1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Superpage reservation management module 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_vm.h" 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/queue.h> 50 #include <sys/rwlock.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <vm/vm.h> 56 #include <vm/vm_param.h> 57 #include <vm/vm_object.h> 58 #include <vm/vm_page.h> 59 #include <vm/vm_phys.h> 60 #include <vm/vm_reserv.h> 61 62 /* 63 * The reservation system supports the speculative allocation of large physical 64 * pages ("superpages"). Speculative allocation enables the fully-automatic 65 * utilization of superpages by the virtual memory system. In other words, no 66 * programmatic directives are required to use superpages. 67 */ 68 69 #if VM_NRESERVLEVEL > 0 70 71 /* 72 * The number of small pages that are contained in a level 0 reservation 73 */ 74 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 75 76 /* 77 * The number of bits by which a physical address is shifted to obtain the 78 * reservation number 79 */ 80 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 81 82 /* 83 * The size of a level 0 reservation in bytes 84 */ 85 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 86 87 /* 88 * Computes the index of the small page underlying the given (object, pindex) 89 * within the reservation's array of small pages. 90 */ 91 #define VM_RESERV_INDEX(object, pindex) \ 92 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 93 94 /* 95 * The reservation structure 96 * 97 * A reservation structure is constructed whenever a large physical page is 98 * speculatively allocated to an object. The reservation provides the small 99 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 100 * within that object. The reservation's "popcnt" tracks the number of these 101 * small physical pages that are in use at any given time. When and if the 102 * reservation is not fully utilized, it appears in the queue of partially- 103 * populated reservations. The reservation always appears on the containing 104 * object's list of reservations. 105 * 106 * A partially-populated reservation can be broken and reclaimed at any time. 107 */ 108 struct vm_reserv { 109 TAILQ_ENTRY(vm_reserv) partpopq; 110 LIST_ENTRY(vm_reserv) objq; 111 vm_object_t object; /* containing object */ 112 vm_pindex_t pindex; /* offset within object */ 113 vm_page_t pages; /* first page of a superpage */ 114 int popcnt; /* # of pages in use */ 115 char inpartpopq; 116 }; 117 118 /* 119 * The reservation array 120 * 121 * This array is analoguous in function to vm_page_array. It differs in the 122 * respect that it may contain a greater number of useful reservation 123 * structures than there are (physical) superpages. These "invalid" 124 * reservation structures exist to trade-off space for time in the 125 * implementation of vm_reserv_from_page(). Invalid reservation structures are 126 * distinguishable from "valid" reservation structures by inspecting the 127 * reservation's "pages" field. Invalid reservation structures have a NULL 128 * "pages" field. 129 * 130 * vm_reserv_from_page() maps a small (physical) page to an element of this 131 * array by computing a physical reservation number from the page's physical 132 * address. The physical reservation number is used as the array index. 133 * 134 * An "active" reservation is a valid reservation structure that has a non-NULL 135 * "object" field and a non-zero "popcnt" field. In other words, every active 136 * reservation belongs to a particular object. Moreover, every active 137 * reservation has an entry in the containing object's list of reservations. 138 */ 139 static vm_reserv_t vm_reserv_array; 140 141 /* 142 * The partially-populated reservation queue 143 * 144 * This queue enables the fast recovery of an unused cached or free small page 145 * from a partially-populated reservation. The reservation at the head of 146 * this queue is the least-recently-changed, partially-populated reservation. 