xref: /freebsd/sys/vm/vm_swapout.c (revision 07cc7ea7386c5428cef9e8f06d4ebd8144dec311)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70 
71 #include <sys/cdefs.h>
72 #include "opt_kstack_pages.h"
73 #include "opt_kstack_max_pages.h"
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/limits.h>
79 #include <sys/kernel.h>
80 #include <sys/eventhandler.h>
81 #include <sys/lock.h>
82 #include <sys/mutex.h>
83 #include <sys/proc.h>
84 #include <sys/kthread.h>
85 #include <sys/ktr.h>
86 #include <sys/mount.h>
87 #include <sys/racct.h>
88 #include <sys/resourcevar.h>
89 #include <sys/refcount.h>
90 #include <sys/sched.h>
91 #include <sys/sdt.h>
92 #include <sys/signalvar.h>
93 #include <sys/smp.h>
94 #include <sys/time.h>
95 #include <sys/vnode.h>
96 #include <sys/vmmeter.h>
97 #include <sys/rwlock.h>
98 #include <sys/sx.h>
99 #include <sys/sysctl.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_param.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_phys.h>
110 #include <vm/swap_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/uma.h>
113 
114 /* the kernel process "vm_daemon" */
115 static void vm_daemon(void);
116 static struct proc *vmproc;
117 
118 static struct kproc_desc vm_kp = {
119 	"vmdaemon",
120 	vm_daemon,
121 	&vmproc
122 };
123 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
124 
125 static int vm_swap_enabled = 1;
126 static int vm_swap_idle_enabled = 0;
127 
128 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled, CTLFLAG_RW,
129     &vm_swap_enabled, 0,
130     "Enable entire process swapout");
131 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled, CTLFLAG_RW,
132     &vm_swap_idle_enabled, 0,
133     "Allow swapout on idle criteria");
134 
135 /*
136  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
137  */
138 static int swap_idle_threshold1 = 2;
139 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
140     &swap_idle_threshold1, 0,
141     "Guaranteed swapped in time for a process");
142 
143 /*
144  * Swap_idle_threshold2 is the time that a process can be idle before
145  * it will be swapped out, if idle swapping is enabled.
146  */
147 static int swap_idle_threshold2 = 10;
148 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
149     &swap_idle_threshold2, 0,
150     "Time before a process will be swapped out");
151 
152 static int vm_daemon_timeout = 0;
153 SYSCTL_INT(_vm, OID_AUTO, vmdaemon_timeout, CTLFLAG_RW,
154     &vm_daemon_timeout, 0,
155     "Time between vmdaemon runs");
156 
157 static int vm_pageout_req_swapout;	/* XXX */
158 static int vm_daemon_needed;
159 static struct mtx vm_daemon_mtx;
160 /* Allow for use by vm_pageout before vm_daemon is initialized. */
161 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
162 
163 static int swapped_cnt;
164 static int swap_inprogress;	/* Pending swap-ins done outside swapper. */
165 static int last_swapin;
166 
167 static void swapclear(struct proc *);
168 static int swapout(struct proc *);
169 static void vm_swapout_map_deactivate_pages(vm_map_t, long);
170 static void vm_swapout_object_deactivate(pmap_t, vm_object_t, long);
171 static void swapout_procs(int action);
172 static void vm_req_vmdaemon(int req);
173 static void vm_thread_swapout(struct thread *td);
174 
175 static void
176 vm_swapout_object_deactivate_page(pmap_t pmap, vm_page_t m, bool unmap)
177 {
178 
179 	/*
180 	 * Ignore unreclaimable wired pages.  Repeat the check after busying
181 	 * since a busy holder may wire the page.
182 	 */
183 	if (vm_page_wired(m) || !vm_page_tryxbusy(m))
184 		return;
185 
186 	if (vm_page_wired(m) || !pmap_page_exists_quick(pmap, m)) {
187 		vm_page_xunbusy(m);
188 		return;
189 	}
190 	if (!pmap_is_referenced(m)) {
191 		if (!vm_page_active(m))
192 			(void)vm_page_try_remove_all(m);
193 		else if (unmap && vm_page_try_remove_all(m))
194 			vm_page_deactivate(m);
195 	}
196 	vm_page_xunbusy(m);
197 }
198 
199 /*
200  *	vm_swapout_object_deactivate
201  *
202  *	Deactivate enough pages to satisfy the inactive target
203  *	requirements.
