xref: /freebsd/sys/vm/vm_reserv.c (revision d6b92ffa990dc57d8a969a98e3ca4e25ba39cbb2)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Superpage reservation management module
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_vm.h"
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mutex.h>
49 #include <sys/queue.h>
50 #include <sys/rwlock.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/vmmeter.h>
55 
56 #include <vm/vm.h>
57 #include <vm/vm_param.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_phys.h>
61 #include <vm/vm_radix.h>
62 #include <vm/vm_reserv.h>
63 
64 /*
65  * The reservation system supports the speculative allocation of large physical
66  * pages ("superpages").  Speculative allocation enables the fully automatic
67  * utilization of superpages by the virtual memory system.  In other words, no
68  * programmatic directives are required to use superpages.
69  */
70 
71 #if VM_NRESERVLEVEL > 0
72 
73 /*
74  * The number of small pages that are contained in a level 0 reservation
75  */
76 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
77 
78 /*
79  * The number of bits by which a physical address is shifted to obtain the
80  * reservation number
81  */
82 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
83 
84 /*
85  * The size of a level 0 reservation in bytes
86  */
87 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
88 
89 /*
90  * Computes the index of the small page underlying the given (object, pindex)
91  * within the reservation's array of small pages.
92  */
93 #define	VM_RESERV_INDEX(object, pindex)	\
94     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
95 
96 /*
97  * The size of a population map entry
98  */
99 typedef	u_long		popmap_t;
100 
101 /*
102  * The number of bits in a population map entry
103  */
104 #define	NBPOPMAP	(NBBY * sizeof(popmap_t))
105 
106 /*
107  * The number of population map entries in a reservation
108  */
109 #define	NPOPMAP		howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
110 
111 /*
112  * Clear a bit in the population map.
113  */
114 static __inline void
115 popmap_clear(popmap_t popmap[], int i)
116 {
117 
118 	popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
119 }
120 
121 /*
122  * Set a bit in the population map.
123  */
124 static __inline void
125 popmap_set(popmap_t popmap[], int i)
126 {
127 
128 	popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
129 }
130 
131 /*
132  * Is a bit in the population map clear?
133  */
134 static __inline boolean_t
135 popmap_is_clear(popmap_t popmap[], int i)
136 {
137 
138 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
139 }
140 
141 /*
142  * Is a bit in the population map set?
143  */
144 static __inline boolean_t
145 popmap_is_set(popmap_t popmap[], int i)
146 {
147 
148 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
149 }
150 
151 /*
152  * The reservation structure
153  *
154  * A reservation structure is constructed whenever a large physical page is
155  * speculatively allocated to an object.  The reservation provides the small
156  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
157  * within that object.  The reservation's "popcnt" tracks the number of these
158  * small physical pages that are in use at any given time.  When and if the
159  * reservation is not fully utilized, it appears in the queue of partially
160  * populated reservations.  The reservation always appears on the containing
161  * object's list of reservations.
162  *
163  * A partially populated reservation can be broken and reclaimed at any time.
164  */
165 struct vm_reserv {
166 	TAILQ_ENTRY(vm_reserv) partpopq;
167 	LIST_ENTRY(vm_reserv) objq;
168 	vm_object_t	object;			/* containing object */
169 	vm_pindex_t	pindex;			/* offset within object */
170 	vm_page_t	pages;			/* first page of a superpage */
171 	int		popcnt;			/* # of pages in use */
172 	char		inpartpopq;
173 	popmap_t	popmap[NPOPMAP];	/* bit vector of used pages */
174 };
175 
176 /*
177  * The reservation array
178  *
179  * This array is analoguous in function to vm_page_array.  It differs in the
180  * respect that it may contain a greater number of useful reservation
181  * structures than there are (physical) superpages.  These "invalid"
182  * reservation structures exist to trade-off space for time in the
183  * implementation of vm_reserv_from_page().  Invalid reservation structures are
184  * distinguishable from "valid" reservation structures by inspecting the
185  * reservation's "pages" field.  Invalid reservation structures have a NULL
186  * "pages" field.
187  *
188  * vm_reserv_from_page() maps a small (physical) page to an element of this
189  * array by computing a physical reservation number from the page's physical
190  * address.  The physical reservation number is used as the array index.
