1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Superpage reservation management module 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_vm.h" 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/queue.h> 50 #include <sys/rwlock.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/vmmeter.h> 55 56 #include <vm/vm.h> 57 #include <vm/vm_param.h> 58 #include <vm/vm_object.h> 59 #include <vm/vm_page.h> 60 #include <vm/vm_phys.h> 61 #include <vm/vm_radix.h> 62 #include <vm/vm_reserv.h> 63 64 /* 65 * The reservation system supports the speculative allocation of large physical 66 * pages ("superpages"). Speculative allocation enables the fully automatic 67 * utilization of superpages by the virtual memory system. In other words, no 68 * programmatic directives are required to use superpages. 69 */ 70 71 #if VM_NRESERVLEVEL > 0 72 73 /* 74 * The number of small pages that are contained in a level 0 reservation 75 */ 76 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 77 78 /* 79 * The number of bits by which a physical address is shifted to obtain the 80 * reservation number 81 */ 82 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 83 84 /* 85 * The size of a level 0 reservation in bytes 86 */ 87 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 88 89 /* 90 * Computes the index of the small page underlying the given (object, pindex) 91 * within the reservation's array of small pages. 92 */ 93 #define VM_RESERV_INDEX(object, pindex) \ 94 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 95 96 /* 97 * The size of a population map entry 98 */ 99 typedef u_long popmap_t; 100 101 /* 102 * The number of bits in a population map entry 103 */ 104 #define NBPOPMAP (NBBY * sizeof(popmap_t)) 105 106 /* 107 * The number of population map entries in a reservation 108 */ 109 #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP) 110 111 /* 112 * Clear a bit in the population map. 113 */ 114 static __inline void 115 popmap_clear(popmap_t popmap[], int i) 116 { 117 118 popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP)); 119 } 120 121 /* 122 * Set a bit in the population map. 123 */ 124 static __inline void 125 popmap_set(popmap_t popmap[], int i) 126 { 127 128 popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP); 129 } 130 131 /* 132 * Is a bit in the population map clear? 133 */ 134 static __inline boolean_t 135 popmap_is_clear(popmap_t popmap[], int i) 136 { 137 138 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0); 139 } 140 141 /* 142 * Is a bit in the population map set? 143 */ 144 static __inline boolean_t 145 popmap_is_set(popmap_t popmap[], int i) 146 { 147 148 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0); 149 } 150 151 /* 152 * The reservation structure 153 * 154 * A reservation structure is constructed whenever a large physical page is 155 * speculatively allocated to an object. The reservation provides the small 156 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 157 * within that object. The reservation's "popcnt" tracks the number of these 158 * small physical pages that are in use at any given time. When and if the 159 * reservation is not fully utilized, it appears in the queue of partially 160 * populated reservations. The reservation always appears on the containing 161 * object's list of reservations. 162 * 163 * A partially populated reservation can be broken and reclaimed at any time. 164 */ 165 struct vm_reserv { 166 TAILQ_ENTRY(vm_reserv) partpopq; 167 LIST_ENTRY(vm_reserv) objq; 168 vm_object_t object; /* containing object */ 169 vm_pindex_t pindex; /* offset within object */ 170 vm_page_t pages; /* first page of a superpage */ 171 int popcnt; /* # of pages in use */ 172 char inpartpopq; 173 popmap_t popmap[NPOPMAP]; /* bit vector of used pages */ 174 }; 175 176 /* 177 * The reservation array 178 * 179 * This array is analoguous in function to vm_page_array. It differs in the 180 * respect that it may contain a greater number of useful reservation 181 * structures than there are (physical) superpages. These "invalid" 182 * reservation structures exist to trade-off space for time in the 183 * implementation of vm_reserv_from_page(). Invalid reservation structures are 184 * distinguishable from "valid" reservation structures by inspecting the 185 * reservation's "pages" field. Invalid reservation structures have a NULL 186 * "pages" field. 