1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2006 Rice University 5 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Alan L. Cox, 9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Superpage reservation management module 36 * 37 * Any external functions defined by this module are only to be used by the 38 * virtual memory system. 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_vm.h" 45 46 #include <sys/param.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mutex.h> 51 #include <sys/queue.h> 52 #include <sys/rwlock.h> 53 #include <sys/sbuf.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 #include <sys/vmmeter.h> 57 58 #include <vm/vm.h> 59 #include <vm/vm_param.h> 60 #include <vm/vm_object.h> 61 #include <vm/vm_page.h> 62 #include <vm/vm_phys.h> 63 #include <vm/vm_radix.h> 64 #include <vm/vm_reserv.h> 65 66 /* 67 * The reservation system supports the speculative allocation of large physical 68 * pages ("superpages"). Speculative allocation enables the fully automatic 69 * utilization of superpages by the virtual memory system. In other words, no 70 * programmatic directives are required to use superpages. 71 */ 72 73 #if VM_NRESERVLEVEL > 0 74 75 /* 76 * The number of small pages that are contained in a level 0 reservation 77 */ 78 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 79 80 /* 81 * The number of bits by which a physical address is shifted to obtain the 82 * reservation number 83 */ 84 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 85 86 /* 87 * The size of a level 0 reservation in bytes 88 */ 89 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 90 91 /* 92 * Computes the index of the small page underlying the given (object, pindex) 93 * within the reservation's array of small pages. 94 */ 95 #define VM_RESERV_INDEX(object, pindex) \ 96 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 97 98 /* 99 * The size of a population map entry 100 */ 101 typedef u_long popmap_t; 102 103 /* 104 * The number of bits in a population map entry 105 */ 106 #define NBPOPMAP (NBBY * sizeof(popmap_t)) 107 108 /* 109 * The number of population map entries in a reservation 110 */ 111 #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP) 112 113 /* 114 * Clear a bit in the population map. 115 */ 116 static __inline void 117 popmap_clear(popmap_t popmap[], int i) 118 { 119 120 popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP)); 121 } 122 123 /* 124 * Set a bit in the population map. 125 */ 126 static __inline void 127 popmap_set(popmap_t popmap[], int i) 128 { 129 130 popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP); 131 } 132 133 /* 134 * Is a bit in the population map clear? 135 */ 136 static __inline boolean_t 137 popmap_is_clear(popmap_t popmap[], int i) 138 { 139 140 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0); 141 } 142 143 /* 144 * Is a bit in the population map set? 145 */ 146 static __inline boolean_t 147 popmap_is_set(popmap_t popmap[], int i) 148 { 149 150 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0); 151 } 152 153 /* 154 * The reservation structure 155 * 156 * A reservation structure is constructed whenever a large physical page is 157 * speculatively allocated to an object. The reservation provides the small 158 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 159 * within that object. The reservation's "popcnt" tracks the number of these 160 * small physical pages that are in use at any given time. When and if the 161 * reservation is not fully utilized, it appears in the queue of partially 162 * populated reservations. The reservation always appears on the containing 163 * object's list of reservations. 164 * 165 * A partially populated reservation can be broken and reclaimed at any time. 166 */ 167 struct vm_reserv { 168 TAILQ_ENTRY(vm_reserv) partpopq; 169 LIST_ENTRY(vm_reserv) objq; 170 vm_object_t object; /* containing object */ 171 vm_pindex_t pindex; /* offset within object */ 172 vm_page_t pages; /* first page of a superpage */ 173 int popcnt; /* # of pages in use */ 174 char inpartpopq; 175 popmap_t popmap[NPOPMAP]; /* bit vector of used pages */ 176 }; 177 178 /* 179 * The reservation array 180 * 181 * This array is analoguous in function to vm_page_array. It differs in the 182 * respect that it may contain a greater number of useful reservation 183 * structures than there are (physical) superpages. These "invalid" 184 * reservation structures exist to trade-off space for time in the 185 * implementation of vm_reserv_from_page(). Invalid reservation structures are 186 * distinguishable from "valid" reservation structures by inspecting the 187 * reservation's "pages" field. Invalid reservation structures have a NULL 188 * "pages" field. 