191  *
192  * An "active" reservation is a valid reservation structure that has a non-NULL
193  * "object" field and a non-zero "popcnt" field.  In other words, every active
194  * reservation belongs to a particular object.  Moreover, every active
195  * reservation has an entry in the containing object's list of reservations.
196  */
197 static vm_reserv_t vm_reserv_array;
198 
199 /*
200  * The partially populated reservation queue
201  *
202  * This queue enables the fast recovery of an unused free small page from a
203  * partially populated reservation.  The reservation at the head of this queue
204  * is the least recently changed, partially populated reservation.
205  *
206  * Access to this queue is synchronized by the free page queue lock.
207  */
208 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
209 			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
210 
211 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
212 
213 static long vm_reserv_broken;
214 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
215     &vm_reserv_broken, 0, "Cumulative number of broken reservations");
216 
217 static long vm_reserv_freed;
218 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
219     &vm_reserv_freed, 0, "Cumulative number of freed reservations");
220 
221 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
222 
223 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
224     sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
225 
226 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
227 
228 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
229     sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
230 
231 static long vm_reserv_reclaimed;
232 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
233     &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
234 
235 static void		vm_reserv_break(vm_reserv_t rv, vm_page_t m);
236 static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
237 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
238 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
239 			    vm_pindex_t pindex);
240 static void		vm_reserv_populate(vm_reserv_t rv, int index);
241 static void		vm_reserv_reclaim(vm_reserv_t rv);
242 
243 /*
244  * Returns the current number of full reservations.
245  *
246  * Since the number of full reservations is computed without acquiring the
247  * free page queue lock, the returned value may be inexact.
248  */
249 static int
250 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
251 {
252 	vm_paddr_t paddr;
253 	struct vm_phys_seg *seg;
254 	vm_reserv_t rv;
255 	int fullpop, segind;
256 
257 	fullpop = 0;
258 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
259 		seg = &vm_phys_segs[segind];
260 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
261 		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
262 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
263 			fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
264 			paddr += VM_LEVEL_0_SIZE;
265 		}
266 	}
267 	return (sysctl_handle_int(oidp, &fullpop, 0, req));
268 }
269 
270 /*
271  * Describes the current state of the partially populated reservation queue.
272  */
273 static int
274 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
275 {
276 	struct sbuf sbuf;
277 	vm_reserv_t rv;
278 	int counter, error, level, unused_pages;
279 
280 	error = sysctl_wire_old_buffer(req, 0);
281 	if (error != 0)
282 		return (error);
283 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
284 	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
285 	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
286 		counter = 0;
287 		unused_pages = 0;
288 		mtx_lock(&vm_page_queue_free_mtx);
289 		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
290 			counter++;
291 			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
292 		}
293 		mtx_unlock(&vm_page_queue_free_mtx);
294 		sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
295 		    unused_pages * ((int)PAGE_SIZE / 1024), counter);
296 	}
297 	error = sbuf_finish(&sbuf);
298 	sbuf_delete(&sbuf);
299 	return (error);
300 }
301 
302 /*
303  * Reduces the given reservation's population count.  If the population count
304  * becomes zero, the reservation is destroyed.  Additionally, moves the
305  * reservation to the tail of the partially populated reservation queue if the
306  * population count is non-zero.
307  *
308  * The free page queue lock must be held.
309  */
310 static void
311 vm_reserv_depopulate(vm_reserv_t rv, int index)
312 {
313 
314 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
315 	KASSERT(rv->object != NULL,
316 	    ("vm_reserv_depopulate: reserv %p is free", rv));
317 	KASSERT(popmap_is_set(rv->popmap, index),
318 	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
319 	    index));
320 	KASSERT(rv->popcnt > 0,
321 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
322 	if (rv->inpartpopq) {
323 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
324 		rv->inpartpopq = FALSE;
325 	} else {
326 		KASSERT(rv->pages->psind == 1,
327 		    ("vm_reserv_depopulate: reserv %p is already demoted",
328 		    rv));
329 		rv->pages->psind = 0;
330 	}
331 	popmap_clear(rv->popmap, index);
332 	rv->popcnt--;
333 	if (rv->popcnt == 0) {
334 		LIST_REMOVE(rv, objq);
335 		rv->object = NULL;
336 		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
337 		vm_reserv_freed++;
338 	} else {
339 		rv->inpartpopq = TRUE;
340 		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
341 	}
342 }
343 
344 /*
345  * Returns the reservation to which the given page might belong.