147 * 148 * Access to this queue is synchronized by the free page queue lock. 149 */ 150 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop = 151 TAILQ_HEAD_INITIALIZER(vm_rvq_partpop); 152 153 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); 154 155 static long vm_reserv_broken; 156 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 157 &vm_reserv_broken, 0, "Cumulative number of broken reservations"); 158 159 static long vm_reserv_freed; 160 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 161 &vm_reserv_freed, 0, "Cumulative number of freed reservations"); 162 163 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 164 165 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 166 sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues"); 167 168 static long vm_reserv_reclaimed; 169 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 170 &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations"); 171 172 static void vm_reserv_depopulate(vm_reserv_t rv); 173 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 174 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 175 vm_pindex_t pindex); 176 static void vm_reserv_populate(vm_reserv_t rv); 177 static void vm_reserv_reclaim(vm_reserv_t rv); 178 179 /* 180 * Describes the current state of the partially-populated reservation queue. 181 */ 182 static int 183 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 184 { 185 struct sbuf sbuf; 186 vm_reserv_t rv; 187 int counter, error, level, unused_pages; 188 189 error = sysctl_wire_old_buffer(req, 0); 190 if (error != 0) 191 return (error); 192 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 193 sbuf_printf(&sbuf, "\nLEVEL SIZE NUMBER\n\n"); 194 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 195 counter = 0; 196 unused_pages = 0; 197 mtx_lock(&vm_page_queue_free_mtx); 198 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) { 199 counter++; 200 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 201 } 202 mtx_unlock(&vm_page_queue_free_mtx); 203 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level, 204 unused_pages * ((int)PAGE_SIZE / 1024), counter); 205 } 206 error = sbuf_finish(&sbuf); 207 sbuf_delete(&sbuf); 208 return (error); 209 } 210 211 /* 212 * Reduces the given reservation's population count. If the population count 213 * becomes zero, the reservation is destroyed. Additionally, moves the 214 * reservation to the tail of the partially-populated reservations queue if the 215 * population count is non-zero. 216 * 217 * The free page queue lock must be held. 218 */ 219 static void 220 vm_reserv_depopulate(vm_reserv_t rv) 221 { 222 223 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 224 KASSERT(rv->object != NULL, 225 ("vm_reserv_depopulate: reserv %p is free", rv)); 226 KASSERT(rv->popcnt > 0, 227 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 228 if (rv->inpartpopq) { 229 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 230 rv->inpartpopq = FALSE; 231 } 232 rv->popcnt--; 233 if (rv->popcnt == 0) { 234 LIST_REMOVE(rv, objq); 235 rv->object = NULL; 236 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 237 vm_reserv_freed++; 238 } else { 239 rv->inpartpopq = TRUE; 240 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 241 } 242 } 243 244 /* 245 * Returns the reservation to which the given page might belong. 246 */ 247 static __inline vm_reserv_t 248 vm_reserv_from_page(vm_page_t m) 249 { 250 251 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 252 } 253 254 /* 255 * Returns TRUE if the given reservation contains the given page index and 256 * FALSE otherwise. 257 */ 258 static __inline boolean_t 259 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 260 { 261 262 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 263 } 264 265 /* 266 * Increases the given reservation's population count. Moves the reservation 267 * to the tail of the partially-populated reservation queue. 268 * 269 * The free page queue must be locked. 