187 * 188 * vm_reserv_from_page() maps a small (physical) page to an element of this 189 * array by computing a physical reservation number from the page's physical 190 * address. The physical reservation number is used as the array index. 191 * 192 * An "active" reservation is a valid reservation structure that has a non-NULL 193 * "object" field and a non-zero "popcnt" field. In other words, every active 194 * reservation belongs to a particular object. Moreover, every active 195 * reservation has an entry in the containing object's list of reservations. 196 */ 197 static vm_reserv_t vm_reserv_array; 198 199 /* 200 * The partially populated reservation queue 201 * 202 * This queue enables the fast recovery of an unused free small page from a 203 * partially populated reservation. The reservation at the head of this queue 204 * is the least recently changed, partially populated reservation. 205 * 206 * Access to this queue is synchronized by the free page queue lock. 207 */ 208 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop = 209 TAILQ_HEAD_INITIALIZER(vm_rvq_partpop); 210 211 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); 212 213 static long vm_reserv_broken; 214 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 215 &vm_reserv_broken, 0, "Cumulative number of broken reservations"); 216 217 static long vm_reserv_freed; 218 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 219 &vm_reserv_freed, 0, "Cumulative number of freed reservations"); 220 221 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); 222 223 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 224 sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); 225 226 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 227 228 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 229 sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues"); 230 231 static long vm_reserv_reclaimed; 232 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 233 &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations"); 234 235 static void vm_reserv_break(vm_reserv_t rv, vm_page_t m); 236 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 237 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 238 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 239 vm_pindex_t pindex); 240 static void vm_reserv_populate(vm_reserv_t rv, int index); 241 static void vm_reserv_reclaim(vm_reserv_t rv); 242 243 /* 244 * Returns the current number of full reservations. 245 * 246 * Since the number of full reservations is computed without acquiring the 247 * free page queue lock, the returned value may be inexact. 248 */ 249 static int 250 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) 251 { 252 vm_paddr_t paddr; 253 struct vm_phys_seg *seg; 254 vm_reserv_t rv; 255 int fullpop, segind; 256 257 fullpop = 0; 258 for (segind = 0; segind < vm_phys_nsegs; segind++) { 259 seg = &vm_phys_segs[segind]; 260 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 261 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 262 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; 263 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; 264 paddr += VM_LEVEL_0_SIZE; 265 } 266 } 267 return (sysctl_handle_int(oidp, &fullpop, 0, req)); 268 } 269 270 /* 271 * Describes the current state of the partially populated reservation queue. 272 */ 273 static int 274 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 275 { 276 struct sbuf sbuf; 277 vm_reserv_t rv; 278 int counter, error, level, unused_pages; 279 280 error = sysctl_wire_old_buffer(req, 0); 281 if (error != 0) 282 return (error); 283 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 284 sbuf_printf(&sbuf, "\nLEVEL SIZE NUMBER\n\n"); 285 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 286 counter = 0; 287 unused_pages = 0; 288 mtx_lock(&vm_page_queue_free_mtx); 289 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) { 290 counter++; 291 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 292 } 293 mtx_unlock(&vm_page_queue_free_mtx); 294 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level, 