204  *
205  *	The object and map must be locked.
206  */
207 static void
208 vm_swapout_object_deactivate(pmap_t pmap, vm_object_t first_object,
209     long desired)
210 {
211 	vm_object_t backing_object, object;
212 	vm_page_t m;
213 	bool unmap;
214 
215 	VM_OBJECT_ASSERT_LOCKED(first_object);
216 	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
217 		return;
218 	for (object = first_object;; object = backing_object) {
219 		if (pmap_resident_count(pmap) <= desired)
220 			goto unlock_return;
221 		VM_OBJECT_ASSERT_LOCKED(object);
222 		if ((object->flags & OBJ_UNMANAGED) != 0 ||
223 		    blockcount_read(&object->paging_in_progress) > 0)
224 			goto unlock_return;
225 
226 		unmap = true;
227 		if (object->shadow_count > 1)
228 			unmap = false;
229 
230 		/*
231 		 * Scan the object's entire memory queue.
232 		 */
233 		TAILQ_FOREACH(m, &object->memq, listq) {
234 			if (pmap_resident_count(pmap) <= desired)
235 				goto unlock_return;
236 			if (should_yield())
237 				goto unlock_return;
238 			vm_swapout_object_deactivate_page(pmap, m, unmap);
239 		}
240 		if ((backing_object = object->backing_object) == NULL)
241 			goto unlock_return;
242 		VM_OBJECT_RLOCK(backing_object);
243 		if (object != first_object)
244 			VM_OBJECT_RUNLOCK(object);
245 	}
246 unlock_return:
247 	if (object != first_object)
248 		VM_OBJECT_RUNLOCK(object);
249 }
250 
251 /*
252  * deactivate some number of pages in a map, try to do it fairly, but
253  * that is really hard to do.
254  */
255 static void
256 vm_swapout_map_deactivate_pages(vm_map_t map, long desired)
257 {
258 	vm_map_entry_t tmpe;
259 	vm_object_t obj, bigobj;
260 	int nothingwired;
261 
262 	if (!vm_map_trylock_read(map))
263 		return;
264 
265 	bigobj = NULL;
266 	nothingwired = TRUE;
267 
268 	/*
269 	 * first, search out the biggest object, and try to free pages from
270 	 * that.
271 	 */
272 	VM_MAP_ENTRY_FOREACH(tmpe, map) {
273 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
274 			obj = tmpe->object.vm_object;
275 			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
276 				if (obj->shadow_count <= 1 &&
277 				    (bigobj == NULL ||
278 				     bigobj->resident_page_count <
279 				     obj->resident_page_count)) {
280 					if (bigobj != NULL)
281 						VM_OBJECT_RUNLOCK(bigobj);
282 					bigobj = obj;
283 				} else
284 					VM_OBJECT_RUNLOCK(obj);
285 			}
286 		}
287 		if (tmpe->wired_count > 0)
288 			nothingwired = FALSE;
289 	}
290 
291 	if (bigobj != NULL) {
292 		vm_swapout_object_deactivate(map->pmap, bigobj, desired);
293 		VM_OBJECT_RUNLOCK(bigobj);
294 	}
295 	/*
296 	 * Next, hunt around for other pages to deactivate.  We actually
297 	 * do this search sort of wrong -- .text first is not the best idea.
298 	 */
299 	VM_MAP_ENTRY_FOREACH(tmpe, map) {
300 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
301 			break;
302 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
303 			obj = tmpe->object.vm_object;
304 			if (obj != NULL) {
305 				VM_OBJECT_RLOCK(obj);
306 				vm_swapout_object_deactivate(map->pmap, obj,
307 				    desired);
308 				VM_OBJECT_RUNLOCK(obj);
309 			}
310 		}
311 	}
312 
313 	/*
314 	 * Remove all mappings if a process is swapped out, this will free page
315 	 * table pages.
316 	 */
317 	if (desired == 0 && nothingwired) {
318 		pmap_remove(vm_map_pmap(map), vm_map_min(map),
319 		    vm_map_max(map));
320 	}
321 
322 	vm_map_unlock_read(map);
323 }
324 
325 /*
326  * Swap out requests
327  */
328 #define VM_SWAP_NORMAL 1
329 #define VM_SWAP_IDLE 2
330 
331 void
332 vm_swapout_run(void)
333 {
334 
335 	if (vm_swap_enabled)
336 		vm_req_vmdaemon(VM_SWAP_NORMAL);
337 }
338 
339 /*
340  * Idle process swapout -- run once per second when pagedaemons are
341  * reclaiming pages.
