1 /*- 2 * Copyright (c) 1990 University of Utah. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * Copyright (c) 1993, 1994 John S. Dyson 6 * Copyright (c) 1995, David Greenman 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 41 */ 42 43 /* 44 * Page to/from files (vnodes). 45 */ 46 47 /* 48 * TODO: 49 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will 50 * greatly re-simplify the vnode_pager. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/vnode.h> 60 #include <sys/mount.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/vmmeter.h> 64 #include <sys/limits.h> 65 #include <sys/conf.h> 66 #include <sys/sf_buf.h> 67 68 #include <machine/atomic.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_object.h> 72 #include <vm/vm_page.h> 73 #include <vm/vm_pager.h> 74 #include <vm/vm_map.h> 75 #include <vm/vnode_pager.h> 76 #include <vm/vm_extern.h> 77 78 static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, 79 daddr_t *rtaddress, int *run); 80 static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); 81 static int vnode_pager_input_old(vm_object_t object, vm_page_t m); 82 static void vnode_pager_dealloc(vm_object_t); 83 static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int); 84 static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 85 static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); 86 static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t); 87 88 struct pagerops vnodepagerops = { 89 .pgo_alloc = vnode_pager_alloc, 90 .pgo_dealloc = vnode_pager_dealloc, 91 .pgo_getpages = vnode_pager_getpages, 92 .pgo_putpages = vnode_pager_putpages, 93 .pgo_haspage = vnode_pager_haspage, 94 }; 95 96 int vnode_pbuf_freecnt; 97 98 /* Create the VM system backing object for this vnode */ 99 int 100 vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) 101 { 102 vm_object_t object; 103 vm_ooffset_t size = isize; 104 struct vattr va; 105 106 if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) 107 return (0); 108 109 while ((object = vp->v_object) != NULL) { 110 VM_OBJECT_LOCK(object); 111 if (!(object->flags & OBJ_DEAD)) { 112 VM_OBJECT_UNLOCK(object); 113 return (0); 114 } 115 VOP_UNLOCK(vp, 0); 116 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 117 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0); 118 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 119 } 120 121 if (size == 0) { 122 if (vn_isdisk(vp, NULL)) { 123 size = IDX_TO_OFF(INT_MAX); 124 } else { 125 if (VOP_GETATTR(vp, &va, td->td_ucred)) 126 return (0); 127 size = va.va_size; 128 } 129 } 130 131 object = vnode_pager_alloc(vp, size, 0, 0); 132 /* 133 * Dereference the reference we just created. This assumes 134 * that the object is associated with the vp. 135 */ 136 VM_OBJECT_LOCK(object); 137 object->ref_count--; 138 VM_OBJECT_UNLOCK(object); 139 vrele(vp); 140 141 KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); 142 143 return (0); 144 } 145 146 void 147 vnode_destroy_vobject(struct vnode *vp) 148 { 149 struct vm_object *obj; 150 151 obj = vp->v_object; 152 if (obj == NULL) 153 return; 154 ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); 155 VM_OBJECT_LOCK(obj); 156 if (obj->ref_count == 0) { 157 /* 158 * vclean() may be called twice. The first time 159 * removes the primary reference to the object, 160 * the second time goes one further and is a 161 * special-case to terminate the object. 162 * 163 * don't double-terminate the object 164 */ 165 if ((obj->flags & OBJ_DEAD) == 0) 166 vm_object_terminate(obj); 167 else 168 VM_OBJECT_UNLOCK(obj); 169 } else { 170 /* 171 * Woe to the process that tries to page now :-). 172 */ 173 vm_pager_deallocate(obj); 174 VM_OBJECT_UNLOCK(obj); 175 } 176 vp->v_object = NULL; 177 } 178 179 180 /* 181 * Allocate (or lookup) pager for a vnode. 182 * Handle is a vnode pointer. 