1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002-2006 Rice University 5 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Alan L. Cox, 9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Superpage reservation management module 36 * 37 * Any external functions defined by this module are only to be used by the 38 * virtual memory system. 39 */ 40 41 #include <sys/cdefs.h> 42 #include "opt_vm.h" 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/queue.h> 50 #include <sys/rwlock.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/bitstring.h> 55 #include <sys/counter.h> 56 #include <sys/ktr.h> 57 #include <sys/vmmeter.h> 58 #include <sys/smp.h> 59 60 #include <vm/vm.h> 61 #include <vm/vm_extern.h> 62 #include <vm/vm_param.h> 63 #include <vm/vm_object.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_pageout.h> 66 #include <vm/vm_pagequeue.h> 67 #include <vm/vm_phys.h> 68 #include <vm/vm_radix.h> 69 #include <vm/vm_reserv.h> 70 71 /* 72 * The reservation system supports the speculative allocation of large physical 73 * pages ("superpages"). Speculative allocation enables the fully automatic 74 * utilization of superpages by the virtual memory system. In other words, no 75 * programmatic directives are required to use superpages. 76 */ 77 78 #if VM_NRESERVLEVEL > 0 79 80 /* 81 * Temporarily simulate two-level reservations. Effectively, VM_LEVEL_0_* is 82 * level 1, and VM_SUBLEVEL_0_* is level 0. 83 */ 84 #if VM_NRESERVLEVEL == 2 85 #undef VM_NRESERVLEVEL 86 #define VM_NRESERVLEVEL 1 87 #if VM_LEVEL_0_ORDER == 4 88 #undef VM_LEVEL_0_ORDER 89 #define VM_LEVEL_0_ORDER (4 + VM_LEVEL_1_ORDER) 90 #define VM_SUBLEVEL_0_NPAGES (1 << 4) 91 #elif VM_LEVEL_0_ORDER == 7 92 #undef VM_LEVEL_0_ORDER 93 #define VM_LEVEL_0_ORDER (7 + VM_LEVEL_1_ORDER) 94 #define VM_SUBLEVEL_0_NPAGES (1 << 7) 95 #else 96 #error "Unsupported level 0 reservation size" 97 #endif 98 #define VM_LEVEL_0_PSIND 2 99 #else 100 #define VM_LEVEL_0_PSIND 1 101 #endif 102 103 #ifndef VM_LEVEL_0_ORDER_MAX 104 #define VM_LEVEL_0_ORDER_MAX VM_LEVEL_0_ORDER 105 #endif 106 107 /* 108 * The number of small pages that are contained in a level 0 reservation 109 */ 110 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 111 #define VM_LEVEL_0_NPAGES_MAX (1 << VM_LEVEL_0_ORDER_MAX) 112 113 /* 114 * The number of bits by which a physical address is shifted to obtain the 115 * reservation number 116 */ 117 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 118 119 /* 120 * The size of a level 0 reservation in bytes 121 */ 122 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 123 124 /* 125 * Computes the index of the small page underlying the given (object, pindex) 126 * within the reservation's array of small pages. 127 */ 128 #define VM_RESERV_INDEX(object, pindex) \ 129 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 130 131 /* 132 * Number of elapsed ticks before we update the LRU queue position. Used 133 * to reduce contention and churn on the list. 134 */ 135 #define PARTPOPSLOP 1 136 137 /* 138 * The reservation structure 139 * 140 * A reservation structure is constructed whenever a large physical page is 141 * speculatively allocated to an object. The reservation provides the small 142 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 143 * within that object. The reservation's "popcnt" tracks the number of these 144 * small physical pages that are in use at any given time. When and if the 145 * reservation is not fully utilized, it appears in the queue of partially 146 * populated reservations. The reservation always appears on the containing 147 * object's list of reservations. 148 * 149 * A partially populated reservation can be broken and reclaimed at any time. 150 * 151 * c - constant after boot 152 * d - vm_reserv_domain_lock 153 * o - vm_reserv_object_lock 154 * r - vm_reserv_lock 155 * s - vm_reserv_domain_scan_lock 156 */ 157 struct vm_reserv { 158 struct mtx lock; /* reservation lock. */ 159 TAILQ_ENTRY(vm_reserv) partpopq; /* (d, r) per-domain queue. */ 160 LIST_ENTRY(vm_reserv) objq; /* (o, r) object queue */ 161 vm_object_t object; /* (o, r) containing object */ 162 vm_pindex_t pindex; /* (o, r) offset in object */ 163 vm_page_t pages; /* (c) first page */ 164 uint16_t popcnt; /* (r) # of pages in use */ 165 uint8_t domain; /* (c) NUMA domain. */ 166 char inpartpopq; /* (d, r) */ 167 int lasttick; /* (r) last pop