295 unused_pages * ((int)PAGE_SIZE / 1024), counter); 296 } 297 error = sbuf_finish(&sbuf); 298 sbuf_delete(&sbuf); 299 return (error); 300 } 301 302 /* 303 * Reduces the given reservation's population count. If the population count 304 * becomes zero, the reservation is destroyed. Additionally, moves the 305 * reservation to the tail of the partially populated reservation queue if the 306 * population count is non-zero. 307 * 308 * The free page queue lock must be held. 309 */ 310 static void 311 vm_reserv_depopulate(vm_reserv_t rv, int index) 312 { 313 314 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 315 KASSERT(rv->object != NULL, 316 ("vm_reserv_depopulate: reserv %p is free", rv)); 317 KASSERT(popmap_is_set(rv->popmap, index), 318 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 319 index)); 320 KASSERT(rv->popcnt > 0, 321 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 322 if (rv->inpartpopq) { 323 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 324 rv->inpartpopq = FALSE; 325 } else { 326 KASSERT(rv->pages->psind == 1, 327 ("vm_reserv_depopulate: reserv %p is already demoted", 328 rv)); 329 rv->pages->psind = 0; 330 } 331 popmap_clear(rv->popmap, index); 332 rv->popcnt--; 333 if (rv->popcnt == 0) { 334 LIST_REMOVE(rv, objq); 335 rv->object = NULL; 336 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 337 vm_reserv_freed++; 338 } else { 339 rv->inpartpopq = TRUE; 340 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 341 } 342 } 343 344 /* 345 * Returns the reservation to which the given page might belong. 346 */ 347 static __inline vm_reserv_t 348 vm_reserv_from_page(vm_page_t m) 349 { 350 351 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 352 } 353 354 /* 355 * Returns TRUE if the given reservation contains the given page index and 356 * FALSE otherwise. 357 */ 358 static __inline boolean_t 359 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 360 { 361 362 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 363 } 364 365 /* 366 * Increases the given reservation's population count. Moves the reservation 367 * to the tail of the partially populated reservation queue. 368 * 369 * The free page queue must be locked. 370 */ 371 static void 372 vm_reserv_populate(vm_reserv_t rv, int index) 373 { 374 375 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 376 KASSERT(rv->object != NULL, 377 ("vm_reserv_populate: reserv %p is free", rv)); 378 KASSERT(popmap_is_clear(rv->popmap, index), 379 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 380 index)); 381 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 382 ("vm_reserv_populate: reserv %p is already full", rv)); 383 KASSERT(rv->pages->psind == 0, 384 ("vm_reserv_populate: reserv %p is already promoted", rv)); 385 if (rv->inpartpopq) { 386 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 387 rv->inpartpopq = FALSE; 388 } 389 popmap_set(rv->popmap, index); 390 rv->popcnt++; 391 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 392 rv->inpartpopq = TRUE; 393 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 394 } else 395 rv->pages->psind = 1; 396 } 397 398 /* 399 * Allocates a contiguous set of physical pages of the given size "npages" 400 * from existing or newly created reservations. All of the physical pages 401 * must be at or above the given physical address "low" and below the given 402 * physical address "high". The given value "alignment" determines the 403 * alignment of the first physical page in the set. If the given value 404 * "boundary" is non-zero, then the set of physical pages cannot cross any 405 * physical address boundary that is a multiple of that value. Both 406 * "alignment" and "boundary" must be a power of two. 407 * 408 * The page "mpred" must immediately precede the offset "pindex" within the 409 * specified object. 410 * 411 * The object and free page queue must be locked. 412 */ 413 vm_page_t 414 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages, 415 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 416 vm_page_t mpred) 417 { 418 vm_paddr_t pa, size; 419 vm_page_t m, m_ret, msucc; 420 vm_pindex_t first, leftcap, rightcap; 421 vm_reserv_t rv; 422 u_long allocpages, maxpages, minpages; 423 int i, index, n; 424 425 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 426 VM_OBJECT_ASSERT_WLOCKED(object); 427 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 428 429 /* 430 * Is a reservation fundamentally impossible? 