189 * 190 * vm_reserv_from_page() maps a small (physical) page to an element of this 191 * array by computing a physical reservation number from the page's physical 192 * address. The physical reservation number is used as the array index. 193 * 194 * An "active" reservation is a valid reservation structure that has a non-NULL 195 * "object" field and a non-zero "popcnt" field. In other words, every active 196 * reservation belongs to a particular object. Moreover, every active 197 * reservation has an entry in the containing object's list of reservations. 198 */ 199 static vm_reserv_t vm_reserv_array; 200 201 /* 202 * The partially populated reservation queue 203 * 204 * This queue enables the fast recovery of an unused free small page from a 205 * partially populated reservation. The reservation at the head of this queue 206 * is the least recently changed, partially populated reservation. 207 * 208 * Access to this queue is synchronized by the free page queue lock. 209 */ 210 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop = 211 TAILQ_HEAD_INITIALIZER(vm_rvq_partpop); 212 213 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); 214 215 static long vm_reserv_broken; 216 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 217 &vm_reserv_broken, 0, "Cumulative number of broken reservations"); 218 219 static long vm_reserv_freed; 220 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 221 &vm_reserv_freed, 0, "Cumulative number of freed reservations"); 222 223 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); 224 225 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 226 sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); 227 228 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 229 230 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 231 sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues"); 232 233 static long vm_reserv_reclaimed; 234 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 235 &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations"); 236 237 static void vm_reserv_break(vm_reserv_t rv, vm_page_t m); 238 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 239 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 240 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 241 vm_pindex_t pindex); 242 static void vm_reserv_populate(vm_reserv_t rv, int index); 243 static void vm_reserv_reclaim(vm_reserv_t rv); 244 245 /* 246 * Returns the current number of full reservations. 247 * 248 * Since the number of full reservations is computed without acquiring the 249 * free page queue lock, the returned value may be inexact. 250 */ 251 static int 252 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) 253 { 254 vm_paddr_t paddr; 255 struct vm_phys_seg *seg; 256 vm_reserv_t rv; 257 int fullpop, segind; 258 259 fullpop = 0; 260 for (segind = 0; segind < vm_phys_nsegs; segind++) { 261 seg = &vm_phys_segs[segind]; 262 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 263 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 264 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; 265 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; 266 paddr += VM_LEVEL_0_SIZE; 267 } 268 } 269 return (sysctl_handle_int(oidp, &fullpop, 0, req)); 270 } 271 272 /* 273 * Describes the current state of the partially populated reservation queue. 