270 */ 271 static void 272 vm_reserv_populate(vm_reserv_t rv) 273 { 274 275 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 276 KASSERT(rv->object != NULL, 277 ("vm_reserv_populate: reserv %p is free", rv)); 278 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 279 ("vm_reserv_populate: reserv %p is already full", rv)); 280 if (rv->inpartpopq) { 281 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 282 rv->inpartpopq = FALSE; 283 } 284 rv->popcnt++; 285 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 286 rv->inpartpopq = TRUE; 287 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 288 } 289 } 290 291 /* 292 * Allocates a contiguous set of physical pages of the given size "npages" 293 * from an existing or newly-created reservation. All of the physical pages 294 * must be at or above the given physical address "low" and below the given 295 * physical address "high". The given value "alignment" determines the 296 * alignment of the first physical page in the set. If the given value 297 * "boundary" is non-zero, then the set of physical pages cannot cross any 298 * physical address boundary that is a multiple of that value. Both 299 * "alignment" and "boundary" must be a power of two. 300 * 301 * The object and free page queue must be locked. 302 */ 303 vm_page_t 304 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages, 305 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 306 { 307 vm_paddr_t pa, size; 308 vm_page_t m, m_ret, mpred, msucc; 309 vm_pindex_t first, leftcap, rightcap; 310 vm_reserv_t rv; 311 u_long allocpages, maxpages, minpages; 312 int i, index, n; 313 314 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 315 VM_OBJECT_ASSERT_WLOCKED(object); 316 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 317 318 /* 319 * Is a reservation fundamentally impossible? 320 */ 321 if (pindex < VM_RESERV_INDEX(object, pindex) || 322 pindex + npages > object->size) 323 return (NULL); 324 325 /* 326 * All reservations of a particular size have the same alignment. 327 * Assuming that the first page is allocated from a reservation, the 328 * least significant bits of its physical address can be determined 329 * from its offset from the beginning of the reservation and the size 330 * of the reservation. 331 * 332 * Could the specified index within a reservation of the smallest 333 * possible size satisfy the alignment and boundary requirements? 334 */ 335 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 336 if ((pa & (alignment - 1)) != 0) 337 return (NULL); 338 size = npages << PAGE_SHIFT; 339 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 340 return (NULL); 341 342 /* 343 * Look for an existing reservation. 344 */ 345 msucc = NULL; 346 mpred = object->root; 347 while (mpred != NULL) { 348 KASSERT(mpred->pindex != pindex, 349 ("vm_reserv_alloc_contig: pindex already allocated")); 350 rv = vm_reserv_from_page(mpred); 351 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 352 goto found; 353 else if (mpred->pindex < pindex) { 354 if (msucc != NULL || 355 (msucc = TAILQ_NEXT(mpred, listq)) == NULL) 356 break; 357 KASSERT(msucc->pindex != pindex, 358 ("vm_reserv_alloc_contig: pindex already allocated")); 359 rv = vm_reserv_from_page(msucc); 360 if (rv->object == object && 361 vm_reserv_has_pindex(rv, pindex)) 362 goto found; 363 else if (pindex < msucc->pindex) 364 break; 365 } else if (msucc == NULL) { 366 msucc = mpred; 367 mpred = TAILQ_PREV(msucc, pglist, listq); 368 continue; 369 } 370 msucc = NULL; 371 mpred = object->root = vm_page_splay(pindex, object->root); 372 } 373 374 /* 375 * Could at least one reservation fit between the first index to the 376 * left that can be used and the first index to the right that cannot 377 * be used? 378 */ 379 first = pindex - VM_RESERV_INDEX(object, pindex); 380 if (mpred != NULL) { 381 if ((rv = vm_reserv_from_page(mpred))->object != object) 382 leftcap = mpred->pindex + 1; 383 else 384 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 385 if (leftcap > first) 386 return (NULL); 387 } 388 minpages = VM_RESERV_INDEX(object, pindex) + npages; 389 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 390 allocpages = maxpages; 391 if (msucc != NULL) { 392 if ((rv = vm_reserv_from_page(msucc))->object != object) 393 rightcap = msucc->pindex; 394 else 395 rightcap = rv->pindex; 396 if (first + maxpages > rightcap) { 397 if (maxpages == VM_LEVEL_0_NPAGES) 398 return (NULL); 399 allocpages = minpages; 400 } 401 } 402 403 /* 404 * Would the last new reservation extend past the end of the object? 