346  */
347 static __inline vm_reserv_t
348 vm_reserv_from_page(vm_page_t m)
349 {
350 
351 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
352 }
353 
354 /*
355  * Returns TRUE if the given reservation contains the given page index and
356  * FALSE otherwise.
357  */
358 static __inline boolean_t
359 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
360 {
361 
362 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
363 }
364 
365 /*
366  * Increases the given reservation's population count.  Moves the reservation
367  * to the tail of the partially populated reservation queue.
368  *
369  * The free page queue must be locked.
370  */
371 static void
372 vm_reserv_populate(vm_reserv_t rv, int index)
373 {
374 
375 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
376 	KASSERT(rv->object != NULL,
377 	    ("vm_reserv_populate: reserv %p is free", rv));
378 	KASSERT(popmap_is_clear(rv->popmap, index),
379 	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
380 	    index));
381 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
382 	    ("vm_reserv_populate: reserv %p is already full", rv));
383 	KASSERT(rv->pages->psind == 0,
384 	    ("vm_reserv_populate: reserv %p is already promoted", rv));
385 	if (rv->inpartpopq) {
386 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
387 		rv->inpartpopq = FALSE;
388 	}
389 	popmap_set(rv->popmap, index);
390 	rv->popcnt++;
391 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
392 		rv->inpartpopq = TRUE;
393 		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
394 	} else
395 		rv->pages->psind = 1;
396 }
397 
398 /*
399  * Allocates a contiguous set of physical pages of the given size "npages"
400  * from existing or newly created reservations.  All of the physical pages
401  * must be at or above the given physical address "low" and below the given
402  * physical address "high".  The given value "alignment" determines the
403  * alignment of the first physical page in the set.  If the given value
404  * "boundary" is non-zero, then the set of physical pages cannot cross any
405  * physical address boundary that is a multiple of that value.  Both
406  * "alignment" and "boundary" must be a power of two.
407  *
408  * The page "mpred" must immediately precede the offset "pindex" within the
409  * specified object.
410  *
411  * The object and free page queue must be locked.
412  */
413 vm_page_t
414 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages,
415     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
416     vm_page_t mpred)
417 {
418 	vm_paddr_t pa, size;
419 	vm_page_t m, m_ret, msucc;
420 	vm_pindex_t first, leftcap, rightcap;
421 	vm_reserv_t rv;
422 	u_long allocpages, maxpages, minpages;
423 	int i, index, n;
424 
425 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
426 	VM_OBJECT_ASSERT_WLOCKED(object);
427 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
428 
429 	/*
430 	 * Is a reservation fundamentally impossible?
431 	 */
432 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
433 	    pindex + npages > object->size)
434 		return (NULL);
435 
436 	/*
437 	 * All reservations of a particular size have the same alignment.
438 	 * Assuming that the first page is allocated from a reservation, the
439 	 * least significant bits of its physical address can be determined
440 	 * from its offset from the beginning of the reservation and the size
441 	 * of the reservation.
442 	 *
443 	 * Could the specified index within a reservation of the smallest
444 	 * possible size satisfy the alignment and boundary requirements?
445 	 */
446 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
447 	if ((pa & (alignment - 1)) != 0)
448 		return (NULL);
449 	size = npages << PAGE_SHIFT;
450 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
451 		return (NULL);
452 
453 	/*
454 	 * Look for an existing reservation.
455 	 */
456 	if (mpred != NULL) {
457 		KASSERT(mpred->object == object,
458 		    ("vm_reserv_alloc_contig: object doesn't contain mpred"));
459 		KASSERT(mpred->pindex < pindex,
460 		    ("vm_reserv_alloc_contig: mpred doesn't precede pindex"));
461 		rv = vm_reserv_from_page(mpred);
462 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
463 			goto found;
464 		msucc = TAILQ_NEXT(mpred, listq);
465 	} else
466 		msucc = TAILQ_FIRST(&object->memq);
467 	if (msucc != NULL) {
468 		KASSERT(msucc->pindex > pindex,
469 		    ("vm_reserv_alloc_contig: msucc doesn't succeed pindex"));
470 		rv = vm_reserv_from_page(msucc);
471 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
472 			goto found;
473 	}
474 
475 	/*
476 	 * Could at least one reservation fit between the first index to the
477 	 * left that can be used ("leftcap") and the first index to the right
478 	 * that cannot be used ("rightcap")?
