xref: /freebsd/sys/vm/vnode_pager.c (revision 0c43d89a0d8e976ca494d4837f4c1f3734d2c300)
1 /*
2  * Copyright (c) 1990 University of Utah.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  * Copyright (c) 1993,1994 John S. Dyson
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
40  *	$Id: vnode_pager.c,v 1.5 1994/08/06 10:25:50 davidg Exp $
41  */
42 
43 /*
44  * Page to/from files (vnodes).
45  *
46  * TODO:
47  *	pageouts
48  *	fix credential use (uses current process credentials now)
49  */
50 
51 /*
52  * MODIFICATIONS:
53  * John S. Dyson  08 Dec 93
54  *
55  * This file in conjunction with some vm_fault mods, eliminate the performance
56  * advantage for using the buffer cache and minimize memory copies.
57  *
58  * 1) Supports multiple - block reads
59  * 2) Bypasses buffer cache for reads
60  *
61  * TODO:
62  *
63  * 1) Totally bypass buffer cache for reads
64  *    (Currently will still sometimes use buffer cache for reads)
65  * 2) Bypass buffer cache for writes
66  *    (Code does not support it, but mods are simple)
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/malloc.h>
73 #include <sys/vnode.h>
74 #include <sys/uio.h>
75 #include <sys/mount.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_page.h>
79 #include <vm/vnode_pager.h>
80 
81 #include <sys/buf.h>
82 #include <miscfs/specfs/specdev.h>
83 
84 int     vnode_pager_putmulti();
85 
86 void    vnode_pager_init();
87 vm_pager_t vnode_pager_alloc(caddr_t, vm_offset_t, vm_prot_t, vm_offset_t);
88 void    vnode_pager_dealloc();
89 int     vnode_pager_getpage();
90 int     vnode_pager_getmulti();
91 int     vnode_pager_putpage();
92 boolean_t vnode_pager_haspage();
93 
94 struct pagerops vnodepagerops = {
95 	vnode_pager_init,
96 	vnode_pager_alloc,
97 	vnode_pager_dealloc,
98 	vnode_pager_getpage,
99 	vnode_pager_getmulti,
100 	vnode_pager_putpage,
101 	vnode_pager_putmulti,
102 	vnode_pager_haspage
103 };
104 
105 
106 
107 static int vnode_pager_input(vn_pager_t vnp, vm_page_t * m, int count, int reqpage);
108 static int vnode_pager_output(vn_pager_t vnp, vm_page_t * m, int count, int *rtvals);
109 struct buf * getpbuf();
110 void relpbuf(struct buf * bp);
111 
112 extern vm_map_t pager_map;
113 
114 struct pagerlst vnode_pager_list;	/* list of managed vnodes */
115 
116 #define MAXBP (PAGE_SIZE/DEV_BSIZE);
117 
118 void
119 vnode_pager_init()
120 {
121 	TAILQ_INIT(&vnode_pager_list);
122 }
123 
124 /*
125  * Allocate (or lookup) pager for a vnode.
126  * Handle is a vnode pointer.
127  */
128 vm_pager_t
129 vnode_pager_alloc(handle, size, prot, offset)
130 	caddr_t handle;
131 	vm_size_t size;
132 	vm_prot_t prot;
133 	vm_offset_t offset;
134 {
135 	register vm_pager_t pager;
136 	register vn_pager_t vnp;
137 	vm_object_t object;
138 	struct vattr vattr;
139 	struct vnode *vp;
140 	struct proc *p = curproc;	/* XXX */
141 
142 	/*
143 	 * Pageout to vnode, no can do yet.
144 	 */
145 	if (handle == NULL)
146 		return (NULL);
147 
148 	/*
149 	 * Vnodes keep a pointer to any associated pager so no need to lookup
150 	 * with vm_pager_lookup.
151 	 */
152 	vp = (struct vnode *) handle;
153 	pager = (vm_pager_t) vp->v_vmdata;
154 	if (pager == NULL) {
155 
156 		/*
157 		 * Allocate pager structures
158 		 */
159 		pager = (vm_pager_t) malloc(sizeof *pager, M_VMPAGER, M_WAITOK);
160 		if (pager == NULL)
161 			return (NULL);
162 		vnp = (vn_pager_t) malloc(sizeof *vnp, M_VMPGDATA, M_WAITOK);
163 		if (vnp == NULL) {
164 			free((caddr_t) pager, M_VMPAGER);
165 			return (NULL);
166 		}
167 
168 		/*
169 		 * And an object of the appropriate size
170 		 */
171 		if (VOP_GETATTR(vp, &vattr, p->p_ucred, p) == 0) {
172 			object = vm_object_allocate(round_page(vattr.va_size));
173 			vm_object_enter(object, pager);
174 			vm_object_setpager(object, pager, 0, TRUE);
175 		} else {
176 			free((caddr_t) vnp, M_VMPGDATA);
177 			free((caddr_t) pager, M_VMPAGER);
178 			return (NULL);
179 		}
180 
181 		/*
182 		 * Hold a reference to the vnode and initialize pager data.
183 		 */
184 		VREF(vp);
185 		vnp->vnp_flags = 0;
186 		vnp->vnp_vp = vp;
187 		vnp->vnp_size = vattr.va_size;
188 
189 		TAILQ_INSERT_TAIL(&vnode_pager_list, pager, pg_list);
190 		pager->pg_handle = handle;
191 		pager->pg_type = PG_VNODE;
192 		pager->pg_ops = &vnodepagerops;
193 		pager->pg_data = (caddr_t) vnp;
194 		vp->v_vmdata = (caddr_t) pager;
195 	} else {
196 
197 		/*
198 		 * vm_object_lookup() will remove the object from the cache if
199 		 * found and also gain a reference to the object.