183 * 184 * MPSAFE 185 */ 186 vm_object_t 187 vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 188 vm_ooffset_t offset) 189 { 190 vm_object_t object; 191 struct vnode *vp; 192 193 /* 194 * Pageout to vnode, no can do yet. 195 */ 196 if (handle == NULL) 197 return (NULL); 198 199 vp = (struct vnode *) handle; 200 201 /* 202 * If the object is being terminated, wait for it to 203 * go away. 204 */ 205 retry: 206 while ((object = vp->v_object) != NULL) { 207 VM_OBJECT_LOCK(object); 208 if ((object->flags & OBJ_DEAD) == 0) 209 break; 210 vm_object_set_flag(object, OBJ_DISCONNECTWNT); 211 msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0); 212 } 213 214 if (vp->v_usecount == 0) 215 panic("vnode_pager_alloc: no vnode reference"); 216 217 if (object == NULL) { 218 /* 219 * Add an object of the appropriate size 220 */ 221 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); 222 223 object->un_pager.vnp.vnp_size = size; 224 225 object->handle = handle; 226 VI_LOCK(vp); 227 if (vp->v_object != NULL) { 228 /* 229 * Object has been created while we were sleeping 230 */ 231 VI_UNLOCK(vp); 232 vm_object_destroy(object); 233 goto retry; 234 } 235 vp->v_object = object; 236 VI_UNLOCK(vp); 237 } else { 238 object->ref_count++; 239 VM_OBJECT_UNLOCK(object); 240 } 241 vref(vp); 242 return (object); 243 } 244 245 /* 246 * The object must be locked. 247 */ 248 static void 249 vnode_pager_dealloc(object) 250 vm_object_t object; 251 { 252 struct vnode *vp = object->handle; 253 254 if (vp == NULL) 255 panic("vnode_pager_dealloc: pager already dealloced"); 256 257 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 258 vm_object_pip_wait(object, "vnpdea"); 259 260 object->handle = NULL; 261 object->type = OBJT_DEAD; 262 if (object->flags & OBJ_DISCONNECTWNT) { 263 vm_object_clear_flag(object, OBJ_DISCONNECTWNT); 264 wakeup(object); 265 } 266 ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); 267 vp->v_object = NULL; 268 vp->v_vflag &= ~VV_TEXT; 269 } 270 271 static boolean_t 272 vnode_pager_haspage(object, pindex, before, after) 273 vm_object_t object; 274 vm_pindex_t pindex; 275 int *before; 276 int *after; 277 { 278 struct vnode *vp = object->handle; 279 daddr_t bn; 280 int err; 281 daddr_t reqblock; 282 int poff; 283 int bsize; 284 int pagesperblock, blocksperpage; 285 int vfslocked; 286 287 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 288 /* 289 * If no vp or vp is doomed or marked transparent to VM, we do not 290 * have the page. 291 */ 292 if (vp == NULL || vp->v_iflag & VI_DOOMED) 293 return FALSE; 294 /* 295 * If the offset is beyond end of file we do 296 * not have the page. 297 */ 298 if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) 299 return FALSE; 300 301 bsize = vp->v_mount->mnt_stat.f_iosize; 302 pagesperblock = bsize / PAGE_SIZE; 303 blocksperpage = 0; 304 if (pagesperblock > 0) { 305 reqblock = pindex / pagesperblock; 306 } else { 307 blocksperpage = (PAGE_SIZE / bsize); 308 reqblock = pindex * blocksperpage; 309 } 310 VM_OBJECT_UNLOCK(object); 311 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 312 err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); 313 VFS_UNLOCK_GIANT(vfslocked); 314 VM_OBJECT_LOCK(object); 315 if (err) 316 return TRUE; 317 if (bn == -1) 318 return FALSE; 319 if (pagesperblock > 0) { 320 poff = pindex - (reqblock * pagesperblock); 321 if (before) { 322 *before *= pagesperblock; 323 *before += poff; 324 } 325 if (after) { 326 int numafter; 327 *after *= pagesperblock; 328 numafter = pagesperblock - (poff + 1); 329 if (IDX_TO_OFF(pindex + numafter) > 330 object->un_pager.vnp.vnp_size) { 331 numafter = 332 OFF_TO_IDX(object->un_pager.vnp.vnp_size) - 333 pindex; 334 } 335 *after += numafter; 336 } 337 } else { 338 if (before) { 339 *before /= blocksperpage; 340 } 341 342 if (after) { 343 *after /= blocksperpage; 344 } 345 } 346 return TRUE; 347 } 348 349 /* 350 * Lets the VM system know about a change in size for a file. 351 * We adjust our own internal size and flush any cached pages in 352 * the associated object that are affected by the size change. 