342  */
343 void
344 vm_swapout_run_idle(void)
345 {
346 	static long lsec;
347 
348 	if (!vm_swap_idle_enabled || time_second == lsec)
349 		return;
350 	vm_req_vmdaemon(VM_SWAP_IDLE);
351 	lsec = time_second;
352 }
353 
354 static void
355 vm_req_vmdaemon(int req)
356 {
357 	static int lastrun = 0;
358 
359 	mtx_lock(&vm_daemon_mtx);
360 	vm_pageout_req_swapout |= req;
361 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
362 		wakeup(&vm_daemon_needed);
363 		lastrun = ticks;
364 	}
365 	mtx_unlock(&vm_daemon_mtx);
366 }
367 
368 static void
369 vm_daemon(void)
370 {
371 	struct rlimit rsslim;
372 	struct proc *p;
373 	struct thread *td;
374 	struct vmspace *vm;
375 	int breakout, swapout_flags, tryagain, attempts;
376 #ifdef RACCT
377 	uint64_t rsize, ravailable;
378 
379 	if (racct_enable && vm_daemon_timeout == 0)
380 		vm_daemon_timeout = hz;
381 #endif
382 
383 	while (TRUE) {
384 		mtx_lock(&vm_daemon_mtx);
385 		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
386 		    vm_daemon_timeout);
387 		swapout_flags = vm_pageout_req_swapout;
388 		vm_pageout_req_swapout = 0;
389 		mtx_unlock(&vm_daemon_mtx);
390 		if (swapout_flags != 0) {
391 			/*
392 			 * Drain the per-CPU page queue batches as a deadlock
393 			 * avoidance measure.
394 			 */
395 			if ((swapout_flags & VM_SWAP_NORMAL) != 0)
396 				vm_page_pqbatch_drain();
397 			swapout_procs(swapout_flags);
398 		}
399 
400 		/*
401 		 * scan the processes for exceeding their rlimits or if
402 		 * process is swapped out -- deactivate pages
403 		 */
404 		tryagain = 0;
405 		attempts = 0;
406 again:
407 		attempts++;
408 		sx_slock(&allproc_lock);
409 		FOREACH_PROC_IN_SYSTEM(p) {
410 			vm_pindex_t limit, size;
411 
412 			/*
413 			 * if this is a system process or if we have already
414 			 * looked at this process, skip it.
415 			 */
416 			PROC_LOCK(p);
417 			if (p->p_state != PRS_NORMAL ||
418 			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
419 				PROC_UNLOCK(p);
420 				continue;
421 			}
422 			/*
423 			 * if the process is in a non-running type state,
424 			 * don't touch it.
425 			 */
426 			breakout = 0;
427 			FOREACH_THREAD_IN_PROC(p, td) {
428 				thread_lock(td);
429 				if (!TD_ON_RUNQ(td) &&
430 				    !TD_IS_RUNNING(td) &&
431 				    !TD_IS_SLEEPING(td) &&
432 				    !TD_IS_SUSPENDED(td)) {
433 					thread_unlock(td);
434 					breakout = 1;
435 					break;
436 				}
437 				thread_unlock(td);
438 			}
439 			if (breakout) {
440 				PROC_UNLOCK(p);
441 				continue;
442 			}
443 			/*
444 			 * get a limit
445 			 */
446 			lim_rlimit_proc(p, RLIMIT_RSS, &rsslim);
447 			limit = OFF_TO_IDX(
448 			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
449 
450 			/*
451 			 * let processes that are swapped out really be
452 			 * swapped out set the limit to nothing (will force a
453 			 * swap-out.)