274 */ 275 static int 276 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 277 { 278 struct sbuf sbuf; 279 vm_reserv_t rv; 280 int counter, error, level, unused_pages; 281 282 error = sysctl_wire_old_buffer(req, 0); 283 if (error != 0) 284 return (error); 285 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 286 sbuf_printf(&sbuf, "\nLEVEL SIZE NUMBER\n\n"); 287 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 288 counter = 0; 289 unused_pages = 0; 290 mtx_lock(&vm_page_queue_free_mtx); 291 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) { 292 counter++; 293 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 294 } 295 mtx_unlock(&vm_page_queue_free_mtx); 296 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level, 297 unused_pages * ((int)PAGE_SIZE / 1024), counter); 298 } 299 error = sbuf_finish(&sbuf); 300 sbuf_delete(&sbuf); 301 return (error); 302 } 303 304 /* 305 * Reduces the given reservation's population count. If the population count 306 * becomes zero, the reservation is destroyed. Additionally, moves the 307 * reservation to the tail of the partially populated reservation queue if the 308 * population count is non-zero. 309 * 310 * The free page queue lock must be held. 311 */ 312 static void 313 vm_reserv_depopulate(vm_reserv_t rv, int index) 314 { 315 316 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 317 KASSERT(rv->object != NULL, 318 ("vm_reserv_depopulate: reserv %p is free", rv)); 319 KASSERT(popmap_is_set(rv->popmap, index), 320 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 321 index)); 322 KASSERT(rv->popcnt > 0, 323 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 324 if (rv->inpartpopq) { 325 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 326 rv->inpartpopq = FALSE; 327 } else { 328 KASSERT(rv->pages->psind == 1, 329 ("vm_reserv_depopulate: reserv %p is already demoted", 330 rv)); 331 rv->pages->psind = 0; 332 } 333 popmap_clear(rv->popmap, index); 334 rv->popcnt--; 335 if (rv->popcnt == 0) { 336 LIST_REMOVE(rv, objq); 337 rv->object = NULL; 338 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 339 vm_reserv_freed++; 340 } else { 341 rv->inpartpopq = TRUE; 342 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 343 } 344 } 345 346 /* 347 * Returns the reservation to which the given page might belong. 348 */ 349 static __inline vm_reserv_t 350 vm_reserv_from_page(vm_page_t m) 351 { 352 353 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 354 } 355 356 /* 357 * Returns TRUE if the given reservation contains the given page index and 358 * FALSE otherwise. 359 */ 360 static __inline boolean_t 361 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 362 { 363 364 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 365 } 366 367 /* 368 * Increases the given reservation's population count. Moves the reservation 369 * to the tail of the partially populated reservation queue. 370 * 371 * The free page queue must be locked. 372 */ 373 static void 374 vm_reserv_populate(vm_reserv_t rv, int index) 375 { 376 377 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 378 KASSERT(rv->object != NULL, 379 ("vm_reserv_populate: reserv %p is free", rv)); 380 KASSERT(popmap_is_clear(rv->popmap, index), 381 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 382 index)); 383 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 384 ("vm_reserv_populate: reserv %p is already full", rv)); 385 KASSERT(rv->pages->psind == 0, 386 ("vm_reserv_populate: reserv %p is already promoted", rv)); 387 if (rv->inpartpopq) { 388 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 389 rv->inpartpopq = FALSE; 390 } 391 popmap_set(rv->popmap, index); 392 rv->popcnt++; 393 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 394 rv->inpartpopq = TRUE; 395 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 396 } else 397 rv->pages->psind = 1; 398 } 399 400 /* 401 * Allocates a contiguous set of physical pages of the given size "npages" 402 * from existing or newly created reservations. All of the physical pages 403 * must be at or above the given physical address "low" and below the given 404 * physical address "high". The given value "alignment" determines the 405 * alignment of the first physical page in the set. If the given value 406 * "boundary" is non-zero, then the set of physical pages cannot cross any 407 * physical address boundary that is a multiple of that value. Both 408 * "alignment" and "boundary" must be a power of two. 409 * 410 * The page "mpred" must immediately precede the offset "pindex" within the 411 * specified object. 412 * 413 * The object and free page queue must be locked. 