update tick. */ 168 bitstr_t bit_decl(popmap, VM_LEVEL_0_NPAGES_MAX); 169 /* (r) bit vector, used pages */ 170 }; 171 172 TAILQ_HEAD(vm_reserv_queue, vm_reserv); 173 174 #define vm_reserv_lockptr(rv) (&(rv)->lock) 175 #define vm_reserv_assert_locked(rv) \ 176 mtx_assert(vm_reserv_lockptr(rv), MA_OWNED) 177 #define vm_reserv_lock(rv) mtx_lock(vm_reserv_lockptr(rv)) 178 #define vm_reserv_trylock(rv) mtx_trylock(vm_reserv_lockptr(rv)) 179 #define vm_reserv_unlock(rv) mtx_unlock(vm_reserv_lockptr(rv)) 180 181 /* 182 * The reservation array 183 * 184 * This array is analoguous in function to vm_page_array. It differs in the 185 * respect that it may contain a greater number of useful reservation 186 * structures than there are (physical) superpages. These "invalid" 187 * reservation structures exist to trade-off space for time in the 188 * implementation of vm_reserv_from_page(). Invalid reservation structures are 189 * distinguishable from "valid" reservation structures by inspecting the 190 * reservation's "pages" field. Invalid reservation structures have a NULL 191 * "pages" field. 192 * 193 * vm_reserv_from_page() maps a small (physical) page to an element of this 194 * array by computing a physical reservation number from the page's physical 195 * address. The physical reservation number is used as the array index. 196 * 197 * An "active" reservation is a valid reservation structure that has a non-NULL 198 * "object" field and a non-zero "popcnt" field. In other words, every active 199 * reservation belongs to a particular object. Moreover, every active 200 * reservation has an entry in the containing object's list of reservations. 201 */ 202 static vm_reserv_t vm_reserv_array; 203 204 /* 205 * The per-domain partially populated reservation queues 206 * 207 * These queues enable the fast recovery of an unused free small page from a 208 * partially populated reservation. The reservation at the head of a queue 209 * is the least recently changed, partially populated reservation. 210 * 211 * Access to this queue is synchronized by the per-domain reservation lock. 212 * Threads reclaiming free pages from the queue must hold the per-domain scan 213 * lock. 214 */ 215 struct vm_reserv_domain { 216 struct mtx lock; 217 struct vm_reserv_queue partpop; /* (d) */ 218 struct vm_reserv marker; /* (d, s) scan marker/lock */ 219 } __aligned(CACHE_LINE_SIZE); 220 221 static struct vm_reserv_domain vm_rvd[MAXMEMDOM]; 222 223 #define vm_reserv_domain_lockptr(d) (&vm_rvd[(d)].lock) 224 #define vm_reserv_domain_assert_locked(d) \ 225 mtx_assert(vm_reserv_domain_lockptr(d), MA_OWNED) 226 #define vm_reserv_domain_lock(d) mtx_lock(vm_reserv_domain_lockptr(d)) 227 #define vm_reserv_domain_unlock(d) mtx_unlock(vm_reserv_domain_lockptr(d)) 228 229 #define vm_reserv_domain_scan_lock(d) mtx_lock(&vm_rvd[(d)].marker.lock) 230 #define vm_reserv_domain_scan_unlock(d) mtx_unlock(&vm_rvd[(d)].marker.lock) 231 232 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 233 "Reservation Info"); 234 235 static COUNTER_U64_DEFINE_EARLY(vm_reserv_broken); 236 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 237 &vm_reserv_broken, "Cumulative number of broken reservations"); 238 239 static COUNTER_U64_DEFINE_EARLY(vm_reserv_freed); 240 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 241 &vm_reserv_freed, "Cumulative number of freed reservations"); 242 243 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); 244 245 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, 246 NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); 247 248 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 249 250 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, 251 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 252 sysctl_vm_reserv_partpopq, "A", 253 "Partially populated reservation queues"); 254 255 static COUNTER_U64_DEFINE_EARLY(vm_reserv_reclaimed); 256 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 257 &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations"); 258 259 /* 260 * The object lock pool is used to synchronize the rvq. We can not use a 261 * pool mutex because it is required before malloc works. 262 * 263 * The "hash" function could be made faster without divide and modulo. 