431 */ 432 if (pindex < VM_RESERV_INDEX(object, pindex) || 433 pindex + npages > object->size) 434 return (NULL); 435 436 /* 437 * All reservations of a particular size have the same alignment. 438 * Assuming that the first page is allocated from a reservation, the 439 * least significant bits of its physical address can be determined 440 * from its offset from the beginning of the reservation and the size 441 * of the reservation. 442 * 443 * Could the specified index within a reservation of the smallest 444 * possible size satisfy the alignment and boundary requirements? 445 */ 446 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 447 if ((pa & (alignment - 1)) != 0) 448 return (NULL); 449 size = npages << PAGE_SHIFT; 450 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 451 return (NULL); 452 453 /* 454 * Look for an existing reservation. 455 */ 456 if (mpred != NULL) { 457 KASSERT(mpred->object == object, 458 ("vm_reserv_alloc_contig: object doesn't contain mpred")); 459 KASSERT(mpred->pindex < pindex, 460 ("vm_reserv_alloc_contig: mpred doesn't precede pindex")); 461 rv = vm_reserv_from_page(mpred); 462 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 463 goto found; 464 msucc = TAILQ_NEXT(mpred, listq); 465 } else 466 msucc = TAILQ_FIRST(&object->memq); 467 if (msucc != NULL) { 468 KASSERT(msucc->pindex > pindex, 469 ("vm_reserv_alloc_contig: msucc doesn't succeed pindex")); 470 rv = vm_reserv_from_page(msucc); 471 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 472 goto found; 473 } 474 475 /* 476 * Could at least one reservation fit between the first index to the 477 * left that can be used ("leftcap") and the first index to the right 478 * that cannot be used ("rightcap")? 479 */ 480 first = pindex - VM_RESERV_INDEX(object, pindex); 481 if (mpred != NULL) { 482 if ((rv = vm_reserv_from_page(mpred))->object != object) 483 leftcap = mpred->pindex + 1; 484 else 485 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 486 if (leftcap > first) 487 return (NULL); 488 } 489 minpages = VM_RESERV_INDEX(object, pindex) + npages; 490 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 491 allocpages = maxpages; 492 if (msucc != NULL) { 493 if ((rv = vm_reserv_from_page(msucc))->object != object) 494 rightcap = msucc->pindex; 495 else 496 rightcap = rv->pindex; 497 if (first + maxpages > rightcap) { 498 if (maxpages == VM_LEVEL_0_NPAGES) 499 return (NULL); 500 501 /* 502 * At least one reservation will fit between "leftcap" 503 * and "rightcap". However, a reservation for the 504 * last of the requested pages will not fit. Reduce 505 * the size of the upcoming allocation accordingly. 506 */ 507 allocpages = minpages; 508 } 509 } 510 511 /* 512 * Would the last new reservation extend past the end of the object? 513 */ 514 if (first + maxpages > object->size) { 515 /* 516 * Don't allocate the last new reservation if the object is a 517 * vnode or backed by another object that is a vnode. 518 */ 519 if (object->type == OBJT_VNODE || 520 (object->backing_object != NULL && 521 object->backing_object->type == OBJT_VNODE)) { 522 if (maxpages == VM_LEVEL_0_NPAGES) 523 return (NULL); 524 allocpages = minpages; 525 } 526 /* Speculate that the object may grow. */ 527 } 528 529 /* 530 * Allocate the physical pages. The alignment and boundary specified 531 * for this allocation may be different from the alignment and 532 * boundary specified for the requested pages. For instance, the 533 * specified index may not be the first page within the first new 534 * reservation. 535 */ 536 m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment, 537 VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0); 538 if (m == NULL) 539 return (NULL); 540 541 /* 542 * The allocated physical pages always begin at a reservation 543 * boundary, but they do not always end at a reservation boundary. 544 * Initialize every reservation that is completely covered by the 545 * allocated physical pages. 