200 		 */
201 		object = vm_object_lookup(pager);
202 	}
203 	return (pager);
204 }
205 
206 void
207 vnode_pager_dealloc(pager)
208 	vm_pager_t pager;
209 {
210 	register vn_pager_t vnp = (vn_pager_t) pager->pg_data;
211 	register struct vnode *vp;
212 	struct proc *p = curproc;	/* XXX */
213 
214 	if (vp = vnp->vnp_vp) {
215 		vp->v_vmdata = NULL;
216 		vp->v_flag &= ~VTEXT;
217 #if 0
218 		/* can hang if done at reboot on NFS FS */
219 		(void) VOP_FSYNC(vp, p->p_ucred, p);
220 #endif
221 		vrele(vp);
222 	}
223 	TAILQ_REMOVE(&vnode_pager_list, pager, pg_list);
224 	free((caddr_t) vnp, M_VMPGDATA);
225 	free((caddr_t) pager, M_VMPAGER);
226 }
227 
228 int
229 vnode_pager_getmulti(pager, m, count, reqpage, sync)
230 	vm_pager_t pager;
231 	vm_page_t *m;
232 	int     count;
233 	int     reqpage;
234 	boolean_t sync;
235 {
236 
237 	return vnode_pager_input((vn_pager_t) pager->pg_data, m, count, reqpage);
238 }
239 
240 int
241 vnode_pager_getpage(pager, m, sync)
242 	vm_pager_t pager;
243 	vm_page_t m;
244 	boolean_t sync;
245 {
246 
247 	int     err;
248 	vm_page_t marray[1];
249 
250 	if (pager == NULL)
251 		return FALSE;
252 	marray[0] = m;
253 
254 	return vnode_pager_input((vn_pager_t) pager->pg_data, marray, 1, 0);
255 }
256 
257 boolean_t
258 vnode_pager_putpage(pager, m, sync)
259 	vm_pager_t pager;
260 	vm_page_t m;
261 	boolean_t sync;
262 {
263 	int     err;
264 	vm_page_t marray[1];
265 	int     rtvals[1];
266 
267 	if (pager == NULL)
268 		return FALSE;
269 	marray[0] = m;
270 	vnode_pager_output((vn_pager_t) pager->pg_data, marray, 1, rtvals);
271 	return rtvals[0];
272 }
273 
274 int
275 vnode_pager_putmulti(pager, m, c, sync, rtvals)
276 	vm_pager_t pager;
277 	vm_page_t *m;
278 	int     c;
279 	boolean_t sync;
280 	int    *rtvals;
281 {
282 	return vnode_pager_output((vn_pager_t) pager->pg_data, m, c, rtvals);
283 }
284 
285 
286 boolean_t
287 vnode_pager_haspage(pager, offset)
288 	vm_pager_t pager;
289 	vm_offset_t offset;
290 {
291 	register vn_pager_t vnp = (vn_pager_t) pager->pg_data;
292 	daddr_t bn;
293 	int     err;
294 
295 	/*
296 	 * Offset beyond end of file, do not have the page
297 	 */
298 	if (offset >= vnp->vnp_size) {
299 		return (FALSE);
300 	}
301 
302 	/*
303 	 * Read the index to find the disk block to read from.  If there is no
304 	 * block, report that we don't have this data.
305 	 *
306 	 * Assumes that the vnode has whole page or nothing.
307 	 */
308 	err = VOP_BMAP(vnp->vnp_vp,
309 		       offset / vnp->vnp_vp->v_mount->mnt_stat.f_iosize,
310 		       (struct vnode **) 0, &bn, 0);
311 	if (err) {
312 		return (TRUE);
313 	}
314 	return ((long) bn < 0 ? FALSE : TRUE);
315 }
316 
317 /*
318  * Lets the VM system know about a change in size for a file.
319  * If this vnode is mapped into some address space (i.e. we have a pager
320  * for it) we adjust our own internal size and flush any cached pages in
321  * the associated object that are affected by the size change.
322  *
323  * Note: this routine may be invoked as a result of a pager put
324  * operation (possibly at object termination time), so we must be careful.
325  */
326 void
327 vnode_pager_setsize(vp, nsize)
328 	struct vnode *vp;
329 	u_long  nsize;
330 {
331 	register vn_pager_t vnp;
332 	register vm_object_t object;
333 	vm_pager_t pager;
334 
335 	/*
336 	 * Not a mapped vnode
337 	 */
338 	if (vp == NULL || vp->v_type != VREG || vp->v_vmdata == NULL)
339 		return;
340 
341 	/*
342 	 * Hasn't changed size
343 	 */
344 	pager = (vm_pager_t) vp->v_vmdata;
345 	vnp = (vn_pager_t) pager->pg_data;
346 	if (nsize == vnp->vnp_size)
347 		return;
348 
349 	/*
350 	 * No object. This can happen during object termination since
351 	 * vm_object_page_clean is called after the object has been removed
352 	 * from the hash table, and clean may cause vnode write operations
353 	 * which can wind up back here.
354 	 */
355 	object = vm_object_lookup(pager);
356 	if (object == NULL)
357 		return;
358 
359 	/*
360 	 * File has shrunk. Toss any cached pages beyond the new EOF.
361 	 */
362 	if (nsize < vnp->vnp_size) {
363 		vm_object_lock(object);
364 		vm_object_page_remove(object,
365 			     round_page((vm_offset_t) nsize), vnp->vnp_size);
366 		vm_object_unlock(object);
367 
368 		/*
369 		 * this gets rid of garbage at the end of a page that is now
370 		 * only partially backed by the vnode...
371 		 */
372 		if (nsize & PAGE_MASK) {
373 			vm_offset_t kva;
374 			vm_page_t m;
375 
376 			m = vm_page_lookup(object, trunc_page((vm_offset_t) nsize));
377 			if (m) {
378 				kva = vm_pager_map_page(m);
379 				bzero((caddr_t) kva + (nsize & PAGE_MASK),
380 				      round_page(nsize) - nsize);
381 				vm_pager_unmap_page(kva);
382 			}
383 		}
384 	} else {
385 
386 		/*
387 		 * this allows the filesystem and VM cache to stay in sync if
388 		 * the VM page hasn't been modified...  After the page is
389 		 * removed -- it will be faulted back in from the filesystem
390 		 * cache.