479 	 */
480 	first = pindex - VM_RESERV_INDEX(object, pindex);
481 	if (mpred != NULL) {
482 		if ((rv = vm_reserv_from_page(mpred))->object != object)
483 			leftcap = mpred->pindex + 1;
484 		else
485 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
486 		if (leftcap > first)
487 			return (NULL);
488 	}
489 	minpages = VM_RESERV_INDEX(object, pindex) + npages;
490 	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
491 	allocpages = maxpages;
492 	if (msucc != NULL) {
493 		if ((rv = vm_reserv_from_page(msucc))->object != object)
494 			rightcap = msucc->pindex;
495 		else
496 			rightcap = rv->pindex;
497 		if (first + maxpages > rightcap) {
498 			if (maxpages == VM_LEVEL_0_NPAGES)
499 				return (NULL);
500 
501 			/*
502 			 * At least one reservation will fit between "leftcap"
503 			 * and "rightcap".  However, a reservation for the
504 			 * last of the requested pages will not fit.  Reduce
505 			 * the size of the upcoming allocation accordingly.
506 			 */
507 			allocpages = minpages;
508 		}
509 	}
510 
511 	/*
512 	 * Would the last new reservation extend past the end of the object?
513 	 */
514 	if (first + maxpages > object->size) {
515 		/*
516 		 * Don't allocate the last new reservation if the object is a
517 		 * vnode or backed by another object that is a vnode.
518 		 */
519 		if (object->type == OBJT_VNODE ||
520 		    (object->backing_object != NULL &&
521 		    object->backing_object->type == OBJT_VNODE)) {
522 			if (maxpages == VM_LEVEL_0_NPAGES)
523 				return (NULL);
524 			allocpages = minpages;
525 		}
526 		/* Speculate that the object may grow. */
527 	}
528 
529 	/*
530 	 * Allocate the physical pages.  The alignment and boundary specified
531 	 * for this allocation may be different from the alignment and
532 	 * boundary specified for the requested pages.  For instance, the
533 	 * specified index may not be the first page within the first new
534 	 * reservation.
535 	 */
536 	m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment,
537 	    VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0);
538 	if (m == NULL)
539 		return (NULL);
540 
541 	/*
542 	 * The allocated physical pages always begin at a reservation
543 	 * boundary, but they do not always end at a reservation boundary.
544 	 * Initialize every reservation that is completely covered by the
545 	 * allocated physical pages.
546 	 */
547 	m_ret = NULL;
548 	index = VM_RESERV_INDEX(object, pindex);
549 	do {
550 		rv = vm_reserv_from_page(m);
551 		KASSERT(rv->pages == m,
552 		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
553 		    rv));
554 		KASSERT(rv->object == NULL,
555 		    ("vm_reserv_alloc_contig: reserv %p isn't free", rv));
556 		LIST_INSERT_HEAD(&object->rvq, rv, objq);
557 		rv->object = object;
558 		rv->pindex = first;
559 		KASSERT(rv->popcnt == 0,
560 		    ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted",
561 		    rv));
562 		KASSERT(!rv->inpartpopq,
563 		    ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE",
564 		    rv));
565 		for (i = 0; i < NPOPMAP; i++)
566 			KASSERT(rv->popmap[i] == 0,
567 		    ("vm_reserv_alloc_contig: reserv %p's popmap is corrupted",
568 			    rv));
569 		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
570 		for (i = 0; i < n; i++)
571 			vm_reserv_populate(rv, index + i);
572 		npages -= n;
573 		if (m_ret == NULL) {
574 			m_ret = &rv->pages[index];
575 			index = 0;
576 		}
577 		m += VM_LEVEL_0_NPAGES;
578 		first += VM_LEVEL_0_NPAGES;
579 		allocpages -= VM_LEVEL_0_NPAGES;
580 	} while (allocpages >= VM_LEVEL_0_NPAGES);
581 	return (m_ret);
582 
583 	/*
584 	 * Found a matching reservation.
