->v_object; 625 count = bytecount / PAGE_SIZE; 626 627 if (vp->v_mount == NULL) 628 return VM_PAGER_BAD; 629 630 bsize = vp->v_mount->mnt_stat.f_iosize; 631 632 /* get the UNDERLYING device for the file with VOP_BMAP() */ 633 634 /* 635 * originally, we did not check for an error return value -- assuming 636 * an fs always has a bmap entry point -- that assumption is wrong!!! 637 */ 638 foff = IDX_TO_OFF(m[reqpage]->pindex); 639 640 /* 641 * if we can't bmap, use old VOP code 642 */ 643 mtx_unlock(&vm_mtx); 644 if (VOP_BMAP(vp, 0, &dp, 0, NULL, NULL)) { 645 mtx_lock(&vm_mtx); 646 for (i = 0; i < count; i++) { 647 if (i != reqpage) { 648 vm_page_free(m[i]); 649 } 650 } 651 cnt.v_vnodein++; 652 cnt.v_vnodepgsin++; 653 return vnode_pager_input_old(object, m[reqpage]); 654 655 /* 656 * if the blocksize is smaller than a page size, then use 657 * special small filesystem code. NFS sometimes has a small 658 * blocksize, but it can handle large reads itself. 659 */ 660 } else if ((PAGE_SIZE / bsize) > 1 && 661 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 662 mtx_lock(&vm_mtx); 663 for (i = 0; i < count; i++) { 664 if (i != reqpage) { 665 vm_page_free(m[i]); 666 } 667 } 668 cnt.v_vnodein++; 669 cnt.v_vnodepgsin++; 670 return vnode_pager_input_smlfs(object, m[reqpage]); 671 } 672 mtx_lock(&vm_mtx); 673 674 /* 675 * If we have a completely valid page available to us, we can 676 * clean up and return. Otherwise we have to re-read the 677 * media. 678 */ 679 680 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 681 for (i = 0; i < count; i++) { 682 if (i != reqpage) 683 vm_page_free(m[i]); 684 } 685 return VM_PAGER_OK; 686 } 687 m[reqpage]->valid = 0; 688 689 /* 690 * here on direct device I/O 691 */ 692 693 firstaddr = -1; 694 /* 695 * calculate the run that includes the required page 696 */ 697 for(first = 0, i = 0; i < count; i = runend) { 698 firstaddr = vnode_pager_addr(vp, 699 IDX_TO_OFF(m[i]->pindex), &runpg); 700 if (firstaddr == -1) { 701 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 702 /* XXX no %qd in kernel. */ 703 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %d, foff: 0x%lx%08lx, vnp_size: 0x%lx%08lx", 704 firstaddr, (u_long)(foff >> 32), 705 (u_long)(u_int32_t)foff, 706 (u_long)(u_int32_t) 707 (object->un_pager.vnp.vnp_size >> 32), 708 (u_long)(u_int32_t) 709 object->un_pager.vnp.vnp_size); 710 } 711 vm_page_free(m[i]); 712 runend = i + 1; 713 first = runend; 714 continue; 715 } 716 runend = i + runpg; 717 if (runend <= reqpage) { 718 int j; 719 for (j = i; j < runend; j++) { 720 vm_page_free(m[j]); 721 } 722 } else { 723 if (runpg < (count - first)) { 724 for (i = first + runpg; i < count; i++) 725 vm_page_free(m[i]); 726 count = first + runpg; 727 } 728 break; 729 } 730 first = runend; 731 } 732 733 /* 734 * the first and last page have been calculated now, move input pages 735 * to be zero based... 736 */ 737 if (first != 0) { 738 for (i = first; i < count; i++) { 739 m[i - first] = m[i]; 740 } 741 count -= first; 742 reqpage -= first; 743 } 744 745 /* 746 * calculate the file virtual address for the transfer 747 */ 748 foff = IDX_TO_OFF(m[0]->pindex); 749 750 /* 751 * calculate the size of the transfer 752 */ 753 size = count * PAGE_SIZE; 754 if ((foff + size) > object->un_pager.vnp.vnp_size) 755 size = object->un_pager.vnp.vnp_size - foff; 756 757 /* 758 * round up physical size for real devices. 