264 */ 265 #define VM_RESERV_OBJ_LOCK_COUNT MAXCPU 266 267 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT]; 268 269 #define vm_reserv_object_lock_idx(object) \ 270 (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT) 271 #define vm_reserv_object_lock_ptr(object) \ 272 &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))] 273 #define vm_reserv_object_lock(object) \ 274 mtx_lock(vm_reserv_object_lock_ptr((object))) 275 #define vm_reserv_object_unlock(object) \ 276 mtx_unlock(vm_reserv_object_lock_ptr((object))) 277 278 static void vm_reserv_break(vm_reserv_t rv); 279 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 280 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 281 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 282 vm_pindex_t pindex); 283 static void vm_reserv_populate(vm_reserv_t rv, int index); 284 static void vm_reserv_reclaim(vm_reserv_t rv); 285 286 /* 287 * Returns the current number of full reservations. 288 * 289 * Since the number of full reservations is computed without acquiring any 290 * locks, the returned value is inexact. 291 */ 292 static int 293 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) 294 { 295 vm_paddr_t paddr; 296 struct vm_phys_seg *seg; 297 vm_reserv_t rv; 298 int fullpop, segind; 299 300 fullpop = 0; 301 for (segind = 0; segind < vm_phys_nsegs; segind++) { 302 seg = &vm_phys_segs[segind]; 303 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 304 #ifdef VM_PHYSSEG_SPARSE 305 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) - 306 (seg->start >> VM_LEVEL_0_SHIFT); 307 #else 308 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; 309 #endif 310 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr + 311 VM_LEVEL_0_SIZE <= seg->end) { 312 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; 313 paddr += VM_LEVEL_0_SIZE; 314 rv++; 315 } 316 } 317 return (sysctl_handle_int(oidp, &fullpop, 0, req)); 318 } 319 320 /* 321 * Describes the current state of the partially populated reservation queue. 322 */ 323 static int 324 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 325 { 326 struct sbuf sbuf; 327 vm_reserv_t rv; 328 int counter, error, domain, level, unused_pages; 329 330 error = sysctl_wire_old_buffer(req, 0); 331 if (error != 0) 332 return (error); 333 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 334 sbuf_printf(&sbuf, "\nDOMAIN LEVEL SIZE NUMBER\n\n"); 335 for (domain = 0; domain < vm_ndomains; domain++) { 336 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 337 counter = 0; 338 unused_pages = 0; 339 vm_reserv_domain_lock(domain); 340 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) { 341 if (rv == &vm_rvd[domain].marker) 342 continue; 343 counter++; 344 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 345 } 346 vm_reserv_domain_unlock(domain); 347 sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n", 348 domain, level, 349 unused_pages * ((int)PAGE_SIZE / 1024), counter); 350 } 351 } 352 error = sbuf_finish(&sbuf); 353 sbuf_delete(&sbuf); 354 return (error); 355 } 356 357 /* 358 * Remove a reservation from the object's objq. 359 */ 360 static void 361 vm_reserv_remove(vm_reserv_t rv) 362 { 363 vm_object_t object; 364 365 vm_reserv_assert_locked(rv); 366 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 367 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 368 KASSERT(rv->object != NULL, 369 ("vm_reserv_remove: reserv %p is free", rv)); 370 KASSERT(!rv->inpartpopq, 371 ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv)); 372 object = rv->object; 373 vm_reserv_object_lock(object); 374 LIST_REMOVE(rv, objq); 375 rv->object = NULL; 376 vm_reserv_object_unlock(object); 377 } 378 379 /* 380 * Insert a new reservation into the object's objq. 381 */ 382 static void 383 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex) 384 { 385 386 vm_reserv_assert_locked(rv); 387 CTR6(KTR_VM, 388 "%s: rv %p(%p) object %p new %p popcnt %d", 389 __FUNCTION__, rv, rv->pages, rv->object, object, 390 rv->popcnt); 391 KASSERT(rv->object == NULL, 392 ("vm_reserv_insert: reserv %p isn't free", rv)); 393 KASSERT(rv->popcnt == 0, 394 ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv)); 395 KASSERT(!rv->inpartpopq, 396 ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv)); 397 KASSERT(bit_ntest(rv->popmap, 0, VM_LEVEL_0_NPAGES - 1, 0), 398 ("vm_reserv_insert: reserv %p's popmap is corrupted", rv)); 399 vm_reserv_object_lock(object); 400 rv->pindex = pindex; 401 rv->object = object; 402 rv->lasttick = ticks; 403 LIST_INSERT_HEAD(&object->rvq, rv, objq); 