405 */ 406 if (first + maxpages > object->size) { 407 /* 408 * Don't allocate the last new reservation if the object is a 409 * vnode or backed by another object that is a vnode. 410 */ 411 if (object->type == OBJT_VNODE || 412 (object->backing_object != NULL && 413 object->backing_object->type == OBJT_VNODE)) { 414 if (maxpages == VM_LEVEL_0_NPAGES) 415 return (NULL); 416 allocpages = minpages; 417 } 418 /* Speculate that the object may grow. */ 419 } 420 421 /* 422 * Allocate and populate the new reservations. The alignment and 423 * boundary specified for this allocation may be different from the 424 * alignment and boundary specified for the requested pages. For 425 * instance, the specified index may not be the first page within the 426 * first new reservation. 427 */ 428 m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment, 429 VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0); 430 if (m == NULL) 431 return (NULL); 432 m_ret = NULL; 433 index = VM_RESERV_INDEX(object, pindex); 434 do { 435 rv = vm_reserv_from_page(m); 436 KASSERT(rv->pages == m, 437 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 438 rv)); 439 KASSERT(rv->object == NULL, 440 ("vm_reserv_alloc_contig: reserv %p isn't free", rv)); 441 LIST_INSERT_HEAD(&object->rvq, rv, objq); 442 rv->object = object; 443 rv->pindex = first; 444 KASSERT(rv->popcnt == 0, 445 ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted", 446 rv)); 447 KASSERT(!rv->inpartpopq, 448 ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE", 449 rv)); 450 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 451 for (i = 0; i < n; i++) 452 vm_reserv_populate(rv); 453 npages -= n; 454 if (m_ret == NULL) { 455 m_ret = &rv->pages[index]; 456 index = 0; 457 } 458 m += VM_LEVEL_0_NPAGES; 459 first += VM_LEVEL_0_NPAGES; 460 allocpages -= VM_LEVEL_0_NPAGES; 461 } while (allocpages > 0); 462 return (m_ret); 463 464 /* 465 * Found a matching reservation. 466 */ 467 found: 468 index = VM_RESERV_INDEX(object, pindex); 469 /* Does the allocation fit within the reservation? */ 470 if (index + npages > VM_LEVEL_0_NPAGES) 471 return (NULL); 472 m = &rv->pages[index]; 473 pa = VM_PAGE_TO_PHYS(m); 474 if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 || 475 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 476 return (NULL); 477 /* Handle vm_page_rename(m, new_object, ...). */ 478 for (i = 0; i < npages; i++) 479 if ((rv->pages[index + i].flags & (PG_CACHED | PG_FREE)) == 0) 480 return (NULL); 481 for (i = 0; i < npages; i++) 482 vm_reserv_populate(rv); 483 return (m); 484 } 485 486 /* 487 * Allocates a page from an existing or newly-created reservation. 488 * 489 * The object and free page queue must be locked. 490 */ 491 vm_page_t 492 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex) 493 { 494 vm_page_t m, mpred, msucc; 495 vm_pindex_t first, leftcap, rightcap; 496 vm_reserv_t rv; 497 498 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 499 VM_OBJECT_ASSERT_WLOCKED(object); 500 501 /* 502 * Is a reservation fundamentally impossible? 503 */ 504 if (pindex < VM_RESERV_INDEX(object, pindex) || 505 pindex >= object->size) 506 return (NULL); 507 508 /* 509 * Look for an existing reservation. 