391 		 */
392 		if (vnp->vnp_size & PAGE_MASK) {
393 			vm_page_t m;
394 
395 			m = vm_page_lookup(object, trunc_page(vnp->vnp_size));
396 			if (m && (m->flags & PG_CLEAN)) {
397 				vm_object_lock(object);
398 				vm_object_page_remove(object,
399 					       vnp->vnp_size, vnp->vnp_size);
400 				vm_object_unlock(object);
401 			}
402 		}
403 	}
404 	vnp->vnp_size = (vm_offset_t) nsize;
405 	object->size = round_page(nsize);
406 
407 	vm_object_deallocate(object);
408 }
409 
410 void
411 vnode_pager_umount(mp)
412 	register struct mount *mp;
413 {
414 	register vm_pager_t pager, npager;
415 	struct vnode *vp;
416 
417 	pager = vnode_pager_list.tqh_first;
418 	while (pager) {
419 
420 		/*
421 		 * Save the next pointer now since uncaching may terminate the
422 		 * object and render pager invalid
423 		 */
424 		vp = ((vn_pager_t) pager->pg_data)->vnp_vp;
425 		npager = pager->pg_list.tqe_next;
426 		if (mp == (struct mount *) 0 || vp->v_mount == mp)
427 			(void) vnode_pager_uncache(vp);
428 		pager = npager;
429 	}
430 }
431 
432 /*
433  * Remove vnode associated object from the object cache.
434  *
435  * Note: this routine may be invoked as a result of a pager put
436  * operation (possibly at object termination time), so we must be careful.
437  */
438 boolean_t
439 vnode_pager_uncache(vp)
440 	register struct vnode *vp;
441 {
442 	register vm_object_t object;
443 	boolean_t uncached, locked;
444 	vm_pager_t pager;
445 
446 	/*
447 	 * Not a mapped vnode
448 	 */
449 	pager = (vm_pager_t) vp->v_vmdata;
450 	if (pager == NULL)
451 		return (TRUE);
452 
453 	/*
454 	 * Unlock the vnode if it is currently locked. We do this since
455 	 * uncaching the object may result in its destruction which may
456 	 * initiate paging activity which may necessitate locking the vnode.
457 	 */
458 	locked = VOP_ISLOCKED(vp);
459 	if (locked)
460 		VOP_UNLOCK(vp);
461 
462 	/*
463 	 * Must use vm_object_lookup() as it actually removes the object from
464 	 * the cache list.
465 	 */
466 	object = vm_object_lookup(pager);
467 	if (object) {
468 		uncached = (object->ref_count <= 1);
469 		pager_cache(object, FALSE);
470 	} else
471 		uncached = TRUE;
472 	if (locked)
473 		VOP_LOCK(vp);
474 	return (uncached);
475 }
476 
477 
478 void
479 vnode_pager_freepage(m)
480 	vm_page_t m;
481 {
482 	PAGE_WAKEUP(m);
483 	vm_page_free(m);
484 }
485 
486 /*
487  * calculate the linear (byte) disk address of specified virtual
488  * file address
489  */
490 vm_offset_t
491 vnode_pager_addr(vp, address)
492 	struct vnode *vp;
493 	vm_offset_t address;
494 {
495 	int     rtaddress;
496 	int     bsize;
497 	vm_offset_t block;
498 	struct vnode *rtvp;
499 	int     err;
500 	int     vblock, voffset;
501 
502 	bsize = vp->v_mount->mnt_stat.f_iosize;
503 	vblock = address / bsize;
504 	voffset = address % bsize;
505 
506 	err = VOP_BMAP(vp, vblock, &rtvp, &block, 0);
507 
508 	if (err)
509 		rtaddress = -1;
510 	else
511 		rtaddress = block * DEV_BSIZE + voffset;
512 
513 	return rtaddress;
514 }
515 
516 /*
517  * interrupt routine for I/O completion
518  */
519 void
520 vnode_pager_iodone(bp)
521 	struct buf *bp;
522 {
523 	bp->b_flags |= B_DONE;
524 	wakeup((caddr_t) bp);
525 	if( bp->b_flags & B_ASYNC) {
526 		vm_offset_t paddr;
527 		vm_page_t m;
528 		vm_object_t obj = 0;
529 		int i;
530 		int npages;
531 
532 		paddr = (vm_offset_t) bp->b_data;
533 		if( bp->b_bufsize != bp->b_bcount)
534 			bzero( bp->b_data + bp->b_bcount,
535 				bp->b_bufsize - bp->b_bcount);
536 
537 		npages = (bp->b_bufsize + PAGE_SIZE - 1) / PAGE_SIZE;
538 /*
539 		printf("bcount: %d, bufsize: %d, npages: %d\n",
540 			bp->b_bcount, bp->b_bufsize, npages);
541 */
542 		for( i = 0; i < npages; i++) {
543 			m = PHYS_TO_VM_PAGE(pmap_kextract(paddr + i * PAGE_SIZE));
544 			obj = m->object;
545 			if( m) {
546 				m->flags |= PG_CLEAN;
547 				m->flags &= ~(PG_LAUNDRY|PG_FAKE);
548 				PAGE_WAKEUP(m);
549 			} else {
550 				panic("vnode_pager_iodone: page is gone!!!");
551 			}
552 		}
553 		pmap_qremove( paddr, npages);
554 		if( obj) {
555 			--obj->paging_in_progress;
556 			if( obj->paging_in_progress == 0)
557 				wakeup((caddr_t) obj);
558 		} else {
559 			panic("vnode_pager_iodone: object is gone???");
560 		}
561 		HOLDRELE(bp->b_vp);
562 		relpbuf(bp);
563 	}
564 }
565 
566 /*
567  * small block file system vnode pager input
568  */
569 int
570 vnode_pager_input_smlfs(vnp, m)
571 	vn_pager_t vnp;
572 	vm_page_t m;
573 {
574 	int     i;
575 	int     s;
576 	vm_offset_t paging_offset;
577 	struct vnode *dp, *vp;
578 	struct buf *bp;
579 	vm_offset_t foff;
580 	vm_offset_t kva;
581 	int     fileaddr;
582 	int     block;
583 	vm_offset_t bsize;
584 	int     error = 0;
585 
586 	paging_offset = m->object->paging_offset;
587 	vp = vnp->vnp_vp;
588 	bsize = vp->v_mount->mnt_stat.f_iosize;
589 	foff = m->offset + paging_offset;
590 
591 	VOP_BMAP(vp, foff, &dp, 0, 0);
592 
593 	kva = vm_pager_map_page(m);
594 
595 	for (i = 0; i < PAGE_SIZE / bsize; i++) {
596 
597 		/*
598 		 * calculate logical block and offset
599 		 */
600 		block = foff / bsize + i;