454 			 */
455 			if ((p->p_flag & P_INMEM) == 0)
456 				limit = 0;	/* XXX */
457 			vm = vmspace_acquire_ref(p);
458 			_PHOLD_LITE(p);
459 			PROC_UNLOCK(p);
460 			if (vm == NULL) {
461 				PRELE(p);
462 				continue;
463 			}
464 			sx_sunlock(&allproc_lock);
465 
466 			size = vmspace_resident_count(vm);
467 			if (size >= limit) {
468 				vm_swapout_map_deactivate_pages(
469 				    &vm->vm_map, limit);
470 				size = vmspace_resident_count(vm);
471 			}
472 #ifdef RACCT
473 			if (racct_enable) {
474 				rsize = IDX_TO_OFF(size);
475 				PROC_LOCK(p);
476 				if (p->p_state == PRS_NORMAL)
477 					racct_set(p, RACCT_RSS, rsize);
478 				ravailable = racct_get_available(p, RACCT_RSS);
479 				PROC_UNLOCK(p);
480 				if (rsize > ravailable) {
481 					/*
482 					 * Don't be overly aggressive; this
483 					 * might be an innocent process,
484 					 * and the limit could've been exceeded
485 					 * by some memory hog.  Don't try
486 					 * to deactivate more than 1/4th
487 					 * of process' resident set size.
488 					 */
489 					if (attempts <= 8) {
490 						if (ravailable < rsize -
491 						    (rsize / 4)) {
492 							ravailable = rsize -
493 							    (rsize / 4);
494 						}
495 					}
496 					vm_swapout_map_deactivate_pages(
497 					    &vm->vm_map,
498 					    OFF_TO_IDX(ravailable));
499 					/* Update RSS usage after paging out. */
500 					size = vmspace_resident_count(vm);
501 					rsize = IDX_TO_OFF(size);
502 					PROC_LOCK(p);
503 					if (p->p_state == PRS_NORMAL)
504 						racct_set(p, RACCT_RSS, rsize);
505 					PROC_UNLOCK(p);
506 					if (rsize > ravailable)
507 						tryagain = 1;
508 				}
509 			}
510 #endif
511 			vmspace_free(vm);
512 			sx_slock(&allproc_lock);
513 			PRELE(p);
514 		}
515 		sx_sunlock(&allproc_lock);
516 		if (tryagain != 0 && attempts <= 10) {
517 			maybe_yield();
518 			goto again;
519 		}
520 	}
521 }
522 
523 /*
524  * Allow a thread's kernel stack to be paged out.
525  */
526 static void
527 vm_thread_swapout(struct thread *td)
528 {
529 	vm_page_t m;
530 	vm_offset_t kaddr;
531 	vm_pindex_t pindex;
532 	int i, pages;
533 	vm_object_t obj;
534 
535 	cpu_thread_swapout(td);
536 	kaddr = td->td_kstack;
537 	pages = td->td_kstack_pages;
538 	obj = vm_thread_kstack_size_to_obj(pages);
539 	pindex = vm_kstack_pindex(kaddr, pages);
540 	pmap_qremove(kaddr, pages);
541 	VM_OBJECT_WLOCK(obj);
542 	for (i = 0; i < pages; i++) {
543 		m = vm_page_lookup(obj, pindex + i);
544 		if (m == NULL)
545 			panic("vm_thread_swapout: kstack already missing?");
546 		vm_page_dirty(m);
547 		vm_page_xunbusy_unchecked(m);
548 		vm_page_unwire(m, PQ_LAUNDRY);
549 	}
550 	VM_OBJECT_WUNLOCK(obj);
551 }
552 
553 /*
554  * Bring the kernel stack for a specified thread back in.
555  */
556 static void
557 vm_thread_swapin(struct thread *td, int oom_alloc)
558 {
559 	vm_page_t ma[KSTACK_MAX_PAGES];
560 	vm_offset_t kaddr;
561 	vm_object_t obj;
562 	int a, count, i, j, pages, rv __diagused;
563 
564 	kaddr = td->td_kstack;
565 	pages = td->td_kstack_pages;
566 	obj = vm_thread_kstack_size_to_obj(pages);
567 	while (vm_thread_stack_back(kaddr, ma, pages, oom_alloc,
568 	    td->td_kstack_domain) == ENOMEM)
569 		    ;
570 	for (i = 0; i < pages;) {
571 		vm_page_assert_xbusied(ma[i]);
572 		if (vm_page_all_valid(ma[i])) {
573 			i++;
574 			continue;
575 		}
576 		vm_object_pip_add(obj, 1);
577 		for (j = i + 1; j < pages; j++)
578 			if (vm_page_all_valid(ma[j]))
579 				break;
580 		VM_OBJECT_WLOCK(obj);
581 		rv = vm_pager_has_page(obj, ma[i]->pindex, NULL, &a);
582 		VM_OBJECT_WUNLOCK(obj);
583 		KASSERT(rv == 1, ("%s: missing page %p", __func__, ma[i]));
584 		count = min(a + 1, j - i);
585 		rv = vm_pager_get_pages(obj, ma + i, count, NULL, NULL);
586 		KASSERT(rv == VM_PAGER_OK, ("%s: cannot get kstack for proc %d",
587 		    __func__, td->td_proc->p_pid));
588 		vm_object_pip_wakeup(obj);
589 		i += count;
590 	}
591 	pmap_qenter(kaddr, ma, pages);
592 	cpu_thread_swapin(td);
593 }
594 
595 void
596 faultin(struct proc *p)
597 {
598 	struct thread *td;
599 	int oom_alloc;
600 
601 	PROC_LOCK_ASSERT(p, MA_OWNED);
602 
603 	/*
604 	 * If another process is swapping in this process,
605 	 * just wait until it finishes.