510 */ 511 msucc = NULL; 512 mpred = object->root; 513 while (mpred != NULL) { 514 KASSERT(mpred->pindex != pindex, 515 ("vm_reserv_alloc_page: pindex already allocated")); 516 rv = vm_reserv_from_page(mpred); 517 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 518 goto found; 519 else if (mpred->pindex < pindex) { 520 if (msucc != NULL || 521 (msucc = TAILQ_NEXT(mpred, listq)) == NULL) 522 break; 523 KASSERT(msucc->pindex != pindex, 524 ("vm_reserv_alloc_page: pindex already allocated")); 525 rv = vm_reserv_from_page(msucc); 526 if (rv->object == object && 527 vm_reserv_has_pindex(rv, pindex)) 528 goto found; 529 else if (pindex < msucc->pindex) 530 break; 531 } else if (msucc == NULL) { 532 msucc = mpred; 533 mpred = TAILQ_PREV(msucc, pglist, listq); 534 continue; 535 } 536 msucc = NULL; 537 mpred = object->root = vm_page_splay(pindex, object->root); 538 } 539 540 /* 541 * Could a reservation fit between the first index to the left that 542 * can be used and the first index to the right that cannot be used? 543 */ 544 first = pindex - VM_RESERV_INDEX(object, pindex); 545 if (mpred != NULL) { 546 if ((rv = vm_reserv_from_page(mpred))->object != object) 547 leftcap = mpred->pindex + 1; 548 else 549 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 550 if (leftcap > first) 551 return (NULL); 552 } 553 if (msucc != NULL) { 554 if ((rv = vm_reserv_from_page(msucc))->object != object) 555 rightcap = msucc->pindex; 556 else 557 rightcap = rv->pindex; 558 if (first + VM_LEVEL_0_NPAGES > rightcap) 559 return (NULL); 560 } 561 562 /* 563 * Would a new reservation extend past the end of the object? 564 */ 565 if (first + VM_LEVEL_0_NPAGES > object->size) { 566 /* 567 * Don't allocate a new reservation if the object is a vnode or 568 * backed by another object that is a vnode. 569 */ 570 if (object->type == OBJT_VNODE || 571 (object->backing_object != NULL && 572 object->backing_object->type == OBJT_VNODE)) 573 return (NULL); 574 /* Speculate that the object may grow. */ 575 } 576 577 /* 578 * Allocate and populate the new reservation. 579 */ 580 m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); 581 if (m == NULL) 582 return (NULL); 583 rv = vm_reserv_from_page(m); 584 KASSERT(rv->pages == m, 585 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 586 KASSERT(rv->object == NULL, 587 ("vm_reserv_alloc_page: reserv %p isn't free", rv)); 588 LIST_INSERT_HEAD(&object->rvq, rv, objq); 589 rv->object = object; 590 rv->pindex = first; 591 KASSERT(rv->popcnt == 0, 592 ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv)); 593 KASSERT(!rv->inpartpopq, 594 ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv)); 595 vm_reserv_populate(rv); 596 return (&rv->pages[VM_RESERV_INDEX(object, pindex)]); 597 598 /* 599 * Found a matching reservation. 600 */ 601 found: 602 m = &rv->pages[VM_RESERV_INDEX(object, pindex)]; 603 /* Handle vm_page_rename(m, new_object, ...). */ 604 if ((m->flags & (PG_CACHED | PG_FREE)) == 0) 605 return (NULL); 606 vm_reserv_populate(rv); 607 return (m); 608 } 609 610 /* 611 * Breaks all reservations belonging to the given object. 612 */ 613 void 614 vm_reserv_break_all(vm_object_t object) 615 { 616 vm_reserv_t rv; 617 int i; 618 619 mtx_lock(&vm_page_queue_free_mtx); 620 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 621 KASSERT(rv->object == object, 622 ("vm_reserv_break_all: reserv %p is corrupted", rv)); 623 if (rv->inpartpopq) { 624 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 625 rv->inpartpopq = FALSE; 626 } 627 LIST_REMOVE(rv, objq); 628 rv->object = NULL; 629 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) { 630 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 631 vm_phys_free_pages(&rv->pages[i], 0); 632 else 633 rv->popcnt--; 634 } 635 KASSERT(rv->popcnt == 0, 636 ("vm_reserv_break_all: reserv %p's popcnt is corrupted", 637 rv)); 638 vm_reserv_broken++; 639 } 640 mtx_unlock(&vm_page_queue_free_mtx); 641 } 642 643 /* 644 * Frees the given page if it belongs to a reservation. Returns TRUE if the 645 * page is freed and FALSE otherwise. 