601 		s = splbio();
602 		while (bp = incore(vp, block)) {
603 			int     amount;
604 
605 			/*
606 			 * wait until the buffer is avail or gone
607 			 */
608 			if (bp->b_flags & B_BUSY) {
609 				bp->b_flags |= B_WANTED;
610 				tsleep((caddr_t) bp, PVM, "vnwblk", 0);
611 				continue;
612 			}
613 			amount = bsize;
614 			if ((foff + bsize) > vnp->vnp_size)
615 				amount = vnp->vnp_size - foff;
616 
617 			/*
618 			 * make sure that this page is in the buffer
619 			 */
620 			if ((amount > 0) && amount <= bp->b_bcount) {
621 				bp->b_flags |= B_BUSY;
622 				splx(s);
623 
624 				/*
625 				 * copy the data from the buffer
626 				 */
627 				bcopy(bp->b_un.b_addr, (caddr_t) kva + i * bsize, amount);
628 				if (amount < bsize) {
629 					bzero((caddr_t) kva + amount, bsize - amount);
630 				}
631 				bp->b_flags &= ~B_BUSY;
632 				wakeup((caddr_t) bp);
633 				goto nextblock;
634 			}
635 			break;
636 		}
637 		splx(s);
638 		fileaddr = vnode_pager_addr(vp, foff + i * bsize);
639 		if (fileaddr != -1) {
640 			bp = getpbuf();
641 			VHOLD(vp);
642 
643 			/* build a minimal buffer header */
644 			bp->b_flags = B_BUSY | B_READ | B_CALL;
645 			bp->b_iodone = vnode_pager_iodone;
646 			bp->b_proc = curproc;
647 			bp->b_rcred = bp->b_wcred = bp->b_proc->p_ucred;
648 			if (bp->b_rcred != NOCRED)
649 				crhold(bp->b_rcred);
650 			if (bp->b_wcred != NOCRED)
651 				crhold(bp->b_wcred);
652 			bp->b_un.b_addr = (caddr_t) kva + i * bsize;
653 			bp->b_blkno = fileaddr / DEV_BSIZE;
654 			bgetvp(dp, bp);
655 			bp->b_bcount = bsize;
656 			bp->b_bufsize = bsize;
657 
658 			/* do the input */
659 			VOP_STRATEGY(bp);
660 
661 			/* we definitely need to be at splbio here */
662 
663 			s = splbio();
664 			while ((bp->b_flags & B_DONE) == 0) {
665 				tsleep((caddr_t) bp, PVM, "vnsrd", 0);
666 			}
667 			splx(s);
668 			if ((bp->b_flags & B_ERROR) != 0)
669 				error = EIO;
670 
671 			/*
672 			 * free the buffer header back to the swap buffer pool
673 			 */
674 			relpbuf(bp);
675 			HOLDRELE(vp);
676 			if (error)
677 				break;
678 		} else {
679 			bzero((caddr_t) kva + i * bsize, bsize);
680 		}
681 nextblock:
682 	}
683 	vm_pager_unmap_page(kva);
684 	if (error) {
685 		return VM_PAGER_FAIL;
686 	}
687 	pmap_clear_modify(VM_PAGE_TO_PHYS(m));
688 	m->flags |= PG_CLEAN;
689 	m->flags &= ~PG_LAUNDRY;
690 	return VM_PAGER_OK;
691 
692 }
693 
694 
695 /*
696  * old style vnode pager output routine
697  */
698 int
699 vnode_pager_input_old(vnp, m)
700 	vn_pager_t vnp;
701 	vm_page_t m;
702 {
703 	int     i;
704 	struct uio auio;
705 	struct iovec aiov;
706 	int     error;
707 	int     size;
708 	vm_offset_t foff;
709 	vm_offset_t kva;
710 
711 	error = 0;
712 	foff = m->offset + m->object->paging_offset;
713 
714 	/*
715 	 * Return failure if beyond current EOF
716 	 */
717 	if (foff >= vnp->vnp_size) {
718 		return VM_PAGER_BAD;
719 	} else {
720 		size = PAGE_SIZE;
721 		if (foff + size > vnp->vnp_size)
722 			size = vnp->vnp_size - foff;
723 /*
724  * Allocate a kernel virtual address and initialize so that
725  * we can use VOP_READ/WRITE routines.
726  */
727 		kva = vm_pager_map_page(m);
728 		aiov.iov_base = (caddr_t) kva;
729 		aiov.iov_len = size;
730 		auio.uio_iov = &aiov;
731 		auio.uio_iovcnt = 1;
732 		auio.uio_offset = foff;
733 		auio.uio_segflg = UIO_SYSSPACE;
734 		auio.uio_rw = UIO_READ;
735 		auio.uio_resid = size;
736 		auio.uio_procp = (struct proc *) 0;
737 
738 		error = VOP_READ(vnp->vnp_vp, &auio, 0, curproc->p_ucred);
739 		if (!error) {
740 			register int count = size - auio.uio_resid;
741 
742 			if (count == 0)
743 				error = EINVAL;
744 			else if (count != PAGE_SIZE)
745 				bzero((caddr_t) kva + count, PAGE_SIZE - count);
746 		}
747 		vm_pager_unmap_page(kva);
748 	}
749 	pmap_clear_modify(VM_PAGE_TO_PHYS(m));
750 	m->flags |= PG_CLEAN;
751 	m->flags &= ~PG_LAUNDRY;
752 	return error ? VM_PAGER_FAIL : VM_PAGER_OK;
753 }
754 
755 /*
756  * generic vnode pager input routine
757  */
758 int
759 vnode_pager_input(vnp, m, count, reqpage)
760 	register vn_pager_t vnp;
761 	vm_page_t *m;
762 	int     count, reqpage;
763 {
764 	int     i, j;
765 	vm_offset_t kva, foff;
766 	int     size, sizea;
767 	struct proc *p = curproc;	/* XXX */
768 	vm_object_t object;
769 	vm_offset_t paging_offset;
770 	struct vnode *dp, *vp;
771 	int     bsize;
772 
773 	int     first, last;
774 	int     reqaddr, firstaddr;
775 	int     block, offset;
776 
777 	int     nbp;
778 	struct buf *bp, *bpa;
779 	int	counta;
780 	int     s;
781 	int     failflag;
782 
783 	int     errtype = 0;	/* 0 is file type otherwise vm type */
784 	int     error = 0;
785 
786 	object = m[reqpage]->object;	/* all vm_page_t items are in same
787 					 * object */
788 	paging_offset = object->paging_offset;
789 
790 	vp = vnp->vnp_vp;
791 	bsize = vp->v_mount->mnt_stat.f_iosize;
792 
793 	/* get the UNDERLYING device for the file with VOP_BMAP() */
794 
795 	/*
796 	 * originally, we did not check for an error return value -- assuming
797 	 * an fs always has a bmap entry point -- that assumption is wrong!!!