353 * 354 * Note: this routine may be invoked as a result of a pager put 355 * operation (possibly at object termination time), so we must be careful. 356 */ 357 void 358 vnode_pager_setsize(vp, nsize) 359 struct vnode *vp; 360 vm_ooffset_t nsize; 361 { 362 vm_object_t object; 363 vm_page_t m; 364 vm_pindex_t nobjsize; 365 366 if ((object = vp->v_object) == NULL) 367 return; 368 /* ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */ 369 VM_OBJECT_LOCK(object); 370 if (nsize == object->un_pager.vnp.vnp_size) { 371 /* 372 * Hasn't changed size 373 */ 374 VM_OBJECT_UNLOCK(object); 375 return; 376 } 377 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); 378 if (nsize < object->un_pager.vnp.vnp_size) { 379 /* 380 * File has shrunk. Toss any cached pages beyond the new EOF. 381 */ 382 if (nobjsize < object->size) 383 vm_object_page_remove(object, nobjsize, object->size, 384 FALSE); 385 /* 386 * this gets rid of garbage at the end of a page that is now 387 * only partially backed by the vnode. 388 * 389 * XXX for some reason (I don't know yet), if we take a 390 * completely invalid page and mark it partially valid 391 * it can screw up NFS reads, so we don't allow the case. 392 */ 393 if ((nsize & PAGE_MASK) && 394 (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && 395 m->valid != 0) { 396 int base = (int)nsize & PAGE_MASK; 397 int size = PAGE_SIZE - base; 398 399 /* 400 * Clear out partial-page garbage in case 401 * the page has been mapped. 402 */ 403 pmap_zero_page_area(m, base, size); 404 405 /* 406 * Update the valid bits to reflect the blocks that 407 * have been zeroed. Some of these valid bits may 408 * have already been set. 409 */ 410 vm_page_set_valid(m, base, size); 411 412 /* 413 * Round "base" to the next block boundary so that the 414 * dirty bit for a partially zeroed block is not 415 * cleared. 416 */ 417 base = roundup2(base, DEV_BSIZE); 418 419 /* 420 * Clear out partial-page dirty bits. 421 * 422 * note that we do not clear out the valid 423 * bits. This would prevent bogus_page 424 * replacement from working properly. 425 */ 426 vm_page_lock_queues(); 427 vm_page_clear_dirty(m, base, PAGE_SIZE - base); 428 vm_page_unlock_queues(); 429 } else if ((nsize & PAGE_MASK) && 430 __predict_false(object->cache != NULL)) { 431 vm_page_cache_free(object, OFF_TO_IDX(nsize), 432 nobjsize); 433 } 434 } 435 object->un_pager.vnp.vnp_size = nsize; 436 object->size = nobjsize; 437 VM_OBJECT_UNLOCK(object); 438 } 439 440 /* 441 * calculate the linear (byte) disk address of specified virtual 442 * file address 443 */ 444 static int 445 vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, 446 int *run) 447 { 448 int bsize; 449 int err; 450 daddr_t vblock; 451 daddr_t voffset; 452 453 if (address < 0) 454 return -1; 455 456 if (vp->v_iflag & VI_DOOMED) 457 return -1; 458 459 bsize = vp->v_mount->mnt_stat.f_iosize; 460 vblock = address / bsize; 461 voffset = address % bsize; 462 463 err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); 464 if (err == 0) { 465 if (*rtaddress != -1) 466 *rtaddress += voffset / DEV_BSIZE; 467 if (run) { 468 *run += 1; 469 *run *= bsize/PAGE_SIZE; 470 *run -= voffset/PAGE_SIZE; 471 } 472 } 473 474 return (err); 475 } 476 477 /* 478 * small block filesystem vnode pager input 479 */ 480 static int 481 vnode_pager_input_smlfs(object, m) 482 vm_object_t object; 483 vm_page_t m; 484 { 485 int bits, i; 486 struct vnode *vp; 487 struct bufobj *bo; 488 struct buf *bp; 489 struct sf_buf *sf; 490 daddr_t fileaddr; 491 