414 */ 415 vm_page_t 416 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages, 417 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 418 vm_page_t mpred) 419 { 420 vm_paddr_t pa, size; 421 vm_page_t m, m_ret, msucc; 422 vm_pindex_t first, leftcap, rightcap; 423 vm_reserv_t rv; 424 u_long allocpages, maxpages, minpages; 425 int i, index, n; 426 427 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 428 VM_OBJECT_ASSERT_WLOCKED(object); 429 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 430 431 /* 432 * Is a reservation fundamentally impossible? 433 */ 434 if (pindex < VM_RESERV_INDEX(object, pindex) || 435 pindex + npages > object->size) 436 return (NULL); 437 438 /* 439 * All reservations of a particular size have the same alignment. 440 * Assuming that the first page is allocated from a reservation, the 441 * least significant bits of its physical address can be determined 442 * from its offset from the beginning of the reservation and the size 443 * of the reservation. 444 * 445 * Could the specified index within a reservation of the smallest 446 * possible size satisfy the alignment and boundary requirements? 447 */ 448 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 449 if ((pa & (alignment - 1)) != 0) 450 return (NULL); 451 size = npages << PAGE_SHIFT; 452 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 453 return (NULL); 454 455 /* 456 * Look for an existing reservation. 457 */ 458 if (mpred != NULL) { 459 KASSERT(mpred->object == object, 460 ("vm_reserv_alloc_contig: object doesn't contain mpred")); 461 KASSERT(mpred->pindex < pindex, 462 ("vm_reserv_alloc_contig: mpred doesn't precede pindex")); 463 rv = vm_reserv_from_page(mpred); 464 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 465 goto found; 466 msucc = TAILQ_NEXT(mpred, listq); 467 } else 468 msucc = TAILQ_FIRST(&object->memq); 469 if (msucc != NULL) { 470 KASSERT(msucc->pindex > pindex, 471 ("vm_reserv_alloc_contig: msucc doesn't succeed pindex")); 472 rv = vm_reserv_from_page(msucc); 473 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 474 goto found; 475 } 476 477 /* 478 * Could at least one reservation fit between the first index to the 479 * left that can be used ("leftcap") and the first index to the right 480 * that cannot be used ("rightcap")? 481 */ 482 first = pindex - VM_RESERV_INDEX(object, pindex); 483 if (mpred != NULL) { 484 if ((rv = vm_reserv_from_page(mpred))->object != object) 485 leftcap = mpred->pindex + 1; 486 else 487 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 488 if (leftcap > first) 489 return (NULL); 490 } 491 minpages = VM_RESERV_INDEX(object, pindex) + npages; 492 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 493 allocpages = maxpages; 494 if (msucc != NULL) { 495 if ((rv = vm_reserv_from_page(msucc))->object != object) 496 rightcap = msucc->pindex; 497 else 498 rightcap = rv->pindex; 499 if (first + maxpages > rightcap) { 500 if (maxpages == VM_LEVEL_0_NPAGES) 501 return (NULL); 502 503 /* 504 * At least one reservation will fit between "leftcap" 505 * and "rightcap". However, a reservation for the 506 * last of the requested pages will not fit. Reduce 507 * the size of the upcoming allocation accordingly. 508 */ 509 allocpages = minpages; 510 } 511 } 512 513 /* 514 * Would the last new reservation extend past the end of the object? 515 */ 516 if (first + maxpages > object->size) { 517 /* 518 * Don't allocate the last new reservation if the object is a 519 * vnode or backed by another object that is a vnode. 520 */ 521 if (object->type == OBJT_VNODE || 522 (object->backing_object != NULL && 523 object->backing_object->type == OBJT_VNODE)) { 524 if (maxpages == VM_LEVEL_0_NPAGES) 525 return (NULL); 526 allocpages = minpages; 527 } 528 /* Speculate that the object may grow. */ 529 } 530 531 /* 532 * Allocate the physical pages. The alignment and boundary specified 533 * for this allocation may be different from the alignment and 534 * boundary specified for the requested pages. For instance, the 535 * specified index may not be the first page within the first new 536 * reservation. 537 */ 538 m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment, 539 VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0); 540 if (m == NULL) 541 return (NULL); 542 543 /* 544 * The allocated physical pages always begin at a reservation 545 * boundary, but they do not always end at a reservation boundary. 546 * Initialize every reservation that is completely covered by the 547 * allocated physical pages. 