546 */ 547 m_ret = NULL; 548 index = VM_RESERV_INDEX(object, pindex); 549 do { 550 rv = vm_reserv_from_page(m); 551 KASSERT(rv->pages == m, 552 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 553 rv)); 554 KASSERT(rv->object == NULL, 555 ("vm_reserv_alloc_contig: reserv %p isn't free", rv)); 556 LIST_INSERT_HEAD(&object->rvq, rv, objq); 557 rv->object = object; 558 rv->pindex = first; 559 KASSERT(rv->popcnt == 0, 560 ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted", 561 rv)); 562 KASSERT(!rv->inpartpopq, 563 ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE", 564 rv)); 565 for (i = 0; i < NPOPMAP; i++) 566 KASSERT(rv->popmap[i] == 0, 567 ("vm_reserv_alloc_contig: reserv %p's popmap is corrupted", 568 rv)); 569 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 570 for (i = 0; i < n; i++) 571 vm_reserv_populate(rv, index + i); 572 npages -= n; 573 if (m_ret == NULL) { 574 m_ret = &rv->pages[index]; 575 index = 0; 576 } 577 m += VM_LEVEL_0_NPAGES; 578 first += VM_LEVEL_0_NPAGES; 579 allocpages -= VM_LEVEL_0_NPAGES; 580 } while (allocpages >= VM_LEVEL_0_NPAGES); 581 return (m_ret); 582 583 /* 584 * Found a matching reservation. 585 */ 586 found: 587 index = VM_RESERV_INDEX(object, pindex); 588 /* Does the allocation fit within the reservation? */ 589 if (index + npages > VM_LEVEL_0_NPAGES) 590 return (NULL); 591 m = &rv->pages[index]; 592 pa = VM_PAGE_TO_PHYS(m); 593 if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 || 594 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 595 return (NULL); 596 /* Handle vm_page_rename(m, new_object, ...). */ 597 for (i = 0; i < npages; i++) 598 if (popmap_is_set(rv->popmap, index + i)) 599 return (NULL); 600 for (i = 0; i < npages; i++) 601 vm_reserv_populate(rv, index + i); 602 return (m); 603 } 604 605 /* 606 * Allocates a page from an existing or newly created reservation. 607 * 608 * The page "mpred" must immediately precede the offset "pindex" within the 609 * specified object. 610 * 611 * The object and free page queue must be locked. 612 */ 613 vm_page_t 614 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred) 615 { 616 vm_page_t m, msucc; 617 vm_pindex_t first, leftcap, rightcap; 618 vm_reserv_t rv; 619 int i, index; 620 621 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 622 VM_OBJECT_ASSERT_WLOCKED(object); 623 624 /* 625 * Is a reservation fundamentally impossible? 626 */ 627 if (pindex < VM_RESERV_INDEX(object, pindex) || 628 pindex >= object->size) 629 return (NULL); 630 631 /* 632 * Look for an existing reservation. 633 */ 634 if (mpred != NULL) { 635 KASSERT(mpred->object == object, 636 ("vm_reserv_alloc_page: object doesn't contain mpred")); 637 KASSERT(mpred->pindex < pindex, 638 ("vm_reserv_alloc_page: mpred doesn't precede pindex")); 639 rv = vm_reserv_from_page(mpred); 640 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 641 goto found; 642 msucc = TAILQ_NEXT(mpred, listq); 643 } else 644 msucc = TAILQ_FIRST(&object->memq); 645 if (msucc != NULL) { 646 KASSERT(msucc->pindex > pindex, 647 ("vm_reserv_alloc_page: msucc doesn't succeed pindex")); 648 rv = vm_reserv_from_page(msucc); 649 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 650 goto found; 651 } 652 653 /* 654 * Could a reservation fit between the first index to the left that 655 * can be used and the first index to the right that cannot be used? 656 */ 657 first = pindex - VM_RESERV_INDEX(object, pindex); 658 if (mpred != NULL) { 659 if ((rv = vm_reserv_from_page(mpred))->object != object) 660 leftcap = mpred->pindex + 1; 661 else 662 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 663 if (leftcap > first) 664 return (NULL); 665 } 666 if (msucc != NULL) { 667 if ((rv = vm_reserv_from_page(msucc))->object != object) 668 rightcap = msucc->pindex; 669 else 670 rightcap = rv->pindex; 671 if (first + VM_LEVEL_0_NPAGES > rightcap) 672 return (NULL); 673 } 674 675 /* 676 * Would a new reservation extend past the end of the object? 677 */ 678 if (first + VM_LEVEL_0_NPAGES > object->size) { 679 /* 680 * Don't allocate a new reservation if the object is a vnode or 681 * backed by another object that is a vnode. 682 */ 683 if (object->type == OBJT_VNODE || 684 (object->backing_object != NULL && 685 object->backing_object->type == OBJT_VNODE)) 686 return (NULL); 687 /* Speculate that the object may grow. */ 688 } 689 690 /* 691 * Allocate and populate the new reservation. 