798 	 */
799 	foff = m[reqpage]->offset + paging_offset;
800 
801 	/*
802 	 * if we can't bmap, use old VOP code
803 	 */
804 	if (VOP_BMAP(vp, foff, &dp, 0, 0)) {
805 		for (i = 0; i < count; i++) {
806 			if (i != reqpage) {
807 				vnode_pager_freepage(m[i]);
808 			}
809 		}
810 		return vnode_pager_input_old(vnp, m[reqpage]);
811 
812 		/*
813 		 * if the blocksize is smaller than a page size, then use
814 		 * special small filesystem code.  NFS sometimes has a small
815 		 * blocksize, but it can handle large reads itself.
816 		 */
817 	} else if ((PAGE_SIZE / bsize) > 1 &&
818 		   (vp->v_mount->mnt_stat.f_type != MOUNT_NFS)) {
819 
820 		for (i = 0; i < count; i++) {
821 			if (i != reqpage) {
822 				vnode_pager_freepage(m[i]);
823 			}
824 		}
825 		return vnode_pager_input_smlfs(vnp, m[reqpage]);
826 	}
827 /*
828  * here on direct device I/O
829  */
830 
831 
832 	/*
833 	 * This pathetic hack gets data from the buffer cache, if it's there.
834 	 * I believe that this is not really necessary, and the ends can be
835 	 * gotten by defaulting to the normal vfs read behavior, but this
836 	 * might be more efficient, because the will NOT invoke read-aheads
837 	 * and one of the purposes of this code is to bypass the buffer cache
838 	 * and keep from flushing it by reading in a program.
839 	 */
840 
841 	/*
842 	 * calculate logical block and offset
843 	 */
844 	block = foff / bsize;
845 	offset = foff % bsize;
846 	s = splbio();
847 
848 	/*
849 	 * if we have a buffer in core, then try to use it
850 	 */
851 	while (bp = incore(vp, block)) {
852 		int     amount;
853 
854 		/*
855 		 * wait until the buffer is avail or gone
856 		 */
857 		if (bp->b_flags & B_BUSY) {
858 			bp->b_flags |= B_WANTED;
859 			tsleep((caddr_t) bp, PVM, "vnwblk", 0);
860 			continue;
861 		}
862 		amount = PAGE_SIZE;
863 		if ((foff + amount) > vnp->vnp_size)
864 			amount = vnp->vnp_size - foff;
865 
866 		/*
867 		 * make sure that this page is in the buffer
868 		 */
869 		if ((amount > 0) && (offset + amount) <= bp->b_bcount) {
870 			bp->b_flags |= B_BUSY;
871 			splx(s);
872 			kva = kmem_alloc_pageable( pager_map, PAGE_SIZE);
873 
874 			/*
875 			 * map the requested page
876 			 */
877 			pmap_qenter(kva, &m[reqpage], 1);
878 
879 			/*
880 			 * copy the data from the buffer
881 			 */
882 			bcopy(bp->b_un.b_addr + offset, (caddr_t) kva, amount);
883 			if (amount < PAGE_SIZE) {
884 				bzero((caddr_t) kva + amount, PAGE_SIZE - amount);
885 			}
886 
887 			/*
888 			 * unmap the page and free the kva
889 			 */
890 			pmap_qremove( kva, 1);
891 			kmem_free_wakeup(pager_map, kva, PAGE_SIZE);
892 
893 			/*
894 			 * release the buffer back to the block subsystem
895 			 */
896 			bp->b_flags &= ~B_BUSY;
897 			wakeup((caddr_t) bp);
898 
899 			/*
900 			 * we did not have to do any work to get the requested
901 			 * page, the read behind/ahead does not justify a read
902 			 */
903 			for (i = 0; i < count; i++) {
904 				if (i != reqpage) {
905 					vnode_pager_freepage(m[i]);
906 				}
907 			}
908 			count = 1;
909 			reqpage = 0;
910 			m[0] = m[reqpage];
911 
912 			/*
913 			 * sorry for the goto
914 			 */
915 			goto finishup;
916 		}
917 
918 		/*
919 		 * buffer is nowhere to be found, read from the disk
920 		 */
921 		break;
922 	}
923 	splx(s);
924 
925 	reqaddr = vnode_pager_addr(vp, foff);
926 	s = splbio();
927 
928 	/*
929 	 * Make sure that our I/O request is contiguous. Scan backward and
930 	 * stop for the first discontiguous entry or stop for a page being in
931 	 * buffer cache.
932 	 */
933 	failflag = 0;
934 	first = reqpage;
935 	for (i = reqpage - 1; i >= 0; --i) {
936 		if (failflag ||
937 		    incore(vp, (foff + (i - reqpage) * PAGE_SIZE) / bsize) ||
938 		    (vnode_pager_addr(vp, m[i]->offset + paging_offset))
939 		    != reqaddr + (i - reqpage) * PAGE_SIZE) {
940 			vnode_pager_freepage(m[i]);
941 			failflag = 1;
942 		} else {
943 			first = i;
944 		}
945 	}
946 
947 	/*
948 	 * Scan forward and stop for the first non-contiguous entry or stop
949 	 * for a page being in buffer cache.
950 	 */
951 	failflag = 0;
952 	last = reqpage + 1;
953 	for (i = reqpage + 1; i < count; i++) {
954 		if (failflag ||
955 		    incore(vp, (foff + (i - reqpage) * PAGE_SIZE) / bsize) ||
956 		    (vnode_pager_addr(vp, m[i]->offset + paging_offset))
957 		    != reqaddr + (i - reqpage) * PAGE_SIZE) {
958 			vnode_pager_freepage(m[i]);
959 			failflag = 1;
960 		} else {
961 			last = i + 1;
962 		}
963 	}
964 	splx(s);
965 
966 	/*
967 	 * the first and last page have been calculated now, move input pages
968 	 * to be zero based...