759 */ 760 if (dp->v_type == VBLK || dp->v_type == VCHR) { 761 int secmask = dp->v_rdev->si_bsize_phys - 1; 762 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1)); 763 size = (size + secmask) & ~secmask; 764 } 765 766 bp = getpbuf(&vnode_pbuf_freecnt); 767 kva = (vm_offset_t) bp->b_data; 768 769 /* 770 * and map the pages to be read into the kva 771 */ 772 pmap_qenter(kva, m, count); 773 mtx_unlock(&vm_mtx); 774 775 /* build a minimal buffer header */ 776 bp->b_iocmd = BIO_READ; 777 bp->b_iodone = vnode_pager_iodone; 778 /* B_PHYS is not set, but it is nice to fill this in */ 779 bp->b_rcred = bp->b_wcred = curproc->p_ucred; 780 if (bp->b_rcred != NOCRED) 781 crhold(bp->b_rcred); 782 if (bp->b_wcred != NOCRED) 783 crhold(bp->b_wcred); 784 bp->b_blkno = firstaddr; 785 pbgetvp(dp, bp); 786 bp->b_bcount = size; 787 bp->b_bufsize = size; 788 bp->b_runningbufspace = bp->b_bufsize; 789 runningbufspace += bp->b_runningbufspace; 790 791 cnt.v_vnodein++; 792 cnt.v_vnodepgsin += count; 793 794 /* do the input */ 795 BUF_STRATEGY(bp); 796 797 s = splvm(); 798 /* we definitely need to be at splvm here */ 799 800 while ((bp->b_flags & B_DONE) == 0) { 801 tsleep(bp, PVM, "vnread", 0); 802 } 803 splx(s); 804 if ((bp->b_ioflags & BIO_ERROR) != 0) 805 error = EIO; 806 807 if (!error) { 808 if (size != count * PAGE_SIZE) 809 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 810 } 811 mtx_lock(&vm_mtx); 812 pmap_qremove(kva, count); 813 814 /* 815 * free the buffer header back to the swap buffer pool 816 */ 817 relpbuf(bp, &vnode_pbuf_freecnt); 818 819 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 820 vm_page_t mt; 821 822 nextoff = tfoff + PAGE_SIZE; 823 mt = m[i]; 824 825 if (nextoff <= object->un_pager.vnp.vnp_size) { 826 /* 827 * Read filled up entire page. 828 */ 829 mt->valid = VM_PAGE_BITS_ALL; 830 vm_page_undirty(mt); /* should be an assert? XXX */ 831 pmap_clear_modify(mt); 832 } else { 833 /* 834 * Read did not fill up entire page. Since this 835 * is getpages, the page may be mapped, so we have 836 * to zero the invalid portions of the page even 837 * though we aren't setting them valid. 838 * 839 * Currently we do not set the entire page valid, 840 * we just try to clear the piece that we couldn't 841 * read. 842 */ 843 vm_page_set_validclean(mt, 0, 844 object->un_pager.vnp.vnp_size - tfoff); 845 /* handled by vm_fault now */ 846 /* vm_page_zero_invalid(mt, FALSE); */ 847 } 848 849 vm_page_flag_clear(mt, PG_ZERO); 850 if (i != reqpage) { 851 852 /* 853 * whether or not to leave the page activated is up in 854 * the air, but we should put the page on a page queue 855 * somewhere. (it already is in the object). Result: 856 * It appears that empirical results show that 857 * deactivating pages is best. 858 */ 859 860 /* 861 * just in case someone was asking for this page we 862 * now tell them that it is ok to use 863 */ 864 if (!error) { 865 if (mt->flags & PG_WANTED) 866 vm_page_activate(mt); 867 else 868 vm_page_deactivate(mt); 869 vm_page_wakeup(mt); 870 } else { 871 vm_page_free(mt); 872 } 873 } 874 } 875 if (error) { 876 printf("vnode_pager_getpages: I/O read error\n"); 877 } 878 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 879 } 880 881 /* 882 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 883 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 884 * vnode_pager_generic_putpages() to implement the previous behaviour. 885 * 886 * All other FS's should use the bypass to get to the local media 887 * backing vp's VOP_PUTPAGES. 888 */ 889 static void 890 vnode_pager_putpages(object, m, count, sync, rtvals) 891 vm_object_t object; 892 vm_page_t *m; 893 int count; 894 boolean_t sync; 895 int *rtvals; 896 { 897 int rtval; 898 struct vnode *vp; 899 struct mount *mp; 900 int bytes = count * PAGE_SIZE; 901 902 mtx_assert(&Giant, MA_OWNED); 903 /* 904 * Force synchronous operation if we are extremely low on memory 905 * to prevent a low-memory deadlock. VOP operations often need to 906 * allocate more memory to initiate the I/O ( i.e. do a BMAP 907 * operation ). The swapper handles the case by limiting the amount 908 * of asynchronous I/O, but that sort of solution doesn't scale well 909 * for the vnode pager without a lot of work. 910 * 911 * Also, the backing vnode's iodone routine may not wake the pageout 912 * daemon up. This should be probably be addressed XXX. 913 */ 914 915 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 916 sync |= OBJPC_SYNC; 917 918 /* 919 * Call device-specific putpages function 920 */ 921 922 vp = object->handle; 923 mtx_unlock(&vm_mtx); 924 if (vp->v_type != VREG) 925 mp = NULL; 926 (void)vn_start_write(vp, &mp, V_WAIT); 927 mtx_lock(&vm_mtx); 928 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 929 KASSERT(rtval != EOPNOTSUPP, 930 ("vnode_pager: stale FS putpages\n")); 931 mtx_unlock(&vm_mtx); 932 vn_finished_write(mp); 933 mtx_lock(&vm_mtx); 934 } 935 936 937 /* 938 * This is now called from local media FS's to operate against their 939 * own vnodes if they fail to implement VOP_PUTPAGES. 