692 */ 693 m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); 694 if (m == NULL) 695 return (NULL); 696 rv = vm_reserv_from_page(m); 697 KASSERT(rv->pages == m, 698 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 699 KASSERT(rv->object == NULL, 700 ("vm_reserv_alloc_page: reserv %p isn't free", rv)); 701 LIST_INSERT_HEAD(&object->rvq, rv, objq); 702 rv->object = object; 703 rv->pindex = first; 704 KASSERT(rv->popcnt == 0, 705 ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv)); 706 KASSERT(!rv->inpartpopq, 707 ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv)); 708 for (i = 0; i < NPOPMAP; i++) 709 KASSERT(rv->popmap[i] == 0, 710 ("vm_reserv_alloc_page: reserv %p's popmap is corrupted", 711 rv)); 712 index = VM_RESERV_INDEX(object, pindex); 713 vm_reserv_populate(rv, index); 714 return (&rv->pages[index]); 715 716 /* 717 * Found a matching reservation. 718 */ 719 found: 720 index = VM_RESERV_INDEX(object, pindex); 721 m = &rv->pages[index]; 722 /* Handle vm_page_rename(m, new_object, ...). */ 723 if (popmap_is_set(rv->popmap, index)) 724 return (NULL); 725 vm_reserv_populate(rv, index); 726 return (m); 727 } 728 729 /* 730 * Breaks the given reservation. Except for the specified free page, all free 731 * pages in the reservation are returned to the physical memory allocator. 732 * The reservation's population count and map are reset to their initial 733 * state. 734 * 735 * The given reservation must not be in the partially populated reservation 736 * queue. The free page queue lock must be held. 737 */ 738 static void 739 vm_reserv_break(vm_reserv_t rv, vm_page_t m) 740 { 741 int begin_zeroes, hi, i, lo; 742 743 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 744 KASSERT(rv->object != NULL, 745 ("vm_reserv_break: reserv %p is free", rv)); 746 KASSERT(!rv->inpartpopq, 747 ("vm_reserv_break: reserv %p's inpartpopq is TRUE", rv)); 748 LIST_REMOVE(rv, objq); 749 rv->object = NULL; 750 if (m != NULL) { 751 /* 752 * Since the reservation is being broken, there is no harm in 753 * abusing the population map to stop "m" from being returned 754 * to the physical memory allocator. 755 */ 756 i = m - rv->pages; 757 KASSERT(popmap_is_clear(rv->popmap, i), 758 ("vm_reserv_break: reserv %p's popmap is corrupted", rv)); 759 popmap_set(rv->popmap, i); 760 rv->popcnt++; 761 } 762 i = hi = 0; 763 do { 764 /* Find the next 0 bit. Any previous 0 bits are < "hi". */ 765 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 766 if (lo == 0) { 767 /* Redundantly clears bits < "hi". */ 768 rv->popmap[i] = 0; 769 rv->popcnt -= NBPOPMAP - hi; 770 while (++i < NPOPMAP) { 771 lo = ffsl(~rv->popmap[i]); 772 if (lo == 0) { 773 rv->popmap[i] = 0; 774 rv->popcnt -= NBPOPMAP; 775 } else 776 break; 777 } 778 if (i == NPOPMAP) 779 break; 780 hi = 0; 781 } 782 KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo)); 783 /* Convert from ffsl() to ordinary bit numbering. */ 784 lo--; 785 if (lo > 0) { 786 /* Redundantly clears bits < "hi". */ 787 rv->popmap[i] &= ~((1UL << lo) - 1); 788 rv->popcnt -= lo - hi; 789 } 790 begin_zeroes = NBPOPMAP * i + lo; 791 /* Find the next 1 bit. */ 792 do 793 hi = ffsl(rv->popmap[i]); 794 while (hi == 0 && ++i < NPOPMAP); 795 if (i != NPOPMAP) 796 /* Convert from ffsl() to ordinary bit numbering. */ 797 hi--; 798 vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i + 799 hi - begin_zeroes); 800 } while (i < NPOPMAP); 801 KASSERT(rv->popcnt == 0, 802 ("vm_reserv_break: reserv %p's popcnt is corrupted", rv)); 803 vm_reserv_broken++; 804 } 805 806 /* 807 * Breaks all reservations belonging to the given object. 808 */ 809 void 810 vm_reserv_break_all(vm_object_t object) 811 { 812 vm_reserv_t rv; 813 814 mtx_lock(&vm_page_queue_free_mtx); 815 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 816 KASSERT(rv->object == object, 817 ("vm_reserv_break_all: reserv %p is corrupted", rv)); 818 if (rv->inpartpopq) { 819 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 820 rv->inpartpopq = FALSE; 821 } 822 vm_reserv_break(rv, NULL); 823 } 824 mtx_unlock(&vm_page_queue_free_mtx); 825 } 826 827 /* 828 * Frees the given page if it belongs to a reservation. Returns TRUE if the 829 * page is freed and FALSE otherwise. 