969 	 */
970 	count = last;
971 	if (first != 0) {
972 		for (i = first; i < count; i++) {
973 			m[i - first] = m[i];
974 		}
975 		count -= first;
976 		reqpage -= first;
977 	}
978 
979 	/*
980 	 * calculate the file virtual address for the transfer
981 	 */
982 	foff = m[0]->offset + paging_offset;
983 
984 	/*
985 	 * and get the disk physical address (in bytes)
986 	 */
987 	firstaddr = vnode_pager_addr(vp, foff);
988 
989 	/*
990 	 * calculate the size of the transfer
991 	 */
992 	size = count * PAGE_SIZE;
993 	if ((foff + size) > vnp->vnp_size)
994 		size = vnp->vnp_size - foff;
995 
996 	/*
997 	 * round up physical size for real devices
998 	 */
999 	if (dp->v_type == VBLK || dp->v_type == VCHR)
1000 		size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1001 
1002 	counta = 0;
1003 	if( count*PAGE_SIZE > bsize)
1004 		counta = (count - reqpage) - 1;
1005 	bpa = 0;
1006 	sizea = 0;
1007 	if( counta) {
1008 		bpa = getpbuf();
1009 		count -= counta;
1010 		sizea = size - count*PAGE_SIZE;
1011 		size = count * PAGE_SIZE;
1012 	}
1013 
1014 	bp = getpbuf();
1015 	kva = (vm_offset_t)bp->b_data;
1016 
1017 	/*
1018 	 * and map the pages to be read into the kva
1019 	 */
1020 	pmap_qenter(kva, m, count);
1021 	VHOLD(vp);
1022 
1023 	/* build a minimal buffer header */
1024 	bp->b_flags = B_BUSY | B_READ | B_CALL;
1025 	bp->b_iodone = vnode_pager_iodone;
1026 	/* B_PHYS is not set, but it is nice to fill this in */
1027 	bp->b_proc = curproc;
1028 	bp->b_rcred = bp->b_wcred = bp->b_proc->p_ucred;
1029 	if (bp->b_rcred != NOCRED)
1030 		crhold(bp->b_rcred);
1031 	if (bp->b_wcred != NOCRED)
1032 		crhold(bp->b_wcred);
1033 	bp->b_blkno = firstaddr / DEV_BSIZE;
1034 	bgetvp(dp, bp);
1035 	bp->b_bcount = size;
1036 	bp->b_bufsize = size;
1037 
1038 	/* do the input */
1039 	VOP_STRATEGY(bp);
1040 	if( counta) {
1041 		for(i=0;i<counta;i++) {
1042 			vm_page_deactivate(m[count+i]);
1043 		}
1044 		pmap_qenter((vm_offset_t)bpa->b_data, &m[count], counta);
1045 		++m[count]->object->paging_in_progress;
1046 		VHOLD(vp);
1047 		bpa->b_flags = B_BUSY | B_READ | B_CALL | B_ASYNC;
1048 		bpa->b_iodone = vnode_pager_iodone;
1049 		/* B_PHYS is not set, but it is nice to fill this in */
1050 		bpa->b_proc = curproc;
1051 		bpa->b_rcred = bpa->b_wcred = bpa->b_proc->p_ucred;
1052 		if (bpa->b_rcred != NOCRED)
1053 			crhold(bpa->b_rcred);
1054 		if (bpa->b_wcred != NOCRED)
1055 			crhold(bpa->b_wcred);
1056 		bpa->b_blkno = (firstaddr + count * PAGE_SIZE) / DEV_BSIZE;
1057 		bgetvp(dp, bpa);
1058 		bpa->b_bcount = sizea;
1059 		bpa->b_bufsize = counta*PAGE_SIZE;
1060 
1061 		VOP_STRATEGY(bpa);
1062 	}
1063 
1064 	s = splbio();
1065 	/* we definitely need to be at splbio here */
1066 
1067 	while ((bp->b_flags & B_DONE) == 0) {
1068 		tsleep((caddr_t) bp, PVM, "vnread", 0);
1069 	}
1070 	splx(s);
1071 	if ((bp->b_flags & B_ERROR) != 0)
1072 		error = EIO;
1073 
1074 	if (!error) {
1075 		if (size != count * PAGE_SIZE)
1076 			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
1077 	}
1078 	pmap_qremove( kva, count);
1079 
1080 	/*
1081 	 * free the buffer header back to the swap buffer pool
1082 	 */
1083 	relpbuf(bp);
1084 	HOLDRELE(vp);
1085 
1086 finishup:
1087 	for (i = 0; i < count; i++) {
1088 		m[i]->flags |= PG_CLEAN;
1089 		m[i]->flags &= ~PG_LAUNDRY;
1090 		if (i != reqpage) {
1091 
1092 			/*
1093 			 * whether or not to leave the page activated is up in
1094 			 * the air, but we should put the page on a page queue
1095 			 * somewhere. (it already is in the object). Result:
1096 			 * It appears that emperical results show that
1097 			 * deactivating pages is best.
1098 			 */
1099 
1100 			/*
1101 			 * just in case someone was asking for this page we
1102 			 * now tell them that it is ok to use
1103 			 */
1104 			if (!error) {
1105 				vm_page_deactivate(m[i]);
1106 				PAGE_WAKEUP(m[i]);
1107 				m[i]->flags &= ~PG_FAKE;
1108 			} else {
1109 				vnode_pager_freepage(m[i]);
1110 			}
1111 		}
1112 	}
1113 	if (error) {
1114 		printf("vnode pager read error: %d\n", error);
1115 	}
1116 	if (errtype)
1117 		return error;
1118 	return (error ? VM_PAGER_FAIL : VM_PAGER_OK);
1119 }
1120 
1121 /*
1122  * old-style vnode pager output routine
1123  */
1124 int
1125 vnode_pager_output_old(vnp, m)
1126 	register vn_pager_t vnp;
1127 	vm_page_t m;
1128 {
1129 	vm_offset_t foff;
1130 	vm_offset_t kva;
1131 	vm_offset_t size;
1132 	struct iovec aiov;
1133 	struct uio auio;
1134 	struct vnode *vp;
1135 	int     error;
1136 
1137 	vp = vnp->vnp_vp;
1138 	foff = m->offset + m->object->paging_offset;
1139 
1140 	/*
1141 	 * Return failure if beyond current EOF
1142 	 */
1143 	if (foff >= vnp->vnp_size) {
1144 		return VM_PAGER_BAD;
1145 	} else {
1146 		size = PAGE_SIZE;
1147 		if (foff + size > vnp->vnp_size)
1148 			size = vnp->vnp_size - foff;
1149 /*
1150  * Allocate a kernel virtual address and initialize so that
1151  * we can use VOP_WRITE routines.