585 	 */
586 found:
587 	index = VM_RESERV_INDEX(object, pindex);
588 	/* Does the allocation fit within the reservation? */
589 	if (index + npages > VM_LEVEL_0_NPAGES)
590 		return (NULL);
591 	m = &rv->pages[index];
592 	pa = VM_PAGE_TO_PHYS(m);
593 	if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
594 	    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
595 		return (NULL);
596 	/* Handle vm_page_rename(m, new_object, ...). */
597 	for (i = 0; i < npages; i++)
598 		if (popmap_is_set(rv->popmap, index + i))
599 			return (NULL);
600 	for (i = 0; i < npages; i++)
601 		vm_reserv_populate(rv, index + i);
602 	return (m);
603 }
604 
605 /*
606  * Allocates a page from an existing or newly created reservation.
607  *
608  * The page "mpred" must immediately precede the offset "pindex" within the
609  * specified object.
610  *
611  * The object and free page queue must be locked.
612  */
613 vm_page_t
614 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred)
615 {
616 	vm_page_t m, msucc;
617 	vm_pindex_t first, leftcap, rightcap;
618 	vm_reserv_t rv;
619 	int i, index;
620 
621 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
622 	VM_OBJECT_ASSERT_WLOCKED(object);
623 
624 	/*
625 	 * Is a reservation fundamentally impossible?
626 	 */
627 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
628 	    pindex >= object->size)
629 		return (NULL);
630 
631 	/*
632 	 * Look for an existing reservation.
633 	 */
634 	if (mpred != NULL) {
635 		KASSERT(mpred->object == object,
636 		    ("vm_reserv_alloc_page: object doesn't contain mpred"));
637 		KASSERT(mpred->pindex < pindex,
638 		    ("vm_reserv_alloc_page: mpred doesn't precede pindex"));
639 		rv = vm_reserv_from_page(mpred);
640 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
641 			goto found;
642 		msucc = TAILQ_NEXT(mpred, listq);
643 	} else
644 		msucc = TAILQ_FIRST(&object->memq);
645 	if (msucc != NULL) {
646 		KASSERT(msucc->pindex > pindex,
647 		    ("vm_reserv_alloc_page: msucc doesn't succeed pindex"));
648 		rv = vm_reserv_from_page(msucc);
649 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
650 			goto found;
651 	}
652 
653 	/*
654 	 * Could a reservation fit between the first index to the left that
655 	 * can be used and the first index to the right that cannot be used?
656 	 */
657 	first = pindex - VM_RESERV_INDEX(object, pindex);
658 	if (mpred != NULL) {
659 		if ((rv = vm_reserv_from_page(mpred))->object != object)
660 			leftcap = mpred->pindex + 1;
661 		else
662 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
663 		if (leftcap > first)
664 			return (NULL);
665 	}
666 	if (msucc != NULL) {
667 		if ((rv = vm_reserv_from_page(msucc))->object != object)
668 			rightcap = msucc->pindex;
669 		else
670 			rightcap = rv->pindex;
671 		if (first + VM_LEVEL_0_NPAGES > rightcap)
672 			return (NULL);
673 	}
674 
675 	/*
676 	 * Would a new reservation extend past the end of the object?
677 	 */
678 	if (first + VM_LEVEL_0_NPAGES > object->size) {
679 		/*
680 		 * Don't allocate a new reservation if the object is a vnode or
681 		 * backed by another object that is a vnode.
682 		 */
683 		if (object->type == OBJT_VNODE ||
684 		    (object->backing_object != NULL &&
685 		    object->backing_object->type == OBJT_VNODE))
686 			return (NULL);
687 		/* Speculate that the object may grow. */
688 	}
689 
690 	/*
691 	 * Allocate and populate the new reservation.
692 	 */
693 	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
694 	if (m == NULL)
695 		return (NULL);
696 	rv = vm_reserv_from_page(m);
697 	KASSERT(rv->pages == m,
698 	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
699 	KASSERT(rv->object == NULL,
700 	    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
701 	LIST_INSERT_HEAD(&object->rvq, rv, objq);
702 	rv->object = object;
703 	rv->pindex = first;
704 	KASSERT(rv->popcnt == 0,
705 	    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv));
706 	KASSERT(!rv->inpartpopq,
707 	    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv));
708 	for (i = 0; i < NPOPMAP; i++)
709 		KASSERT(rv->popmap[i] == 0,
710 		    ("vm_reserv_alloc_page: reserv %p's popmap is corrupted",
711 		    rv));
712 	index = VM_RESERV_INDEX(object, pindex);
713 	vm_reserv_populate(rv, index);
714 	return (&rv->pages[index]);
715 
716 	/*
717 	 * Found a matching reservation.