940 * 941 * This is typically called indirectly via the pageout daemon and 942 * clustering has already typically occured, so in general we ask the 943 * underlying filesystem to write the data out asynchronously rather 944 * then delayed. 945 */ 946 int 947 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 948 struct vnode *vp; 949 vm_page_t *m; 950 int bytecount; 951 int flags; 952 int *rtvals; 953 { 954 int i; 955 vm_object_t object; 956 int count; 957 958 int maxsize, ncount; 959 vm_ooffset_t poffset; 960 struct uio auio; 961 struct iovec aiov; 962 int error; 963 int ioflags; 964 965 mtx_assert(&Giant, MA_OWNED); 966 object = vp->v_object; 967 count = bytecount / PAGE_SIZE; 968 969 for (i = 0; i < count; i++) 970 rtvals[i] = VM_PAGER_AGAIN; 971 972 if ((int) m[0]->pindex < 0) { 973 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n", 974 (long)m[0]->pindex, m[0]->dirty); 975 rtvals[0] = VM_PAGER_BAD; 976 return VM_PAGER_BAD; 977 } 978 979 maxsize = count * PAGE_SIZE; 980 ncount = count; 981 982 poffset = IDX_TO_OFF(m[0]->pindex); 983 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 984 if (object->un_pager.vnp.vnp_size > poffset) 985 maxsize = object->un_pager.vnp.vnp_size - poffset; 986 else 987 maxsize = 0; 988 ncount = btoc(maxsize); 989 if (ncount < count) { 990 for (i = ncount; i < count; i++) { 991 rtvals[i] = VM_PAGER_BAD; 992 } 993 } 994 } 995 mtx_unlock(&vm_mtx); 996 997 /* 998 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 999 * rather then a bdwrite() to prevent paging I/O from saturating 1000 * the buffer cache. 1001 */ 1002 ioflags = IO_VMIO; 1003 ioflags |= (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) ? IO_SYNC: IO_ASYNC; 1004 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1005 1006 aiov.iov_base = (caddr_t) 0; 1007 aiov.iov_len = maxsize; 1008 auio.uio_iov = &aiov; 1009 auio.uio_iovcnt = 1; 1010 auio.uio_offset = poffset; 1011 auio.uio_segflg = UIO_NOCOPY; 1012 auio.uio_rw = UIO_WRITE; 1013 auio.uio_resid = maxsize; 1014 auio.uio_procp = (struct proc *) 0; 1015 error = VOP_WRITE(vp, &auio, ioflags, curproc->p_ucred); 1016 mtx_lock(&vm_mtx); 1017 cnt.v_vnodeout++; 1018 cnt.v_vnodepgsout += ncount; 1019 1020 if (error) { 1021 printf("vnode_pager_putpages: I/O error %d\n", error); 1022 } 1023 if (auio.uio_resid) { 1024 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1025 auio.uio_resid, (u_long)m[0]->pindex); 1026 } 1027 for (i = 0; i < ncount; i++) { 1028 rtvals[i] = VM_PAGER_OK; 1029 } 1030 return rtvals[0]; 1031 } 1032 1033 struct vnode * 1034 vnode_pager_lock(object) 1035 vm_object_t object; 1036 { 1037 struct proc *p = curproc; /* XXX */ 1038 1039 mtx_assert(&vm_mtx, MA_NOTOWNED); 1040 mtx_assert(&Giant, MA_OWNED); 1041 mtx_lock(&vm_mtx); 1042 for (; object != NULL; object = object->backing_object) { 1043 if (object->type != OBJT_VNODE) 1044 continue; 1045 if (object->flags & OBJ_DEAD) { 1046 mtx_unlock(&vm_mtx); 1047 return NULL; 1048 } 1049 1050 mtx_unlock(&vm_mtx); 1051 /* XXX; If object->handle can change, we need to cache it. */ 1052 while (vget(object->handle, 1053 LK_NOPAUSE | LK_SHARED | LK_RETRY | LK_CANRECURSE, p)) { 1054 if ((object->flags & OBJ_DEAD) || (object->type != OBJT_VNODE)) 1055 return NULL; 1056 printf("vnode_pager_lock: retrying\n"); 1057 } 1058 return object->handle; 1059 } 1060 mtx_unlock(&vm_mtx); 1061 return NULL; 1062 } 1063