vm_offset_t bsize; 492 int error = 0; 493 494 vp = object->handle; 495 if (vp->v_iflag & VI_DOOMED) 496 return VM_PAGER_BAD; 497 498 bsize = vp->v_mount->mnt_stat.f_iosize; 499 500 VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); 501 502 sf = sf_buf_alloc(m, 0); 503 504 for (i = 0; i < PAGE_SIZE / bsize; i++) { 505 vm_ooffset_t address; 506 507 bits = vm_page_bits(i * bsize, bsize); 508 if (m->valid & bits) 509 continue; 510 511 address = IDX_TO_OFF(m->pindex) + i * bsize; 512 if (address >= object->un_pager.vnp.vnp_size) { 513 fileaddr = -1; 514 } else { 515 error = vnode_pager_addr(vp, address, &fileaddr, NULL); 516 if (error) 517 break; 518 } 519 if (fileaddr != -1) { 520 bp = getpbuf(&vnode_pbuf_freecnt); 521 522 /* build a minimal buffer header */ 523 bp->b_iocmd = BIO_READ; 524 bp->b_iodone = bdone; 525 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 526 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 527 bp->b_rcred = crhold(curthread->td_ucred); 528 bp->b_wcred = crhold(curthread->td_ucred); 529 bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; 530 bp->b_blkno = fileaddr; 531 pbgetbo(bo, bp); 532 bp->b_bcount = bsize; 533 bp->b_bufsize = bsize; 534 bp->b_runningbufspace = bp->b_bufsize; 535 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 536 537 /* do the input */ 538 bp->b_iooffset = dbtob(bp->b_blkno); 539 bstrategy(bp); 540 541 bwait(bp, PVM, "vnsrd"); 542 543 if ((bp->b_ioflags & BIO_ERROR) != 0) 544 error = EIO; 545 546 /* 547 * free the buffer header back to the swap buffer pool 548 */ 549 pbrelbo(bp); 550 relpbuf(bp, &vnode_pbuf_freecnt); 551 if (error) 552 break; 553 } else 554 bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); 555 KASSERT((m->dirty & bits) == 0, 556 ("vnode_pager_input_smlfs: page %p is dirty", m)); 557 VM_OBJECT_LOCK(object); 558 m->valid |= bits; 559 VM_OBJECT_UNLOCK(object); 560 } 561 sf_buf_free(sf); 562 if (error) { 563 return VM_PAGER_ERROR; 564 } 565 return VM_PAGER_OK; 566 } 567 568 /* 569 * old style vnode pager input routine 570 */ 571 static int 572 vnode_pager_input_old(object, m) 573 vm_object_t object; 574 vm_page_t m; 575 { 576 struct uio auio; 577 struct iovec aiov; 578 int error; 579 int size; 580 struct sf_buf *sf; 581 struct vnode *vp; 582 583 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 584 error = 0; 585 586 /* 587 * Return failure if beyond current EOF 588 */ 589 if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { 590 return VM_PAGER_BAD; 591 } else { 592 size = PAGE_SIZE; 593 if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) 594 size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); 595 vp = object->handle; 596 VM_OBJECT_UNLOCK(object); 597 598 /* 599 * Allocate a kernel virtual address and initialize so that 600 * we can use VOP_READ/WRITE routines. 601 */ 602 sf = sf_buf_alloc(m, 0); 603 604 aiov.iov_base = (caddr_t)sf_buf_kva(sf); 605 aiov.iov_len = size; 606 auio.uio_iov = &aiov; 607 auio.uio_iovcnt = 1; 608 auio.uio_offset = IDX_TO_OFF(m->pindex); 609 auio.uio_segflg = UIO_SYSSPACE; 610 auio.uio_rw = UIO_READ; 611 auio.uio_resid = size; 612 auio.uio_td = curthread; 613 614 error = VOP_READ(vp, &auio, 0, curthread->td_ucred); 615 if (!error) { 616 int count = size - auio.uio_resid; 617 618 if (count == 0) 619 error = EINVAL; 620 else if (count != PAGE_SIZE) 621 bzero((caddr_t)sf_buf_kva(sf) + count, 622 PAGE_SIZE - count); 623 } 624 sf_buf_free(sf); 625 626 VM_OBJECT_LOCK(object); 627 } 628 KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); 629 if (!error) 630 m->valid = VM_PAGE_BITS_ALL; 631 return error ? VM_PAGER_ERROR : VM_PAGER_OK; 632 } 633 634 /* 635 * generic vnode pager input routine 636 */ 637 638 /* 639 * Local media VFS's that do not implement their own VOP_GETPAGES 640 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() 641 * to implement the previous behaviour. 