718 	 */
719 found:
720 	index = VM_RESERV_INDEX(object, pindex);
721 	m = &rv->pages[index];
722 	/* Handle vm_page_rename(m, new_object, ...). */
723 	if (popmap_is_set(rv->popmap, index))
724 		return (NULL);
725 	vm_reserv_populate(rv, index);
726 	return (m);
727 }
728 
729 /*
730  * Breaks the given reservation.  Except for the specified free page, all free
731  * pages in the reservation are returned to the physical memory allocator.
732  * The reservation's population count and map are reset to their initial
733  * state.
734  *
735  * The given reservation must not be in the partially populated reservation
736  * queue.  The free page queue lock must be held.
737  */
738 static void
739 vm_reserv_break(vm_reserv_t rv, vm_page_t m)
740 {
741 	int begin_zeroes, hi, i, lo;
742 
743 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
744 	KASSERT(rv->object != NULL,
745 	    ("vm_reserv_break: reserv %p is free", rv));
746 	KASSERT(!rv->inpartpopq,
747 	    ("vm_reserv_break: reserv %p's inpartpopq is TRUE", rv));
748 	LIST_REMOVE(rv, objq);
749 	rv->object = NULL;
750 	if (m != NULL) {
751 		/*
752 		 * Since the reservation is being broken, there is no harm in
753 		 * abusing the population map to stop "m" from being returned
754 		 * to the physical memory allocator.
755 		 */
756 		i = m - rv->pages;
757 		KASSERT(popmap_is_clear(rv->popmap, i),
758 		    ("vm_reserv_break: reserv %p's popmap is corrupted", rv));
759 		popmap_set(rv->popmap, i);
760 		rv->popcnt++;
761 	}
762 	i = hi = 0;
763 	do {
764 		/* Find the next 0 bit.  Any previous 0 bits are < "hi". */
765 		lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
766 		if (lo == 0) {
767 			/* Redundantly clears bits < "hi". */
768 			rv->popmap[i] = 0;
769 			rv->popcnt -= NBPOPMAP - hi;
770 			while (++i < NPOPMAP) {
771 				lo = ffsl(~rv->popmap[i]);
772 				if (lo == 0) {
773 					rv->popmap[i] = 0;
774 					rv->popcnt -= NBPOPMAP;
775 				} else
776 					break;
777 			}
778 			if (i == NPOPMAP)
779 				break;
780 			hi = 0;
781 		}
782 		KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo));
783 		/* Convert from ffsl() to ordinary bit numbering. */
784 		lo--;
785 		if (lo > 0) {
786 			/* Redundantly clears bits < "hi". */
787 			rv->popmap[i] &= ~((1UL << lo) - 1);
788 			rv->popcnt -= lo - hi;
789 		}
790 		begin_zeroes = NBPOPMAP * i + lo;
791 		/* Find the next 1 bit. */
792 		do
793 			hi = ffsl(rv->popmap[i]);
794 		while (hi == 0 && ++i < NPOPMAP);
795 		if (i != NPOPMAP)
796 			/* Convert from ffsl() to ordinary bit numbering. */
797 			hi--;
798 		vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i +
799 		    hi - begin_zeroes);
800 	} while (i < NPOPMAP);
801 	KASSERT(rv->popcnt == 0,
802 	    ("vm_reserv_break: reserv %p's popcnt is corrupted", rv));
803 	vm_reserv_broken++;
804 }
805 
806 /*
807  * Breaks all reservations belonging to the given object.
808  */
809 void
810 vm_reserv_break_all(vm_object_t object)
811 {
812 	vm_reserv_t rv;
813 
814 	mtx_lock(&vm_page_queue_free_mtx);
815 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
816 		KASSERT(rv->object == object,
817 		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
818 		if (rv->inpartpopq) {
819 			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
820 			rv->inpartpopq = FALSE;
821 		}
822 		vm_reserv_break(rv, NULL);
823 	}
824 	mtx_unlock(&vm_page_queue_free_mtx);
825 }
826 
827 /*
828  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
829  * page is freed and FALSE otherwise.
830  *
831  * The free page queue lock must be held.