606 	 */
607 	if (p->p_flag & P_SWAPPINGIN) {
608 		while (p->p_flag & P_SWAPPINGIN)
609 			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
610 		return;
611 	}
612 
613 	if ((p->p_flag & P_INMEM) == 0) {
614 		oom_alloc = (p->p_flag & P_WKILLED) != 0 ? VM_ALLOC_SYSTEM :
615 		    VM_ALLOC_NORMAL;
616 
617 		/*
618 		 * Don't let another thread swap process p out while we are
619 		 * busy swapping it in.
620 		 */
621 		++p->p_lock;
622 		p->p_flag |= P_SWAPPINGIN;
623 		PROC_UNLOCK(p);
624 		sx_xlock(&allproc_lock);
625 		MPASS(swapped_cnt > 0);
626 		swapped_cnt--;
627 		if (curthread != &thread0)
628 			swap_inprogress++;
629 		sx_xunlock(&allproc_lock);
630 
631 		/*
632 		 * We hold no lock here because the list of threads
633 		 * can not change while all threads in the process are
634 		 * swapped out.
635 		 */
636 		FOREACH_THREAD_IN_PROC(p, td)
637 			vm_thread_swapin(td, oom_alloc);
638 
639 		if (curthread != &thread0) {
640 			sx_xlock(&allproc_lock);
641 			MPASS(swap_inprogress > 0);
642 			swap_inprogress--;
643 			last_swapin = ticks;
644 			sx_xunlock(&allproc_lock);
645 		}
646 		PROC_LOCK(p);
647 		swapclear(p);
648 		p->p_swtick = ticks;
649 
650 		/* Allow other threads to swap p out now. */
651 		wakeup(&p->p_flag);
652 		--p->p_lock;
653 	}
654 }
655 
656 /*
657  * This swapin algorithm attempts to swap-in processes only if there
658  * is enough space for them.  Of course, if a process waits for a long
659  * time, it will be swapped in anyway.
660  */
661 
662 static struct proc *
663 swapper_selector(bool wkilled_only)
664 {
665 	struct proc *p, *res;
666 	struct thread *td;
667 	int ppri, pri, slptime, swtime;
668 
669 	sx_assert(&allproc_lock, SA_SLOCKED);
670 	if (swapped_cnt == 0)
671 		return (NULL);
672 	res = NULL;
673 	ppri = INT_MIN;
674 	FOREACH_PROC_IN_SYSTEM(p) {
675 		PROC_LOCK(p);
676 		if (p->p_state == PRS_NEW || (p->p_flag & (P_SWAPPINGOUT |
677 		    P_SWAPPINGIN | P_INMEM)) != 0) {
678 			PROC_UNLOCK(p);
679 			continue;
680 		}
681 		if (p->p_state == PRS_NORMAL && (p->p_flag & P_WKILLED) != 0) {
682 			/*
683 			 * A swapped-out process might have mapped a
684 			 * large portion of the system's pages as
685 			 * anonymous memory.  There is no other way to
686 			 * release the memory other than to kill the
687 			 * process, for which we need to swap it in.
688 			 */
689 			return (p);
690 		}
691 		if (wkilled_only) {
692 			PROC_UNLOCK(p);
693 			continue;
694 		}
695 		swtime = (ticks - p->p_swtick) / hz;
696 		FOREACH_THREAD_IN_PROC(p, td) {
697 			/*
698 			 * An otherwise runnable thread of a process
699 			 * swapped out has only the TDI_SWAPPED bit set.