642 * 643 * All other FS's should use the bypass to get to the local media 644 * backing vp's VOP_GETPAGES. 645 */ 646 static int 647 vnode_pager_getpages(object, m, count, reqpage) 648 vm_object_t object; 649 vm_page_t *m; 650 int count; 651 int reqpage; 652 { 653 int rtval; 654 struct vnode *vp; 655 int bytes = count * PAGE_SIZE; 656 int vfslocked; 657 658 vp = object->handle; 659 VM_OBJECT_UNLOCK(object); 660 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 661 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0); 662 KASSERT(rtval != EOPNOTSUPP, 663 ("vnode_pager: FS getpages not implemented\n")); 664 VFS_UNLOCK_GIANT(vfslocked); 665 VM_OBJECT_LOCK(object); 666 return rtval; 667 } 668 669 /* 670 * This is now called from local media FS's to operate against their 671 * own vnodes if they fail to implement VOP_GETPAGES. 672 */ 673 int 674 vnode_pager_generic_getpages(vp, m, bytecount, reqpage) 675 struct vnode *vp; 676 vm_page_t *m; 677 int bytecount; 678 int reqpage; 679 { 680 vm_object_t object; 681 vm_offset_t kva; 682 off_t foff, tfoff, nextoff; 683 int i, j, size, bsize, first; 684 daddr_t firstaddr, reqblock; 685 struct bufobj *bo; 686 int runpg; 687 int runend; 688 struct buf *bp; 689 int count; 690 int error; 691 692 object = vp->v_object; 693 count = bytecount / PAGE_SIZE; 694 695 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, 696 ("vnode_pager_generic_getpages does not support devices")); 697 if (vp->v_iflag & VI_DOOMED) 698 return VM_PAGER_BAD; 699 700 bsize = vp->v_mount->mnt_stat.f_iosize; 701 702 /* get the UNDERLYING device for the file with VOP_BMAP() */ 703 704 /* 705 * originally, we did not check for an error return value -- assuming 706 * an fs always has a bmap entry point -- that assumption is wrong!!! 707 */ 708 foff = IDX_TO_OFF(m[reqpage]->pindex); 709 710 /* 711 * if we can't bmap, use old VOP code 712 */ 713 error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL); 714 if (error == EOPNOTSUPP) { 715 VM_OBJECT_LOCK(object); 716 vm_page_lock_queues(); 717 for (i = 0; i < count; i++) 718 if (i != reqpage) 719 vm_page_free(m[i]); 720 vm_page_unlock_queues(); 721 PCPU_INC(cnt.v_vnodein); 722 PCPU_INC(cnt.v_vnodepgsin); 723 error = vnode_pager_input_old(object, m[reqpage]); 724 VM_OBJECT_UNLOCK(object); 725 return (error); 726 } else if (error != 0) { 727 VM_OBJECT_LOCK(object); 728 vm_page_lock_queues(); 729 for (i = 0; i < count; i++) 730 if (i != reqpage) 731 vm_page_free(m[i]); 732 vm_page_unlock_queues(); 733 VM_OBJECT_UNLOCK(object); 734 return (VM_PAGER_ERROR); 735 736 /* 737 * if the blocksize is smaller than a page size, then use 738 * special small filesystem code. NFS sometimes has a small 739 * blocksize, but it can handle large reads itself. 740 */ 741 } else if ((PAGE_SIZE / bsize) > 1 && 742 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) { 743 VM_OBJECT_LOCK(object); 744 vm_page_lock_queues(); 745 for (i = 0; i < count; i++) 746 if (i != reqpage) 747 vm_page_free(m[i]); 748 vm_page_unlock_queues(); 749 VM_OBJECT_UNLOCK(object); 750 PCPU_INC(cnt.v_vnodein); 751 PCPU_INC(cnt.v_vnodepgsin); 752 return vnode_pager_input_smlfs(object, m[reqpage]); 753 } 754 755 /* 756 * If we have a completely valid page available to us, we can 757 * clean up and return. Otherwise we have to re-read the 758 * media. 