832  */
833 boolean_t
834 vm_reserv_free_page(vm_page_t m)
835 {
836 	vm_reserv_t rv;
837 
838 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
839 	rv = vm_reserv_from_page(m);
840 	if (rv->object == NULL)
841 		return (FALSE);
842 	vm_reserv_depopulate(rv, m - rv->pages);
843 	return (TRUE);
844 }
845 
846 /*
847  * Initializes the reservation management system.  Specifically, initializes
848  * the reservation array.
849  *
850  * Requires that vm_page_array and first_page are initialized!
851  */
852 void
853 vm_reserv_init(void)
854 {
855 	vm_paddr_t paddr;
856 	struct vm_phys_seg *seg;
857 	int segind;
858 
859 	/*
860 	 * Initialize the reservation array.  Specifically, initialize the
861 	 * "pages" field for every element that has an underlying superpage.
862 	 */
863 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
864 		seg = &vm_phys_segs[segind];
865 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
866 		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
867 			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
868 			    PHYS_TO_VM_PAGE(paddr);
869 			paddr += VM_LEVEL_0_SIZE;
870 		}
871 	}
872 }
873 
874 /*
875  * Returns true if the given page belongs to a reservation and that page is
876  * free.  Otherwise, returns false.
877  */
878 bool
879 vm_reserv_is_page_free(vm_page_t m)
880 {
881 	vm_reserv_t rv;
882 
883 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
884 	rv = vm_reserv_from_page(m);
885 	if (rv->object == NULL)
886 		return (false);
887 	return (popmap_is_clear(rv->popmap, m - rv->pages));
888 }
889 
890 /*
891  * If the given page belongs to a reservation, returns the level of that
892  * reservation.  Otherwise, returns -1.
893  */
894 int
895 vm_reserv_level(vm_page_t m)
896 {
897 	vm_reserv_t rv;
898 
899 	rv = vm_reserv_from_page(m);
900 	return (rv->object != NULL ? 0 : -1);
901 }
902 
903 /*
904  * Returns a reservation level if the given page belongs to a fully populated
905  * reservation and -1 otherwise.
906  */
907 int
908 vm_reserv_level_iffullpop(vm_page_t m)
909 {
910 	vm_reserv_t rv;
911 
912 	rv = vm_reserv_from_page(m);
913 	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
914 }
915 
916 /*
917  * Breaks the given partially populated reservation, releasing its free pages
918  * to the physical memory allocator.
919  *
920  * The free page queue lock must be held.
921  */
922 static void
923 vm_reserv_reclaim(vm_reserv_t rv)
924 {
925 
926 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
927 	KASSERT(rv->inpartpopq,
928 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
929 	TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
930 	rv->inpartpopq = FALSE;
931 	vm_reserv_break(rv, NULL);
932 	vm_reserv_reclaimed++;
933 }
934 
935 /*
936  * Breaks the reservation at the head of the partially populated reservation
937  * queue, releasing its free pages to the physical memory allocator.  Returns
938  * TRUE if a reservation is broken and FALSE otherwise.
939  *
940  * The free page queue lock must be held.
941  */
942 boolean_t
943 vm_reserv_reclaim_inactive(void)
944 {
945 	vm_reserv_t rv;
946 
947 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
948 	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
949 		vm_reserv_reclaim(rv);
950 		return (TRUE);
951 	}
952 	return (FALSE);
953 }
954 
955 /*
956  * Searches the partially populated reservation queue for the least recently
957  * changed reservation with free pages that satisfy the given request for
958  * contiguous physical memory.  If a satisfactory reservation is found, it is
959  * broken.  Returns TRUE if a reservation is broken and FALSE otherwise.
960  *
961  * The free page queue lock must be held.