700 			 */
701 			thread_lock(td);
702 			if (td->td_inhibitors == TDI_SWAPPED) {
703 				slptime = (ticks - td->td_slptick) / hz;
704 				pri = swtime + slptime;
705 				if ((td->td_flags & TDF_SWAPINREQ) == 0)
706 					pri -= p->p_nice * 8;
707 				/*
708 				 * if this thread is higher priority
709 				 * and there is enough space, then select
710 				 * this process instead of the previous
711 				 * selection.
712 				 */
713 				if (pri > ppri) {
714 					res = p;
715 					ppri = pri;
716 				}
717 			}
718 			thread_unlock(td);
719 		}
720 		PROC_UNLOCK(p);
721 	}
722 
723 	if (res != NULL)
724 		PROC_LOCK(res);
725 	return (res);
726 }
727 
728 #define	SWAPIN_INTERVAL	(MAXSLP * hz / 2)
729 
730 /*
731  * Limit swapper to swap in one non-WKILLED process in MAXSLP/2
732  * interval, assuming that there is:
733  * - at least one domain that is not suffering from a shortage of free memory;
734  * - no parallel swap-ins;
735  * - no other swap-ins in the current SWAPIN_INTERVAL.
736  */
737 static bool
738 swapper_wkilled_only(void)
739 {
740 
741 	return (vm_page_count_min_set(&all_domains) || swap_inprogress > 0 ||
742 	    (u_int)(ticks - last_swapin) < SWAPIN_INTERVAL);
743 }
744 
745 void
746 swapper(void)
747 {
748 	struct proc *p;
749 
750 	for (;;) {
751 		sx_slock(&allproc_lock);
752 		p = swapper_selector(swapper_wkilled_only());
753 		sx_sunlock(&allproc_lock);
754 
755 		if (p == NULL) {
756 			tsleep(&proc0, PVM, "swapin", SWAPIN_INTERVAL);
757 		} else {
758 			PROC_LOCK_ASSERT(p, MA_OWNED);
759 
760 			/*
761 			 * Another process may be bringing or may have
762 			 * already brought this process in while we
763 			 * traverse all threads.  Or, this process may
764 			 * have exited or even being swapped out
765 			 * again.
766 			 */
767 			if (p->p_state == PRS_NORMAL && (p->p_flag & (P_INMEM |
768 			    P_SWAPPINGOUT | P_SWAPPINGIN)) == 0) {
769 				faultin(p);
770 			}
771 			PROC_UNLOCK(p);
772 		}
773 	}
774 }
775 
776 /*
777  * First, if any processes have been sleeping or stopped for at least
778  * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
779  * no such processes exist, then the longest-sleeping or stopped
780  * process is swapped out.  Finally, and only as a last resort, if
781  * there are no sleeping or stopped processes, the longest-resident
782  * process is swapped out.
783  */
784 static void
785 swapout_procs(int action)
786 {
787 	struct proc *p;
788 	struct thread *td;
789 	int slptime;
790 	bool didswap, doswap;
791 
792 	MPASS((action & (VM_SWAP_NORMAL | VM_SWAP_IDLE)) != 0);
793 
794 	didswap = false;
795 	sx_slock(&allproc_lock);
796 	FOREACH_PROC_IN_SYSTEM(p) {
797 		/*
798 		 * Filter out not yet fully constructed processes.  Do
799 		 * not swap out held processes.  Avoid processes which
800 		 * are system, exiting, execing, traced, already swapped
801 		 * out or are in the process of being swapped in or out.
802 		 */
803 		PROC_LOCK(p);
804 		if (p->p_state != PRS_NORMAL || p->p_lock != 0 || (p->p_flag &
805 		    (P_SYSTEM | P_WEXIT | P_INEXEC | P_STOPPED_SINGLE |
806 		    P_TRACED | P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) !=
807 		    P_INMEM) {
808 			PROC_UNLOCK(p);
809 			continue;
810 		}
811 
812 		/*
813 		 * Further consideration of this process for swap out
814 		 * requires iterating over its threads.  We release
815 		 * allproc_lock here so that process creation and
816 		 * destruction are not blocked while we iterate.
817 		 *
818 		 * To later reacquire allproc_lock and resume
819 		 * iteration over the allproc list, we will first have
820 		 * to release the lock on the process.  We place a
821 		 * hold on the process so that it remains in the
822 		 * allproc list while it is unlocked.
823 		 */
824 		_PHOLD_LITE(p);
825 		sx_sunlock(&allproc_lock);
826 
827 		/*
828 		 * Do not swapout a realtime process.