548 */ 549 m_ret = NULL; 550 index = VM_RESERV_INDEX(object, pindex); 551 do { 552 rv = vm_reserv_from_page(m); 553 KASSERT(rv->pages == m, 554 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 555 rv)); 556 KASSERT(rv->object == NULL, 557 ("vm_reserv_alloc_contig: reserv %p isn't free", rv)); 558 LIST_INSERT_HEAD(&object->rvq, rv, objq); 559 rv->object = object; 560 rv->pindex = first; 561 KASSERT(rv->popcnt == 0, 562 ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted", 563 rv)); 564 KASSERT(!rv->inpartpopq, 565 ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE", 566 rv)); 567 for (i = 0; i < NPOPMAP; i++) 568 KASSERT(rv->popmap[i] == 0, 569 ("vm_reserv_alloc_contig: reserv %p's popmap is corrupted", 570 rv)); 571 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 572 for (i = 0; i < n; i++) 573 vm_reserv_populate(rv, index + i); 574 npages -= n; 575 if (m_ret == NULL) { 576 m_ret = &rv->pages[index]; 577 index = 0; 578 } 579 m += VM_LEVEL_0_NPAGES; 580 first += VM_LEVEL_0_NPAGES; 581 allocpages -= VM_LEVEL_0_NPAGES; 582 } while (allocpages >= VM_LEVEL_0_NPAGES); 583 return (m_ret); 584 585 /* 586 * Found a matching reservation. 587 */ 588 found: 589 index = VM_RESERV_INDEX(object, pindex); 590 /* Does the allocation fit within the reservation? */ 591 if (index + npages > VM_LEVEL_0_NPAGES) 592 return (NULL); 593 m = &rv->pages[index]; 594 pa = VM_PAGE_TO_PHYS(m); 595 if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 || 596 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 597 return (NULL); 598 /* Handle vm_page_rename(m, new_object, ...). */ 599 for (i = 0; i < npages; i++) 600 if (popmap_is_set(rv->popmap, index + i)) 601 return (NULL); 602 for (i = 0; i < npages; i++) 603 vm_reserv_populate(rv, index + i); 604 return (m); 605 } 606 607 /* 608 * Allocates a page from an existing or newly created reservation. 609 * 610 * The page "mpred" must immediately precede the offset "pindex" within the 611 * specified object. 612 * 613 * The object and free page queue must be locked. 614 */ 615 vm_page_t 616 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred) 617 { 618 vm_page_t m, msucc; 619 vm_pindex_t first, leftcap, rightcap; 620 vm_reserv_t rv; 621 int i, index; 622 623 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 624 VM_OBJECT_ASSERT_WLOCKED(object); 625 626 /* 627 * Is a reservation fundamentally impossible? 628 */ 629 if (pindex < VM_RESERV_INDEX(object, pindex) || 630 pindex >= object->size) 631 return (NULL); 632 633 /* 634 * Look for an existing reservation. 635 */ 636 if (mpred != NULL) { 637 KASSERT(mpred->object == object, 638 ("vm_reserv_alloc_page: object doesn't contain mpred")); 639 KASSERT(mpred->pindex < pindex, 640 ("vm_reserv_alloc_page: mpred doesn't precede pindex")); 641 rv = vm_reserv_from_page(mpred); 642 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 643 goto found; 644 msucc = TAILQ_NEXT(mpred, listq); 645 } else 646 msucc = TAILQ_FIRST(&object->memq); 647 if (msucc != NULL) { 648 KASSERT(msucc->pindex > pindex, 649 ("vm_reserv_alloc_page: msucc doesn't succeed pindex")); 650 rv = vm_reserv_from_page(msucc); 651 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 652 goto found; 653 } 654 655 /* 656 * Could a reservation fit between the first index to the left that 657 * can be used and the first index to the right that cannot be used? 658 */ 659 first = pindex - VM_RESERV_INDEX(object, pindex); 660 if (mpred != NULL) { 661 if ((rv = vm_reserv_from_page(mpred))->object != object) 662 leftcap = mpred->pindex + 1; 663 else 664 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 665 if (leftcap > first) 666 return (NULL); 667 } 668 if (msucc != NULL) { 669 if ((rv = vm_reserv_from_page(msucc))->object != object) 670 rightcap = msucc->pindex; 671 else 672 rightcap = rv->pindex; 673 if (first + VM_LEVEL_0_NPAGES > rightcap) 674 return (NULL); 675 } 676 677 /* 678 * Would a new reservation extend past the end of the object? 679 */ 680 if (first + VM_LEVEL_0_NPAGES > object->size) { 681 /* 682 * Don't allocate a new reservation if the object is a vnode or 683 * backed by another object that is a vnode. 684 */ 685 if (object->type == OBJT_VNODE || 686 (object->backing_object != NULL && 687 object->backing_object->type == OBJT_VNODE)) 688 return (NULL); 689 /* Speculate that the object may grow. */ 690 } 691 692 /* 693 * Allocate and populate the new reservation. 