759 */ 760 VM_OBJECT_LOCK(object); 761 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) { 762 vm_page_lock_queues(); 763 for (i = 0; i < count; i++) 764 if (i != reqpage) 765 vm_page_free(m[i]); 766 vm_page_unlock_queues(); 767 VM_OBJECT_UNLOCK(object); 768 return VM_PAGER_OK; 769 } else if (reqblock == -1) { 770 pmap_zero_page(m[reqpage]); 771 KASSERT(m[reqpage]->dirty == 0, 772 ("vnode_pager_generic_getpages: page %p is dirty", m)); 773 m[reqpage]->valid = VM_PAGE_BITS_ALL; 774 vm_page_lock_queues(); 775 for (i = 0; i < count; i++) 776 if (i != reqpage) 777 vm_page_free(m[i]); 778 vm_page_unlock_queues(); 779 VM_OBJECT_UNLOCK(object); 780 return (VM_PAGER_OK); 781 } 782 m[reqpage]->valid = 0; 783 VM_OBJECT_UNLOCK(object); 784 785 /* 786 * here on direct device I/O 787 */ 788 firstaddr = -1; 789 790 /* 791 * calculate the run that includes the required page 792 */ 793 for (first = 0, i = 0; i < count; i = runend) { 794 if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr, 795 &runpg) != 0) { 796 VM_OBJECT_LOCK(object); 797 vm_page_lock_queues(); 798 for (; i < count; i++) 799 if (i != reqpage) 800 vm_page_free(m[i]); 801 vm_page_unlock_queues(); 802 VM_OBJECT_UNLOCK(object); 803 return (VM_PAGER_ERROR); 804 } 805 if (firstaddr == -1) { 806 VM_OBJECT_LOCK(object); 807 if (i == reqpage && foff < object->un_pager.vnp.vnp_size) { 808 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx", 809 (intmax_t)firstaddr, (uintmax_t)(foff >> 32), 810 (uintmax_t)foff, 811 (uintmax_t) 812 (object->un_pager.vnp.vnp_size >> 32), 813 (uintmax_t)object->un_pager.vnp.vnp_size); 814 } 815 vm_page_lock_queues(); 816 vm_page_free(m[i]); 817 vm_page_unlock_queues(); 818 VM_OBJECT_UNLOCK(object); 819 runend = i + 1; 820 first = runend; 821 continue; 822 } 823 runend = i + runpg; 824 if (runend <= reqpage) { 825 VM_OBJECT_LOCK(object); 826 vm_page_lock_queues(); 827 for (j = i; j < runend; j++) 828 vm_page_free(m[j]); 829 vm_page_unlock_queues(); 830 VM_OBJECT_UNLOCK(object); 831 } else { 832 if (runpg < (count - first)) { 833 VM_OBJECT_LOCK(object); 834 vm_page_lock_queues(); 835 for (i = first + runpg; i < count; i++) 836 vm_page_free(m[i]); 837 vm_page_unlock_queues(); 838 VM_OBJECT_UNLOCK(object); 839 count = first + runpg; 840 } 841 break; 842 } 843 first = runend; 844 } 845 846 /* 847 * the first and last page have been calculated now, move input pages 848 * to be zero based... 849 */ 850 if (first != 0) { 851 m += first; 852 count -= first; 853 reqpage -= first; 854 } 855 856 /* 857 * calculate the file virtual address for the transfer 858 */ 859 foff = IDX_TO_OFF(m[0]->pindex); 860 861 /* 862 * calculate the size of the transfer 863 */ 864 size = count * PAGE_SIZE; 865 KASSERT(count > 0, ("zero count")); 866 if ((foff + size) > object->un_pager.vnp.vnp_size) 867 size = object->un_pager.vnp.vnp_size - foff; 868 KASSERT(size > 0, ("zero size")); 869 870 /* 871 * round up physical size for real devices. 872 */ 873 if (1) { 874 int secmask = bo->bo_bsize - 1; 875 KASSERT(secmask < PAGE_SIZE && secmask > 0, 876 ("vnode_pager_generic_getpages: sector size %d too large", 877 secmask + 1)); 878 size = (size + secmask) & ~secmask; 879 } 880 881 bp = getpbuf(&vnode_pbuf_freecnt); 882 kva = (vm_offset_t) bp->b_data; 883 884 /* 885 * and map the pages to be read into the kva 886 */ 887 pmap_qenter(kva, m, count); 888 889 /* build a minimal buffer header */ 890 bp->b_iocmd = BIO_READ; 891 bp->b_iodone = bdone; 892 KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); 893 KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); 894 bp->b_rcred = crhold(curthread->td_ucred); 895 bp->b_wcred = crhold(curthread->td_ucred); 896 bp->b_blkno = firstaddr; 897 pbgetbo(bo, bp); 898 bp->b_bcount = size; 899 bp->b_bufsize = size; 900 bp->b_runningbufspace = bp->b_bufsize; 901 atomic_add_long(&runningbufspace, bp->b_runningbufspace); 902 903 PCPU_INC(cnt.v_vnodein); 904 PCPU_ADD(cnt.v_vnodepgsin, count); 905 906 /* do the input */ 907 bp->b_iooffset = dbtob(bp->b_blkno); 908 bstrategy(bp); 909 910 bwait(bp, PVM, "vnread"); 911 912 if ((bp->b_ioflags & BIO_ERROR) != 0) 913 error = EIO; 914 915 if (!error) { 916 if (size != count * PAGE_SIZE) 917 bzero((caddr_t) kva + size, PAGE_SIZE * count - size); 918 } 919 pmap_qremove(kva, count); 920 921 /* 922 * free the buffer header back to the swap buffer pool 923 */ 924 pbrelbo(bp); 925 relpbuf(bp, &vnode_pbuf_freecnt); 926 927 VM_OBJECT_LOCK(object); 928 vm_page_lock_queues(); 929 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) { 930 vm_page_t mt; 931 932 nextoff = tfoff + PAGE_SIZE; 933 mt = m[i]; 934 935 if (nextoff <= object->un_pager.vnp.vnp_size) { 936 /* 937 * Read filled up entire page. 938 */ 939 mt->valid = VM_PAGE_BITS_ALL; 940 KASSERT(mt->dirty == 0, 941 ("vnode_pager_generic_getpages: page %p is dirty", 942 mt)); 943 KASSERT(!pmap_page_is_mapped(mt), 944 ("vnode_pager_generic_getpages: page %p is mapped", 945 mt)); 946 } else { 947 /* 948 * Read did not fill up entire page. 949 * 950 * Currently we do not set the entire page valid, 951 * we just try to clear the piece that we couldn't 952 * read. 953 */ 954 vm_page_set_valid(mt, 0, 955 object->un_pager.vnp.vnp_size - tfoff); 956 KASSERT((mt->dirty & vm_page_bits(0, 957 object->un_pager.vnp.vnp_size - tfoff)) == 0, 958 ("vnode_pager_generic_getpages: page %p is dirty", 959 mt)); 960 } 961 962 if (i != reqpage) { 963 964 /* 965 * whether or not to leave the page activated is up in 966 * the air, but we should put the page on a page queue 967 * somewhere. (it already is in the object). Result: 968 * It appears that empirical results show that 969 * deactivating pages is best. 970 */ 971 972 /* 973 * just in case someone was asking for this page we 974 * now tell them that it is ok to use 975 */ 976 if (!error) { 977 if (mt->oflags & VPO_WANTED) 978 vm_page_activate(mt); 979 else 980 vm_page_deactivate(mt); 981 vm_page_wakeup(mt); 982 } else { 983 vm_page_free(mt); 984 } 985 } 986 } 987 vm_page_unlock_queues(); 988 VM_OBJECT_UNLOCK(object); 989 if (error) { 990 printf("vnode_pager_getpages: I/O read error\n"); 991 } 992 return (error ? VM_PAGER_ERROR : VM_PAGER_OK); 993 } 994 995 /* 996 * EOPNOTSUPP is no longer legal. For local media VFS's that do not 997 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to 998 * vnode_pager_generic_putpages() to implement the previous behaviour. 999 * 1000 * All other FS's should use the bypass to get to the local media 1001 * backing vp's VOP_PUTPAGES. 1002 */ 1003 static void 1004 vnode_pager_putpages(object, m, count, sync, rtvals) 1005 vm_object_t object; 1006 vm_page_t *m; 1007 int count; 1008 boolean_t sync; 1009 int *rtvals; 1010 { 1011 int rtval; 1012 struct vnode *vp; 1013 struct mount *mp; 1014 int bytes = count * PAGE_SIZE; 1015 1016 /* 1017 * Force synchronous operation if we are extremely low on memory 1018 * to prevent a low-memory deadlock. VOP operations often need to 1019 * allocate more memory to initiate the I/O ( i.e. do a BMAP 1020 * operation ). The swapper handles the case by limiting the amount 1021 * of asynchronous I/O, but that sort of solution doesn't scale well 1022 * for the vnode pager without a lot of work. 1023 * 1024 * Also, the backing vnode's iodone routine may not wake the pageout 1025 * daemon up. This should be probably be addressed XXX. 1026 */ 1027 1028 if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min) 1029 sync |= OBJPC_SYNC; 1030 1031 /* 1032 * Call device-specific putpages function 1033 */ 1034 vp = object->handle; 1035 VM_OBJECT_UNLOCK(object); 1036 if (vp->v_type != VREG) 1037 mp = NULL; 1038 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0); 1039 KASSERT(rtval != EOPNOTSUPP, 1040 ("vnode_pager: stale FS putpages\n")); 1041 VM_OBJECT_LOCK(object); 1042 } 1043 1044 1045 /* 1046 * This is now called from local media FS's to operate against their 1047 * own vnodes if they fail to implement VOP_PUTPAGES. 