829 		 * Guarantee swap_idle_threshold1 time in memory.
830 		 * If the system is under memory stress, or if we are
831 		 * swapping idle processes >= swap_idle_threshold2,
832 		 * then swap the process out.
833 		 */
834 		doswap = true;
835 		FOREACH_THREAD_IN_PROC(p, td) {
836 			thread_lock(td);
837 			slptime = (ticks - td->td_slptick) / hz;
838 			if (PRI_IS_REALTIME(td->td_pri_class) ||
839 			    slptime < swap_idle_threshold1 ||
840 			    !thread_safetoswapout(td) ||
841 			    ((action & VM_SWAP_NORMAL) == 0 &&
842 			    slptime < swap_idle_threshold2))
843 				doswap = false;
844 			thread_unlock(td);
845 			if (!doswap)
846 				break;
847 		}
848 		if (doswap && swapout(p) == 0)
849 			didswap = true;
850 
851 		PROC_UNLOCK(p);
852 		if (didswap) {
853 			sx_xlock(&allproc_lock);
854 			swapped_cnt++;
855 			sx_downgrade(&allproc_lock);
856 		} else
857 			sx_slock(&allproc_lock);
858 		PRELE(p);
859 	}
860 	sx_sunlock(&allproc_lock);
861 
862 	/*
863 	 * If we swapped something out, and another process needed memory,
864 	 * then wakeup the sched process.
865 	 */
866 	if (didswap)
867 		wakeup(&proc0);
868 }
869 
870 static void
871 swapclear(struct proc *p)
872 {
873 	struct thread *td;
874 
875 	PROC_LOCK_ASSERT(p, MA_OWNED);
876 
877 	FOREACH_THREAD_IN_PROC(p, td) {
878 		thread_lock(td);
879 		td->td_flags |= TDF_INMEM;
880 		td->td_flags &= ~TDF_SWAPINREQ;
881 		TD_CLR_SWAPPED(td);
882 		if (TD_CAN_RUN(td)) {
883 			if (setrunnable(td, 0)) {
884 #ifdef INVARIANTS
885 				/*
886 				 * XXX: We just cleared TDI_SWAPPED
887 				 * above and set TDF_INMEM, so this
888 				 * should never happen.
889 				 */
890 				panic("not waking up swapper");
891 #endif
892 			}
893 		} else
894 			thread_unlock(td);
895 	}
896 	p->p_flag &= ~(P_SWAPPINGIN | P_SWAPPINGOUT);
897 	p->p_flag |= P_INMEM;
898 }
899 
900 static int
901 swapout(struct proc *p)
902 {
903 	struct thread *td;
904 
905 	PROC_LOCK_ASSERT(p, MA_OWNED);
906 
907 	/*
908 	 * The states of this process and its threads may have changed
909 	 * by now.  Assuming that there is only one pageout daemon thread,
910 	 * this process should still be in memory.
911 	 */
912 	KASSERT((p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) ==
913 	    P_INMEM, ("swapout: lost a swapout race?"));
914 
915 	/*
916 	 * Remember the resident count.
917 	 */
918 	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
919 
920 	/*
921 	 * Check and mark all threads before we proceed.
922 	 */
923 	p->p_flag &= ~P_INMEM;
924 	p->p_flag |= P_SWAPPINGOUT;
925 	FOREACH_THREAD_IN_PROC(p, td) {
926 		thread_lock(td);
927 		if (!thread_safetoswapout(td)) {
928 			thread_unlock(td);
929 			swapclear(p);
930 			return (EBUSY);
931 		}
932 		td->td_flags &= ~TDF_INMEM;
933 		TD_SET_SWAPPED(td);
934 		thread_unlock(td);
935 	}
936 	td = FIRST_THREAD_IN_PROC(p);
937 	++td->td_ru.ru_nswap;
938 	PROC_UNLOCK(p);
939 
940 	/*
941 	 * This list is stable because all threads are now prevented from
942 	 * running.  The list is only modified in the context of a running
943 	 * thread in this process.
944 	 */
945 	FOREACH_THREAD_IN_PROC(p, td)
946 		vm_thread_swapout(td);
947 
948 	PROC_LOCK(p);
949 	p->p_flag &= ~P_SWAPPINGOUT;
950 	p->p_swtick = ticks;
951 	return (0);
952 }
953