694 */ 695 m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); 696 if (m == NULL) 697 return (NULL); 698 rv = vm_reserv_from_page(m); 699 KASSERT(rv->pages == m, 700 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 701 KASSERT(rv->object == NULL, 702 ("vm_reserv_alloc_page: reserv %p isn't free", rv)); 703 LIST_INSERT_HEAD(&object->rvq, rv, objq); 704 rv->object = object; 705 rv->pindex = first; 706 KASSERT(rv->popcnt == 0, 707 ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv)); 708 KASSERT(!rv->inpartpopq, 709 ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv)); 710 for (i = 0; i < NPOPMAP; i++) 711 KASSERT(rv->popmap[i] == 0, 712 ("vm_reserv_alloc_page: reserv %p's popmap is corrupted", 713 rv)); 714 index = VM_RESERV_INDEX(object, pindex); 715 vm_reserv_populate(rv, index); 716 return (&rv->pages[index]); 717 718 /* 719 * Found a matching reservation. 720 */ 721 found: 722 index = VM_RESERV_INDEX(object, pindex); 723 m = &rv->pages[index]; 724 /* Handle vm_page_rename(m, new_object, ...). */ 725 if (popmap_is_set(rv->popmap, index)) 726 return (NULL); 727 vm_reserv_populate(rv, index); 728 return (m); 729 } 730 731 /* 732 * Breaks the given reservation. Except for the specified free page, all free 733 * pages in the reservation are returned to the physical memory allocator. 734 * The reservation's population count and map are reset to their initial 735 * state. 736 * 737 * The given reservation must not be in the partially populated reservation 738 * queue. The free page queue lock must be held. 739 */ 740 static void 741 vm_reserv_break(vm_reserv_t rv, vm_page_t m) 742 { 743 int begin_zeroes, hi, i, lo; 744 745 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 746 KASSERT(rv->object != NULL, 747 ("vm_reserv_break: reserv %p is free", rv)); 748 KASSERT(!rv->inpartpopq, 749 ("vm_reserv_break: reserv %p's inpartpopq is TRUE", rv)); 750 LIST_REMOVE(rv, objq); 751 rv->object = NULL; 752 if (m != NULL) { 753 /* 754 * Since the reservation is being broken, there is no harm in 755 * abusing the population map to stop "m" from being returned 756 * to the physical memory allocator. 757 */ 758 i = m - rv->pages; 759 KASSERT(popmap_is_clear(rv->popmap, i), 760 ("vm_reserv_break: reserv %p's popmap is corrupted", rv)); 761 popmap_set(rv->popmap, i); 762 rv->popcnt++; 763 } 764 i = hi = 0; 765 do { 766 /* Find the next 0 bit. Any previous 0 bits are < "hi". */ 767 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 768 if (lo == 0) { 769 /* Redundantly clears bits < "hi". */ 770 rv->popmap[i] = 0; 771 rv->popcnt -= NBPOPMAP - hi; 772 while (++i < NPOPMAP) { 773 lo = ffsl(~rv->popmap[i]); 774 if (lo == 0) { 775 rv->popmap[i] = 0; 776 rv->popcnt -= NBPOPMAP; 777 } else 778 break; 779 } 780 if (i == NPOPMAP) 781 break; 782 hi = 0; 783 } 784 KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo)); 785 /* Convert from ffsl() to ordinary bit numbering. */ 786 lo--; 787 if (lo > 0) { 788 /* Redundantly clears bits < "hi". */ 789 rv->popmap[i] &= ~((1UL << lo) - 1); 790 rv->popcnt -= lo - hi; 791 } 792 begin_zeroes = NBPOPMAP * i + lo; 793 /* Find the next 1 bit. */ 794 do 795 hi = ffsl(rv->popmap[i]); 796 while (hi == 0 && ++i < NPOPMAP); 797 if (i != NPOPMAP) 798 /* Convert from ffsl() to ordinary bit numbering. */ 799 hi--; 800 vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i + 801 hi - begin_zeroes); 802 } while (i < NPOPMAP); 803 KASSERT(rv->popcnt == 0, 804 ("vm_reserv_break: reserv %p's popcnt is corrupted", rv)); 805 vm_reserv_broken++; 806 } 807 808 /* 809 * Breaks all reservations belonging to the given object. 810 */ 811 void 812 vm_reserv_break_all(vm_object_t object) 813 { 814 vm_reserv_t rv; 815 816 mtx_lock(&vm_page_queue_free_mtx); 817 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 818 KASSERT(rv->object == object, 819 ("vm_reserv_break_all: reserv %p is corrupted", rv)); 820 if (rv->inpartpopq) { 821 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 822 rv->inpartpopq = FALSE; 823 } 824 vm_reserv_break(rv, NULL); 825 } 826 mtx_unlock(&vm_page_queue_free_mtx); 827 } 828 829 /* 830 * Frees the given page if it belongs to a reservation. Returns TRUE if the 831 * page is freed and FALSE otherwise. 