646 * 647 * The free page queue lock must be held. 648 */ 649 boolean_t 650 vm_reserv_free_page(vm_page_t m) 651 { 652 vm_reserv_t rv; 653 654 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 655 rv = vm_reserv_from_page(m); 656 if (rv->object == NULL) 657 return (FALSE); 658 if ((m->flags & PG_CACHED) != 0 && m->pool != VM_FREEPOOL_CACHE) 659 vm_phys_set_pool(VM_FREEPOOL_CACHE, rv->pages, 660 VM_LEVEL_0_ORDER); 661 vm_reserv_depopulate(rv); 662 return (TRUE); 663 } 664 665 /* 666 * Initializes the reservation management system. Specifically, initializes 667 * the reservation array. 668 * 669 * Requires that vm_page_array and first_page are initialized! 670 */ 671 void 672 vm_reserv_init(void) 673 { 674 vm_paddr_t paddr; 675 int i; 676 677 /* 678 * Initialize the reservation array. Specifically, initialize the 679 * "pages" field for every element that has an underlying superpage. 680 */ 681 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 682 paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE); 683 while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) { 684 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages = 685 PHYS_TO_VM_PAGE(paddr); 686 paddr += VM_LEVEL_0_SIZE; 687 } 688 } 689 } 690 691 /* 692 * Returns a reservation level if the given page belongs to a fully-populated 693 * reservation and -1 otherwise. 694 */ 695 int 696 vm_reserv_level_iffullpop(vm_page_t m) 697 { 698 vm_reserv_t rv; 699 700 rv = vm_reserv_from_page(m); 701 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 702 } 703 704 /* 705 * Prepare for the reactivation of a cached page. 706 * 707 * First, suppose that the given page "m" was allocated individually, i.e., not 708 * as part of a reservation, and cached. Then, suppose a reservation 709 * containing "m" is allocated by the same object. Although "m" and the 710 * reservation belong to the same object, "m"'s pindex may not match the 711 * reservation's. 712 * 713 * The free page queue must be locked. 714 */ 715 boolean_t 716 vm_reserv_reactivate_page(vm_page_t m) 717 { 718 vm_reserv_t rv; 719 int i, m_index; 720 721 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 722 rv = vm_reserv_from_page(m); 723 if (rv->object == NULL) 724 return (FALSE); 725 KASSERT((m->flags & PG_CACHED) != 0, 726 ("vm_reserv_uncache_page: page %p is not cached", m)); 727 if (m->object == rv->object && 728 m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex)) 729 vm_reserv_populate(rv); 730 else { 731 KASSERT(rv->inpartpopq, 732 ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE", 733 rv)); 734 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 735 rv->inpartpopq = FALSE; 736 LIST_REMOVE(rv, objq); 737 rv->object = NULL; 738 /* Don't vm_phys_free_pages(m, 0). */ 739 m_index = m - rv->pages; 740 for (i = 0; i < m_index; i++) { 741 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 742 vm_phys_free_pages(&rv->pages[i], 0); 743 else 744 rv->popcnt--; 745 } 746 for (i++; i < VM_LEVEL_0_NPAGES; i++) { 747 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 748 vm_phys_free_pages(&rv->pages[i], 0); 749 else 750 rv->popcnt--; 751 } 752 KASSERT(rv->popcnt == 0, 753 ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted", 754 rv)); 755 vm_reserv_broken++; 756 } 757 return (TRUE); 758 } 759 760 /* 761 * Breaks the given partially-populated reservation, releasing its cached and 762 * free pages to the physical memory allocator. 763 * 764 * The free page queue lock must be held. 765 */ 766 static void 767 vm_reserv_reclaim(vm_reserv_t rv) 768 { 769 int i; 770 771 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 772 KASSERT(rv->inpartpopq, 773 ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv)); 774 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 775 rv->inpartpopq = FALSE; 776 KASSERT(rv->object != NULL, 777 ("vm_reserv_reclaim: reserv %p is free", rv)); 778 LIST_REMOVE(rv, objq); 779 rv->object = NULL; 780 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) { 781 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 782 vm_phys_free_pages(&rv->pages[i], 0); 783 else 784 rv->popcnt--; 785 } 786 KASSERT(rv->popcnt == 0, 787 ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv)); 788 vm_reserv_reclaimed++; 789 } 790 791 /* 792 * Breaks the reservation at the head of the partially-populated reservation 793 * queue, releasing its cached and free pages to the physical memory 794 * allocator. Returns TRUE if a reservation is broken and FALSE otherwise. 