1152  */
1153 		kva = vm_pager_map_page(m);
1154 		aiov.iov_base = (caddr_t) kva;
1155 		aiov.iov_len = size;
1156 		auio.uio_iov = &aiov;
1157 		auio.uio_iovcnt = 1;
1158 		auio.uio_offset = foff;
1159 		auio.uio_segflg = UIO_SYSSPACE;
1160 		auio.uio_rw = UIO_WRITE;
1161 		auio.uio_resid = size;
1162 		auio.uio_procp = (struct proc *) 0;
1163 
1164 		error = VOP_WRITE(vp, &auio, 0, curproc->p_ucred);
1165 
1166 		if (!error) {
1167 			if ((size - auio.uio_resid) == 0) {
1168 				error = EINVAL;
1169 			}
1170 		}
1171 		vm_pager_unmap_page(kva);
1172 		return error ? VM_PAGER_FAIL : VM_PAGER_OK;
1173 	}
1174 }
1175 
1176 /*
1177  * vnode pager output on a small-block file system
1178  */
1179 int
1180 vnode_pager_output_smlfs(vnp, m)
1181 	vn_pager_t vnp;
1182 	vm_page_t m;
1183 {
1184 	int     i;
1185 	int     s;
1186 	vm_offset_t paging_offset;
1187 	struct vnode *dp, *vp;
1188 	struct buf *bp;
1189 	vm_offset_t foff;
1190 	vm_offset_t kva;
1191 	int     fileaddr;
1192 	int     block;
1193 	vm_offset_t bsize;
1194 	int     error = 0;
1195 
1196 	paging_offset = m->object->paging_offset;
1197 	vp = vnp->vnp_vp;
1198 	bsize = vp->v_mount->mnt_stat.f_iosize;
1199 	foff = m->offset + paging_offset;
1200 
1201 	VOP_BMAP(vp, foff, &dp, 0, 0);
1202 	kva = vm_pager_map_page(m);
1203 	for (i = 0; !error && i < (PAGE_SIZE / bsize); i++) {
1204 
1205 		/*
1206 		 * calculate logical block and offset
1207 		 */
1208 		fileaddr = vnode_pager_addr(vp, foff + i * bsize);
1209 		if (fileaddr != -1) {
1210 			s = splbio();
1211 			if (bp = incore(vp, (foff / bsize) + i)) {
1212 				bp = getblk(vp, (foff / bsize) + i, bp->b_bufsize, 0, 0);
1213 				bp->b_flags |= B_INVAL;
1214 				brelse(bp);
1215 			}
1216 			splx(s);
1217 
1218 			bp = getpbuf();
1219 			VHOLD(vp);
1220 
1221 			/* build a minimal buffer header */
1222 			bp->b_flags = B_BUSY | B_CALL | B_WRITE;
1223 			bp->b_iodone = vnode_pager_iodone;
1224 			bp->b_proc = curproc;
1225 			bp->b_rcred = bp->b_wcred = bp->b_proc->p_ucred;
1226 			if (bp->b_rcred != NOCRED)
1227 				crhold(bp->b_rcred);
1228 			if (bp->b_wcred != NOCRED)
1229 				crhold(bp->b_wcred);
1230 			bp->b_un.b_addr = (caddr_t) kva + i * bsize;
1231 			bp->b_blkno = fileaddr / DEV_BSIZE;
1232 			bgetvp(dp, bp);
1233 			++dp->v_numoutput;
1234 			/* for NFS */
1235 			bp->b_dirtyoff = 0;
1236 			bp->b_dirtyend = bsize;
1237 			bp->b_bcount = bsize;
1238 			bp->b_bufsize = bsize;
1239 
1240 			/* do the input */
1241 			VOP_STRATEGY(bp);
1242 
1243 			/* we definitely need to be at splbio here */
1244 
1245 			s = splbio();
1246 			while ((bp->b_flags & B_DONE) == 0) {
1247 				tsleep((caddr_t) bp, PVM, "vnswrt", 0);
1248 			}
1249 			splx(s);
1250 			if ((bp->b_flags & B_ERROR) != 0)
1251 				error = EIO;
1252 
1253 			/*
1254 			 * free the buffer header back to the swap buffer pool
1255 			 */
1256 			relpbuf(bp);
1257 			HOLDRELE(vp);
1258 		}
1259 	}
1260 	vm_pager_unmap_page(kva);
1261 	if (error)
1262 		return VM_PAGER_FAIL;
1263 	else
1264 		return VM_PAGER_OK;
1265 }
1266 
1267 /*
1268  * generic vnode pager output routine
1269  */
1270 int
1271 vnode_pager_output(vnp, m, count, rtvals)
1272 	vn_pager_t vnp;
1273 	vm_page_t *m;
1274 	int     count;
1275 	int    *rtvals;
1276 {
1277 	int     i, j;
1278 	vm_offset_t kva, foff;
1279 	int     size;
1280 	struct proc *p = curproc;	/* XXX */
1281 	vm_object_t object;
1282 	vm_offset_t paging_offset;
1283 	struct vnode *dp, *vp;
1284 	struct buf *bp;
1285 	vm_offset_t reqaddr;
1286 	int     bsize;
1287 	int     s;
1288 
1289 	int     error = 0;
1290 
1291 retryoutput:
1292 	object = m[0]->object;	/* all vm_page_t items are in same object */
1293 	paging_offset = object->paging_offset;
1294 
1295 	vp = vnp->vnp_vp;
1296 	bsize = vp->v_mount->mnt_stat.f_iosize;
1297 
1298 	for (i = 0; i < count; i++)
1299 		rtvals[i] = VM_PAGER_AGAIN;
1300 
1301 	/*
1302 	 * if the filesystem does not have a bmap, then use the old code
1303 	 */
1304 	if (VOP_BMAP(vp, m[0]->offset + paging_offset, &dp, 0, 0)) {
1305 
1306 		rtvals[0] = vnode_pager_output_old(vnp, m[0]);
1307 
1308 		pmap_clear_modify(VM_PAGE_TO_PHYS(m[0]));
1309 		m[0]->flags |= PG_CLEAN;
1310 		m[0]->flags &= ~PG_LAUNDRY;
1311 		return rtvals[0];
1312 	}
1313 
1314 	/*
1315 	 * if the filesystem has a small blocksize, then use the small block
1316 	 * filesystem output code
1317 	 */
1318 	if ((bsize < PAGE_SIZE) &&
1319 	    (vp->v_mount->mnt_stat.f_type != MOUNT_NFS)) {
1320 
1321 		for (i = 0; i < count; i++) {
1322 			rtvals[i] = vnode_pager_output_smlfs(vnp, m[i]);
1323 			if (rtvals[i] == VM_PAGER_OK) {
1324 				pmap_clear_modify(VM_PAGE_TO_PHYS(m[i]));
1325 				m[i]->flags |= PG_CLEAN;
1326 				m[i]->flags &= ~PG_LAUNDRY;
1327 			}
1328 		}
1329 		return rtvals[0];
1330 	}
1331 
1332 	for (i = 0; i < count; i++) {
1333 		foff = m[i]->offset + paging_offset;
1334 		if (foff >= vnp->vnp_size) {
1335 			for (j = i; j < count; j++)
1336 				rtvals[j] = VM_PAGER_BAD;
1337 			count = i;
1338 			break;
1339 		}
1340 	}
1341 	if (count == 0) {
1342 		return rtvals[0];
1343 	}
1344 	foff = m[0]->offset + paging_offset;
1345 	reqaddr = vnode_pager_addr(vp, foff);
1346 
1347 	/*
1348 	 * Scan forward and stop for the first non-contiguous entry or stop
1349 	 * for a page being in buffer cache.