832 * 833 * The free page queue lock must be held. 834 */ 835 boolean_t 836 vm_reserv_free_page(vm_page_t m) 837 { 838 vm_reserv_t rv; 839 840 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 841 rv = vm_reserv_from_page(m); 842 if (rv->object == NULL) 843 return (FALSE); 844 vm_reserv_depopulate(rv, m - rv->pages); 845 return (TRUE); 846 } 847 848 /* 849 * Initializes the reservation management system. Specifically, initializes 850 * the reservation array. 851 * 852 * Requires that vm_page_array and first_page are initialized! 853 */ 854 void 855 vm_reserv_init(void) 856 { 857 vm_paddr_t paddr; 858 struct vm_phys_seg *seg; 859 int segind; 860 861 /* 862 * Initialize the reservation array. Specifically, initialize the 863 * "pages" field for every element that has an underlying superpage. 864 */ 865 for (segind = 0; segind < vm_phys_nsegs; segind++) { 866 seg = &vm_phys_segs[segind]; 867 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 868 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 869 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages = 870 PHYS_TO_VM_PAGE(paddr); 871 paddr += VM_LEVEL_0_SIZE; 872 } 873 } 874 } 875 876 /* 877 * Returns true if the given page belongs to a reservation and that page is 878 * free. Otherwise, returns false. 879 */ 880 bool 881 vm_reserv_is_page_free(vm_page_t m) 882 { 883 vm_reserv_t rv; 884 885 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 886 rv = vm_reserv_from_page(m); 887 if (rv->object == NULL) 888 return (false); 889 return (popmap_is_clear(rv->popmap, m - rv->pages)); 890 } 891 892 /* 893 * If the given page belongs to a reservation, returns the level of that 894 * reservation. Otherwise, returns -1. 895 */ 896 int 897 vm_reserv_level(vm_page_t m) 898 { 899 vm_reserv_t rv; 900 901 rv = vm_reserv_from_page(m); 902 return (rv->object != NULL ? 0 : -1); 903 } 904 905 /* 906 * Returns a reservation level if the given page belongs to a fully populated 907 * reservation and -1 otherwise. 908 */ 909 int 910 vm_reserv_level_iffullpop(vm_page_t m) 911 { 912 vm_reserv_t rv; 913 914 rv = vm_reserv_from_page(m); 915 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 916 } 917 918 /* 919 * Breaks the given partially populated reservation, releasing its free pages 920 * to the physical memory allocator. 921 * 922 * The free page queue lock must be held. 923 */ 924 static void 925 vm_reserv_reclaim(vm_reserv_t rv) 926 { 927 928 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 929 KASSERT(rv->inpartpopq, 930 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 931 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 932 rv->inpartpopq = FALSE; 933 vm_reserv_break(rv, NULL); 934 vm_reserv_reclaimed++; 935 } 936 937 /* 938 * Breaks the reservation at the head of the partially populated reservation 939 * queue, releasing its free pages to the physical memory allocator. Returns 940 * TRUE if a reservation is broken and FALSE otherwise. 941 * 942 * The free page queue lock must be held. 943 */ 944 boolean_t 945 vm_reserv_reclaim_inactive(void) 946 { 947 vm_reserv_t rv; 948 949 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 950 if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) { 951 vm_reserv_reclaim(rv); 952 return (TRUE); 953 } 954 return (FALSE); 955 } 956 957 /* 958 * Searches the partially populated reservation queue for the least recently 959 * changed reservation with free pages that satisfy the given request for 960 * contiguous physical memory. If a satisfactory reservation is found, it is 961 * broken. Returns TRUE if a reservation is broken and FALSE otherwise. 962 * 963 * The free page queue lock must be held. 964 */ 965 boolean_t 966 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 967 u_long alignment, vm_paddr_t boundary) 968 { 969 vm_paddr_t pa, size; 970 vm_reserv_t rv; 971 int hi, i, lo, low_index, next_free; 972 973 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 974 if (npages > VM_LEVEL_0_NPAGES - 1) 975 return (FALSE); 976 size = npages << PAGE_SHIFT; 977 TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) { 978 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); 979 if (pa + PAGE_SIZE - size < low) { 980 /* This entire reservation is too low; go to next. */ 981 continue; 982 } 983 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 984 if (pa + size > high) { 985 /* This entire reservation is too high; go to next. */ 