1048 * 1049 * This is typically called indirectly via the pageout daemon and 1050 * clustering has already typically occured, so in general we ask the 1051 * underlying filesystem to write the data out asynchronously rather 1052 * then delayed. 1053 */ 1054 int 1055 vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals) 1056 struct vnode *vp; 1057 vm_page_t *m; 1058 int bytecount; 1059 int flags; 1060 int *rtvals; 1061 { 1062 int i; 1063 vm_object_t object; 1064 int count; 1065 1066 int maxsize, ncount; 1067 vm_ooffset_t poffset; 1068 struct uio auio; 1069 struct iovec aiov; 1070 int error; 1071 int ioflags; 1072 int ppscheck = 0; 1073 static struct timeval lastfail; 1074 static int curfail; 1075 1076 object = vp->v_object; 1077 count = bytecount / PAGE_SIZE; 1078 1079 for (i = 0; i < count; i++) 1080 rtvals[i] = VM_PAGER_AGAIN; 1081 1082 if ((int64_t)m[0]->pindex < 0) { 1083 printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", 1084 (long)m[0]->pindex, (u_long)m[0]->dirty); 1085 rtvals[0] = VM_PAGER_BAD; 1086 return VM_PAGER_BAD; 1087 } 1088 1089 maxsize = count * PAGE_SIZE; 1090 ncount = count; 1091 1092 poffset = IDX_TO_OFF(m[0]->pindex); 1093 1094 /* 1095 * If the page-aligned write is larger then the actual file we 1096 * have to invalidate pages occuring beyond the file EOF. However, 1097 * there is an edge case where a file may not be page-aligned where 1098 * the last page is partially invalid. In this case the filesystem 1099 * may not properly clear the dirty bits for the entire page (which 1100 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). 1101 * With the page locked we are free to fix-up the dirty bits here. 1102 * 1103 * We do not under any circumstances truncate the valid bits, as 1104 * this will screw up bogus page replacement. 1105 */ 1106 if (maxsize + poffset > object->un_pager.vnp.vnp_size) { 1107 if (object->un_pager.vnp.vnp_size > poffset) { 1108 int pgoff; 1109 1110 maxsize = object->un_pager.vnp.vnp_size - poffset; 1111 ncount = btoc(maxsize); 1112 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { 1113 vm_page_lock_queues(); 1114 vm_page_clear_dirty(m[ncount - 1], pgoff, 1115 PAGE_SIZE - pgoff); 1116 vm_page_unlock_queues(); 1117 } 1118 } else { 1119 maxsize = 0; 1120 ncount = 0; 1121 } 1122 if (ncount < count) { 1123 for (i = ncount; i < count; i++) { 1124 rtvals[i] = VM_PAGER_BAD; 1125 } 1126 } 1127 } 1128 1129 /* 1130 * pageouts are already clustered, use IO_ASYNC t o force a bawrite() 1131 * rather then a bdwrite() to prevent paging I/O from saturating 1132 * the buffer cache. Dummy-up the sequential heuristic to cause 1133 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, 1134 * the system decides how to cluster. 1135 */ 1136 ioflags = IO_VMIO; 1137 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) 1138 ioflags |= IO_SYNC; 1139 else if ((flags & VM_PAGER_CLUSTER_OK) == 0) 1140 ioflags |= IO_ASYNC; 1141 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; 1142 ioflags |= IO_SEQMAX << IO_SEQSHIFT; 1143 1144 aiov.iov_base = (caddr_t) 0; 1145 aiov.iov_len = maxsize; 1146 auio.uio_iov = &aiov; 1147 auio.uio_iovcnt = 1; 1148 auio.uio_offset = poffset; 1149 auio.uio_segflg = UIO_NOCOPY; 1150 auio.uio_rw = UIO_WRITE; 1151 auio.uio_resid = maxsize; 1152 auio.uio_td = (struct thread *) 0; 1153 error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); 1154 PCPU_INC(cnt.v_vnodeout); 1155 PCPU_ADD(cnt.v_vnodepgsout, ncount); 1156 1157 if (error) { 1158 if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1))) 1159 printf("vnode_pager_putpages: I/O error %d\n", error); 1160 } 1161 if (auio.uio_resid) { 1162 if (ppscheck || ppsratecheck(&lastfail, &curfail, 1)) 1163 printf("vnode_pager_putpages: residual I/O %d at %lu\n", 1164 auio.uio_resid, (u_long)m[0]->pindex); 1165 } 1166 for (i = 0; i < ncount; i++) { 1167 rtvals[i] = VM_PAGER_OK; 1168 } 1169 return rtvals[0]; 1170 } 1171