1350 	 */
1351 	for (i = 1; i < count; i++) {
1352 		if (vnode_pager_addr(vp, m[i]->offset + paging_offset)
1353 		    != reqaddr + i * PAGE_SIZE) {
1354 			count = i;
1355 			break;
1356 		}
1357 	}
1358 
1359 	/*
1360 	 * calculate the size of the transfer
1361 	 */
1362 	size = count * PAGE_SIZE;
1363 	if ((foff + size) > vnp->vnp_size)
1364 		size = vnp->vnp_size - foff;
1365 
1366 	/*
1367 	 * round up physical size for real devices
1368 	 */
1369 	if (dp->v_type == VBLK || dp->v_type == VCHR)
1370 		size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1371 
1372 	bp = getpbuf();
1373 	kva = (vm_offset_t)bp->b_data;
1374 	/*
1375 	 * and map the pages to be read into the kva
1376 	 */
1377 	pmap_qenter(kva, m, count);
1378 	printf("vnode: writing foff: %d, devoff: %d, size: %d\n",
1379 		foff, reqaddr, size);
1380 
1381 	/*
1382 	 * next invalidate the incore vfs_bio data
1383 	 */
1384 	for (i = 0; i < count; i++) {
1385 		int     filblock = (foff + i * PAGE_SIZE) / bsize;
1386 		struct buf *fbp;
1387 
1388 		s = splbio();
1389 		if (fbp = incore(vp, filblock)) {
1390 			fbp = getblk(vp, filblock, fbp->b_bufsize, 0, 0);
1391 			if (fbp->b_flags & B_DELWRI) {
1392 				if (fbp->b_bufsize <= PAGE_SIZE)
1393 					fbp->b_flags &= ~B_DELWRI;
1394 				else {
1395 					bwrite(fbp);
1396 					fbp = getblk(vp, filblock,
1397 						     fbp->b_bufsize, 0, 0);
1398 				}
1399 			}
1400 			fbp->b_flags |= B_INVAL;
1401 			brelse(fbp);
1402 		}
1403 		splx(s);
1404 	}
1405 
1406 
1407 	VHOLD(vp);
1408 	/* build a minimal buffer header */
1409 	bp->b_flags = B_BUSY | B_WRITE | B_CALL;
1410 	bp->b_iodone = vnode_pager_iodone;
1411 	/* B_PHYS is not set, but it is nice to fill this in */
1412 	bp->b_proc = curproc;
1413 	bp->b_rcred = bp->b_wcred = bp->b_proc->p_ucred;
1414 
1415 	if (bp->b_rcred != NOCRED)
1416 		crhold(bp->b_rcred);
1417 	if (bp->b_wcred != NOCRED)
1418 		crhold(bp->b_wcred);
1419 	bp->b_blkno = reqaddr / DEV_BSIZE;
1420 	bgetvp(dp, bp);
1421 	++dp->v_numoutput;
1422 
1423 	/* for NFS */
1424 	bp->b_dirtyoff = 0;
1425 	bp->b_dirtyend = size;
1426 
1427 	bp->b_bcount = size;
1428 	bp->b_bufsize = size;
1429 
1430 	/* do the output */
1431 	VOP_STRATEGY(bp);
1432 
1433 	s = splbio();
1434 
1435 	/* we definitely need to be at splbio here */
1436 
1437 	while ((bp->b_flags & B_DONE) == 0) {
1438 		tsleep((caddr_t) bp, PVM, "vnwrite", 0);
1439 	}
1440 	splx(s);
1441 
1442 	if ((bp->b_flags & B_ERROR) != 0)
1443 		error = EIO;
1444 
1445 	pmap_qremove( kva, count);
1446 
1447 	/*
1448 	 * free the buffer header back to the swap buffer pool
1449 	 */
1450 	relpbuf(bp);
1451 	HOLDRELE(vp);
1452 
1453 	if (!error) {
1454 		for (i = 0; i < count; i++) {
1455 			pmap_clear_modify(VM_PAGE_TO_PHYS(m[i]));
1456 			m[i]->flags |= PG_CLEAN;
1457 			m[i]->flags &= ~PG_LAUNDRY;
1458 			rtvals[i] = VM_PAGER_OK;
1459 		}
1460 	} else if (count != 1) {
1461 		error = 0;
1462 		count = 1;
1463 		goto retryoutput;
1464 	}
1465 	if (error) {
1466 		printf("vnode pager write error: %d\n", error);
1467 	}
1468 	return (error ? VM_PAGER_FAIL : VM_PAGER_OK);
1469 }
1470