795 * 796 * The free page queue lock must be held. 797 */ 798 boolean_t 799 vm_reserv_reclaim_inactive(void) 800 { 801 vm_reserv_t rv; 802 803 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 804 if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) { 805 vm_reserv_reclaim(rv); 806 return (TRUE); 807 } 808 return (FALSE); 809 } 810 811 /* 812 * Searches the partially-populated reservation queue for the least recently 813 * active reservation with unused pages, i.e., cached or free, that satisfy the 814 * given request for contiguous physical memory. If a satisfactory reservation 815 * is found, it is broken. Returns TRUE if a reservation is broken and FALSE 816 * otherwise. 817 * 818 * The free page queue lock must be held. 819 */ 820 boolean_t 821 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 822 u_long alignment, vm_paddr_t boundary) 823 { 824 vm_paddr_t pa, pa_length, size; 825 vm_reserv_t rv; 826 int i; 827 828 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 829 if (npages > VM_LEVEL_0_NPAGES - 1) 830 return (FALSE); 831 size = npages << PAGE_SHIFT; 832 TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) { 833 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); 834 if (pa + PAGE_SIZE - size < low) { 835 /* this entire reservation is too low; go to next */ 836 continue; 837 } 838 pa_length = 0; 839 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) 840 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) { 841 pa_length += PAGE_SIZE; 842 if (pa_length == PAGE_SIZE) { 843 pa = VM_PAGE_TO_PHYS(&rv->pages[i]); 844 if (pa + size > high) { 845 /* skip to next reservation */ 846 break; 847 } else if (pa < low || 848 (pa & (alignment - 1)) != 0 || 849 ((pa ^ (pa + size - 1)) & 850 ~(boundary - 1)) != 0) 851 pa_length = 0; 852 } 853 if (pa_length >= size) { 854 vm_reserv_reclaim(rv); 855 return (TRUE); 856 } 857 } else 858 pa_length = 0; 859 } 860 return (FALSE); 861 } 862 863 /* 864 * Transfers the reservation underlying the given page to a new object. 865 * 866 * The object must be locked. 867 */ 868 void 869 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 870 vm_pindex_t old_object_offset) 871 { 872 vm_reserv_t rv; 873 874 VM_OBJECT_ASSERT_WLOCKED(new_object); 875 rv = vm_reserv_from_page(m); 876 if (rv->object == old_object) { 877 mtx_lock(&vm_page_queue_free_mtx); 878 if (rv->object == old_object) { 879 LIST_REMOVE(rv, objq); 880 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 881 rv->object = new_object; 882 rv->pindex -= old_object_offset; 883 } 884 mtx_unlock(&vm_page_queue_free_mtx); 885 } 886 } 887 888 /* 889 * Allocates the virtual and physical memory required by the reservation 890 * management system's data structures, in particular, the reservation array. 891 */ 892 vm_paddr_t 893 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) 894 { 895 vm_paddr_t new_end; 896 size_t size; 897 898 /* 899 * Calculate the size (in bytes) of the reservation array. Round up 900 * from "high_water" because every small page is mapped to an element 901 * in the reservation array based on its physical address. Thus, the 902 * number of elements in the reservation array can be greater than the 903 * number of superpages. 904 */ 905 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); 906 907 /* 908 * Allocate and map the physical memory for the reservation array. The 909 * next available virtual address is returned by reference. 910 */ 911 new_end = end - round_page(size); 912 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 913 VM_PROT_READ | VM_PROT_WRITE); 914 bzero(vm_reserv_array, size); 915 916 /* 917 * Return the next available physical address. 918 */ 919 return (new_end); 920 } 921 922 #endif /* VM_NRESERVLEVEL > 0 */ 923