830 * 831 * The free page queue lock must be held. 832 */ 833 boolean_t 834 vm_reserv_free_page(vm_page_t m) 835 { 836 vm_reserv_t rv; 837 838 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 839 rv = vm_reserv_from_page(m); 840 if (rv->object == NULL) 841 return (FALSE); 842 vm_reserv_depopulate(rv, m - rv->pages); 843 return (TRUE); 844 } 845 846 /* 847 * Initializes the reservation management system. Specifically, initializes 848 * the reservation array. 849 * 850 * Requires that vm_page_array and first_page are initialized! 851 */ 852 void 853 vm_reserv_init(void) 854 { 855 vm_paddr_t paddr; 856 struct vm_phys_seg *seg; 857 int segind; 858 859 /* 860 * Initialize the reservation array. Specifically, initialize the 861 * "pages" field for every element that has an underlying superpage. 862 */ 863 for (segind = 0; segind < vm_phys_nsegs; segind++) { 864 seg = &vm_phys_segs[segind]; 865 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 866 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 867 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages = 868 PHYS_TO_VM_PAGE(paddr); 869 paddr += VM_LEVEL_0_SIZE; 870 } 871 } 872 } 873 874 /* 875 * Returns true if the given page belongs to a reservation and that page is 876 * free. Otherwise, returns false. 877 */ 878 bool 879 vm_reserv_is_page_free(vm_page_t m) 880 { 881 vm_reserv_t rv; 882 883 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 884 rv = vm_reserv_from_page(m); 885 if (rv->object == NULL) 886 return (false); 887 return (popmap_is_clear(rv->popmap, m - rv->pages)); 888 } 889 890 /* 891 * If the given page belongs to a reservation, returns the level of that 892 * reservation. Otherwise, returns -1. 893 */ 894 int 895 vm_reserv_level(vm_page_t m) 896 { 897 vm_reserv_t rv; 898 899 rv = vm_reserv_from_page(m); 900 return (rv->object != NULL ? 0 : -1); 901 } 902 903 /* 904 * Returns a reservation level if the given page belongs to a fully populated 905 * reservation and -1 otherwise. 906 */ 907 int 908 vm_reserv_level_iffullpop(vm_page_t m) 909 { 910 vm_reserv_t rv; 911 912 rv = vm_reserv_from_page(m); 913 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 914 } 915 916 /* 917 * Breaks the given partially populated reservation, releasing its free pages 918 * to the physical memory allocator. 919 * 920 * The free page queue lock must be held. 921 */ 922 static void 923 vm_reserv_reclaim(vm_reserv_t rv) 924 { 925 926 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 927 KASSERT(rv->inpartpopq, 928 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 929 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 930 rv->inpartpopq = FALSE; 931 vm_reserv_break(rv, NULL); 932 vm_reserv_reclaimed++; 933 } 934 935 /* 936 * Breaks the reservation at the head of the partially populated reservation 937 * queue, releasing its free pages to the physical memory allocator. Returns 938 * TRUE if a reservation is broken and FALSE otherwise. 939 * 940 * The free page queue lock must be held. 941 */ 942 boolean_t 943 vm_reserv_reclaim_inactive(void) 944 { 945 vm_reserv_t rv; 946 947 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 948 if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) { 949 vm_reserv_reclaim(rv); 950 return (TRUE); 951 } 952 return (FALSE); 953 } 954 955 /* 956 * Searches the partially populated reservation queue for the least recently 957 * changed reservation with free pages that satisfy the given request for 958 * contiguous physical memory. If a satisfactory reservation is found, it is 959 * broken. Returns TRUE if a reservation is broken and FALSE otherwise. 