962  */
963 boolean_t
964 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
965     u_long alignment, vm_paddr_t boundary)
966 {
967 	vm_paddr_t pa, size;
968 	vm_reserv_t rv;
969 	int hi, i, lo, low_index, next_free;
970 
971 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
972 	if (npages > VM_LEVEL_0_NPAGES - 1)
973 		return (FALSE);
974 	size = npages << PAGE_SHIFT;
975 	TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
976 		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
977 		if (pa + PAGE_SIZE - size < low) {
978 			/* This entire reservation is too low; go to next. */
979 			continue;
980 		}
981 		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
982 		if (pa + size > high) {
983 			/* This entire reservation is too high; go to next. */
984 			continue;
985 		}
986 		if (pa < low) {
987 			/* Start the search for free pages at "low". */
988 			low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT;
989 			i = low_index / NBPOPMAP;
990 			hi = low_index % NBPOPMAP;
991 		} else
992 			i = hi = 0;
993 		do {
994 			/* Find the next free page. */
995 			lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
996 			while (lo == 0 && ++i < NPOPMAP)
997 				lo = ffsl(~rv->popmap[i]);
998 			if (i == NPOPMAP)
999 				break;
1000 			/* Convert from ffsl() to ordinary bit numbering. */
1001 			lo--;
1002 			next_free = NBPOPMAP * i + lo;
1003 			pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
1004 			KASSERT(pa >= low,
1005 			    ("vm_reserv_reclaim_contig: pa is too low"));
1006 			if (pa + size > high) {
1007 				/* The rest of this reservation is too high. */
1008 				break;
1009 			} else if ((pa & (alignment - 1)) != 0 ||
1010 			    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1011 				/*
1012 				 * The current page doesn't meet the alignment
1013 				 * and/or boundary requirements.  Continue
1014 				 * searching this reservation until the rest
1015 				 * of its free pages are either excluded or
1016 				 * exhausted.
1017 				 */
1018 				hi = lo + 1;
1019 				if (hi >= NBPOPMAP) {
1020 					hi = 0;
1021 					i++;
1022 				}
1023 				continue;
1024 			}
1025 			/* Find the next used page. */
1026 			hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
1027 			while (hi == 0 && ++i < NPOPMAP) {
1028 				if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
1029 				    size) {
1030 					vm_reserv_reclaim(rv);
1031 					return (TRUE);
1032 				}
1033 				hi = ffsl(rv->popmap[i]);
1034 			}
1035 			/* Convert from ffsl() to ordinary bit numbering. */
1036 			if (i != NPOPMAP)
1037 				hi--;
1038 			if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
1039 			    size) {
1040 				vm_reserv_reclaim(rv);
1041 				return (TRUE);
1042 			}
1043 		} while (i < NPOPMAP);
1044 	}
1045 	return (FALSE);
1046 }
1047 
1048 /*
1049  * Transfers the reservation underlying the given page to a new object.
1050  *
1051  * The object must be locked.
1052  */
1053 void
1054 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1055     vm_pindex_t old_object_offset)
1056 {
1057 	vm_reserv_t rv;
1058 
1059 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1060 	rv = vm_reserv_from_page(m);
1061 	if (rv->object == old_object) {
1062 		mtx_lock(&vm_page_queue_free_mtx);
1063 		if (rv->object == old_object) {
1064 			LIST_REMOVE(rv, objq);
1065 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1066 			rv->object = new_object;
1067 			rv->pindex -= old_object_offset;
1068 		}
1069 		mtx_unlock(&vm_page_queue_free_mtx);
1070 	}
1071 }
1072 
1073 /*
1074  * Returns the size (in bytes) of a reservation of the specified level.
1075  */
1076 int
1077 vm_reserv_size(int level)
1078 {
1079 
1080 	switch (level) {
1081 	case 0:
1082 		return (VM_LEVEL_0_SIZE);
1083 	case -1:
1084 		return (PAGE_SIZE);
1085 	default:
1086 		return (0);
1087 	}
1088 }
1089 
1090 /*
1091  * Allocates the virtual and physical memory required by the reservation
1092  * management system's data structures, in particular, the reservation array.
1093  */
1094 vm_paddr_t
1095 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
1096 {
1097 	vm_paddr_t new_end;
1098 	size_t size;
1099 
1100 	/*
1101 	 * Calculate the size (in bytes) of the reservation array.  Round up
1102 	 * from "high_water" because every small page is mapped to an element
1103 	 * in the reservation array based on its physical address.  Thus, the
1104 	 * number of elements in the reservation array can be greater than the
1105 	 * number of superpages.
1106 	 */
1107 	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1108 
1109 	/*
1110 	 * Allocate and map the physical memory for the reservation array.  The
1111 	 * next available virtual address is returned by reference.
1112 	 */
1113 	new_end = end - round_page(size);
1114 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1115 	    VM_PROT_READ | VM_PROT_WRITE);
1116 	bzero(vm_reserv_array, size);
1117 
1118 	/*
1119 	 * Return the next available physical address.
1120 	 */
1121 	return (new_end);
1122 }
1123 
1124 #endif	/* VM_NRESERVLEVEL > 0 */
1125