986 continue; 987 } 988 if (pa < low) { 989 /* Start the search for free pages at "low". */ 990 low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT; 991 i = low_index / NBPOPMAP; 992 hi = low_index % NBPOPMAP; 993 } else 994 i = hi = 0; 995 do { 996 /* Find the next free page. */ 997 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 998 while (lo == 0 && ++i < NPOPMAP) 999 lo = ffsl(~rv->popmap[i]); 1000 if (i == NPOPMAP) 1001 break; 1002 /* Convert from ffsl() to ordinary bit numbering. */ 1003 lo--; 1004 next_free = NBPOPMAP * i + lo; 1005 pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]); 1006 KASSERT(pa >= low, 1007 ("vm_reserv_reclaim_contig: pa is too low")); 1008 if (pa + size > high) { 1009 /* The rest of this reservation is too high. */ 1010 break; 1011 } else if ((pa & (alignment - 1)) != 0 || 1012 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) { 1013 /* 1014 * The current page doesn't meet the alignment 1015 * and/or boundary requirements. Continue 1016 * searching this reservation until the rest 1017 * of its free pages are either excluded or 1018 * exhausted. 1019 */ 1020 hi = lo + 1; 1021 if (hi >= NBPOPMAP) { 1022 hi = 0; 1023 i++; 1024 } 1025 continue; 1026 } 1027 /* Find the next used page. */ 1028 hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1)); 1029 while (hi == 0 && ++i < NPOPMAP) { 1030 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >= 1031 size) { 1032 vm_reserv_reclaim(rv); 1033 return (TRUE); 1034 } 1035 hi = ffsl(rv->popmap[i]); 1036 } 1037 /* Convert from ffsl() to ordinary bit numbering. */ 1038 if (i != NPOPMAP) 1039 hi--; 1040 if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >= 1041 size) { 1042 vm_reserv_reclaim(rv); 1043 return (TRUE); 1044 } 1045 } while (i < NPOPMAP); 1046 } 1047 return (FALSE); 1048 } 1049 1050 /* 1051 * Transfers the reservation underlying the given page to a new object. 1052 * 1053 * The object must be locked. 1054 */ 1055 void 1056 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 1057 vm_pindex_t old_object_offset) 1058 { 1059 vm_reserv_t rv; 1060 1061 VM_OBJECT_ASSERT_WLOCKED(new_object); 1062 rv = vm_reserv_from_page(m); 1063 if (rv->object == old_object) { 1064 mtx_lock(&vm_page_queue_free_mtx); 1065 if (rv->object == old_object) { 1066 LIST_REMOVE(rv, objq); 1067 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 1068 rv->object = new_object; 1069 rv->pindex -= old_object_offset; 1070 } 1071 mtx_unlock(&vm_page_queue_free_mtx); 1072 } 1073 } 1074 1075 /* 1076 * Returns the size (in bytes) of a reservation of the specified level. 1077 */ 1078 int 1079 vm_reserv_size(int level) 1080 { 1081 1082 switch (level) { 1083 case 0: 1084 return (VM_LEVEL_0_SIZE); 1085 case -1: 1086 return (PAGE_SIZE); 1087 default: 1088 return (0); 1089 } 1090 } 1091 1092 /* 1093 * Allocates the virtual and physical memory required by the reservation 1094 * management system's data structures, in particular, the reservation array. 1095 */ 1096 vm_paddr_t 1097 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) 1098 { 1099 vm_paddr_t new_end; 1100 size_t size; 1101 1102 /* 1103 * Calculate the size (in bytes) of the reservation array. Round up 1104 * from "high_water" because every small page is mapped to an element 1105 * in the reservation array based on its physical address. Thus, the 1106 * number of elements in the reservation array can be greater than the 1107 * number of superpages. 1108 */ 1109 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); 1110 1111 /* 1112 * Allocate and map the physical memory for the reservation array. The 1113 * next available virtual address is returned by reference. 1114 */ 1115 new_end = end - round_page(size); 1116 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 1117 VM_PROT_READ | VM_PROT_WRITE); 1118 bzero(vm_reserv_array, size); 1119 1120 /* 1121 * Return the next available physical address. 1122 */ 1123 return (new_end); 1124 } 1125 1126 /* 1127 * Returns the superpage containing the given page. 1128 */ 1129 vm_page_t 1130 vm_reserv_to_superpage(vm_page_t m) 1131 { 1132 vm_reserv_t rv; 1133 1134 VM_OBJECT_ASSERT_LOCKED(m->object); 1135 rv = vm_reserv_from_page(m); 1136 return (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES ? 1137 rv->pages : NULL); 1138 } 1139 1140 #endif /* VM_NRESERVLEVEL > 0 */ 1141