960 * 961 * The free page queue lock must be held. 962 */ 963 boolean_t 964 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 965 u_long alignment, vm_paddr_t boundary) 966 { 967 vm_paddr_t pa, size; 968 vm_reserv_t rv; 969 int hi, i, lo, low_index, next_free; 970 971 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 972 if (npages > VM_LEVEL_0_NPAGES - 1) 973 return (FALSE); 974 size = npages << PAGE_SHIFT; 975 TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) { 976 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); 977 if (pa + PAGE_SIZE - size < low) { 978 /* This entire reservation is too low; go to next. */ 979 continue; 980 } 981 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 982 if (pa + size > high) { 983 /* This entire reservation is too high; go to next. */ 984 continue; 985 } 986 if (pa < low) { 987 /* Start the search for free pages at "low". */ 988 low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT; 989 i = low_index / NBPOPMAP; 990 hi = low_index % NBPOPMAP; 991 } else 992 i = hi = 0; 993 do { 994 /* Find the next free page. */ 995 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 996 while (lo == 0 && ++i < NPOPMAP) 997 lo = ffsl(~rv->popmap[i]); 998 if (i == NPOPMAP) 999 break; 1000 /* Convert from ffsl() to ordinary bit numbering. */ 1001 lo--; 1002 next_free = NBPOPMAP * i + lo; 1003 pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]); 1004 KASSERT(pa >= low, 1005 ("vm_reserv_reclaim_contig: pa is too low")); 1006 if (pa + size > high) { 1007 /* The rest of this reservation is too high. */ 1008 break; 1009 } else if ((pa & (alignment - 1)) != 0 || 1010 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) { 1011 /* 1012 * The current page doesn't meet the alignment 1013 * and/or boundary requirements. Continue 1014 * searching this reservation until the rest 1015 * of its free pages are either excluded or 1016 * exhausted. 1017 */ 1018 hi = lo + 1; 1019 if (hi >= NBPOPMAP) { 1020 hi = 0; 1021 i++; 1022 } 1023 continue; 1024 } 1025 /* Find the next used page. */ 1026 hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1)); 1027 while (hi == 0 && ++i < NPOPMAP) { 1028 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >= 1029 size) { 1030 vm_reserv_reclaim(rv); 1031 return (TRUE); 1032 } 1033 hi = ffsl(rv->popmap[i]); 1034 } 1035 /* Convert from ffsl() to ordinary bit numbering. */ 1036 if (i != NPOPMAP) 1037 hi--; 1038 if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >= 1039 size) { 1040 vm_reserv_reclaim(rv); 1041 return (TRUE); 1042 } 1043 } while (i < NPOPMAP); 1044 } 1045 return (FALSE); 1046 } 1047 1048 /* 1049 * Transfers the reservation underlying the given page to a new object. 1050 * 1051 * The object must be locked. 1052 */ 1053 void 1054 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 1055 vm_pindex_t old_object_offset) 1056 { 1057 vm_reserv_t rv; 1058 1059 VM_OBJECT_ASSERT_WLOCKED(new_object); 1060 rv = vm_reserv_from_page(m); 1061 if (rv->object == old_object) { 1062 mtx_lock(&vm_page_queue_free_mtx); 1063 if (rv->object == old_object) { 1064 LIST_REMOVE(rv, objq); 1065 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 1066 rv->object = new_object; 1067 rv->pindex -= old_object_offset; 1068 } 1069 mtx_unlock(&vm_page_queue_free_mtx); 1070 } 1071 } 1072 1073 /* 1074 * Returns the size (in bytes) of a reservation of the specified level. 1075 */ 1076 int 1077 vm_reserv_size(int level) 1078 { 1079 1080 switch (level) { 1081 case 0: 1082 return (VM_LEVEL_0_SIZE); 1083 case -1: 1084 return (PAGE_SIZE); 1085 default: 1086 return (0); 1087 } 1088 } 1089 1090 /* 1091 * Allocates the virtual and physical memory required by the reservation 1092 * management system's data structures, in particular, the reservation array. 1093 */ 1094 vm_paddr_t 1095 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) 1096 { 1097 vm_paddr_t new_end; 1098 size_t size; 1099 1100 /* 1101 * Calculate the size (in bytes) of the reservation array. Round up 1102 * from "high_water" because every small page is mapped to an element 1103 * in the reservation array based on its physical address. Thus, the 1104 * number of elements in the reservation array can be greater than the 1105 * number of superpages. 1106 */ 1107 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); 1108 1109 /* 1110 * Allocate and map the physical memory for the reservation array. The 1111 * next available virtual address is returned by reference. 1112 */ 1113 new_end = end - round_page(size); 1114 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 1115 VM_PROT_READ | VM_PROT_WRITE); 1116 bzero(vm_reserv_array, size); 1117 1118 /* 1119 * Return the next available physical address. 1120 */ 1121 return (new_end); 1122 } 1123 1124 #endif /* VM_NRESERVLEVEL > 0 */ 1125