404 vm_reserv_object_unlock(object); 405 } 406 407 #ifdef VM_SUBLEVEL_0_NPAGES 408 static inline bool 409 vm_reserv_is_sublevel_full(vm_reserv_t rv, int index) 410 { 411 _Static_assert(VM_SUBLEVEL_0_NPAGES == 16 || 412 VM_SUBLEVEL_0_NPAGES == 128, 413 "vm_reserv_is_sublevel_full: unsupported VM_SUBLEVEL_0_NPAGES"); 414 /* An equivalent bit_ntest() compiles to more instructions. */ 415 switch (VM_SUBLEVEL_0_NPAGES) { 416 case 16: 417 return (((uint16_t *)rv->popmap)[index / 16] == UINT16_MAX); 418 case 128: 419 index = rounddown2(index, 128) / 64; 420 return (((uint64_t *)rv->popmap)[index] == UINT64_MAX && 421 ((uint64_t *)rv->popmap)[index + 1] == UINT64_MAX); 422 default: 423 __unreachable(); 424 } 425 } 426 #endif 427 428 /* 429 * Reduces the given reservation's population count. If the population count 430 * becomes zero, the reservation is destroyed. Additionally, moves the 431 * reservation to the tail of the partially populated reservation queue if the 432 * population count is non-zero. 433 */ 434 static void 435 vm_reserv_depopulate(vm_reserv_t rv, int index) 436 { 437 struct vm_domain *vmd; 438 439 vm_reserv_assert_locked(rv); 440 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 441 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 442 KASSERT(rv->object != NULL, 443 ("vm_reserv_depopulate: reserv %p is free", rv)); 444 KASSERT(bit_test(rv->popmap, index), 445 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 446 index)); 447 KASSERT(rv->popcnt > 0, 448 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 449 KASSERT(rv->domain < vm_ndomains, 450 ("vm_reserv_depopulate: reserv %p's domain is corrupted %d", 451 rv, rv->domain)); 452 if (rv->popcnt == VM_LEVEL_0_NPAGES) { 453 KASSERT(rv->pages->psind == VM_LEVEL_0_PSIND, 454 ("vm_reserv_depopulate: reserv %p is already demoted", 455 rv)); 456 rv->pages->psind = VM_LEVEL_0_PSIND - 1; 457 } 458 #ifdef VM_SUBLEVEL_0_NPAGES 459 if (vm_reserv_is_sublevel_full(rv, index)) 460 rv->pages[rounddown2(index, VM_SUBLEVEL_0_NPAGES)].psind = 0; 461 #endif 462 bit_clear(rv->popmap, index); 463 rv->popcnt--; 464 if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP || 465 rv->popcnt == 0) { 466 vm_reserv_domain_lock(rv->domain); 467 if (rv->inpartpopq) { 468 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 469 rv->inpartpopq = FALSE; 470 } 471 if (rv->popcnt != 0) { 472 rv->inpartpopq = TRUE; 473 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, 474 partpopq); 475 } 476 vm_reserv_domain_unlock(rv->domain); 477 rv->lasttick = ticks; 478 } 479 vmd = VM_DOMAIN(rv->domain); 480 if (rv->popcnt == 0) { 481 vm_reserv_remove(rv); 482 vm_domain_free_lock(vmd); 483 vm_phys_free_pages(rv->pages, VM_FREEPOOL_DEFAULT, 484 VM_LEVEL_0_ORDER); 485 vm_domain_free_unlock(vmd); 486 counter_u64_add(vm_reserv_freed, 1); 487 } 488 vm_domain_freecnt_inc(vmd, 1); 489 } 490 491 /* 492 * Returns the reservation to which the given page might belong. 493 */ 494 static __inline vm_reserv_t 495 vm_reserv_from_page(vm_page_t m) 496 { 497 #ifdef VM_PHYSSEG_SPARSE 498 struct vm_phys_seg *seg; 499 500 seg = &vm_phys_segs[m->segind]; 501 return (seg->first_reserv + (VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT) - 502 (seg->start >> VM_LEVEL_0_SHIFT)); 503 #else 504 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 505 #endif 506 } 507 508 /* 509 * Returns an existing reservation or NULL and initialized successor pointer. 510 */ 511 static vm_reserv_t 512 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex, 513 vm_page_t mpred, vm_page_t *msuccp) 514 { 515 vm_reserv_t rv; 516 vm_page_t msucc; 517 518 msucc = NULL; 519 if (mpred != NULL) { 520 KASSERT(mpred->object == object, 521 ("vm_reserv_from_object: object doesn't contain mpred")); 522 KASSERT(mpred->pindex < pindex, 523 ("vm_reserv_from_object: mpred doesn't precede pindex")); 524 rv = vm_reserv_from_page(mpred); 525 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 526 goto found; 527 msucc = TAILQ_NEXT(mpred, listq); 528 } else 529 msucc = TAILQ_FIRST(&object->memq); 530 if (msucc != NULL) { 531 KASSERT(msucc->pindex > pindex, 532 ("vm_reserv_from_object: msucc doesn't succeed pindex")); 533 rv = vm_reserv_from_page(msucc); 534 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 535 goto found; 536 } 537 rv = NULL; 538 539 found: 540 *msuccp = msucc; 541 542 return (rv); 543 } 544 545 /* 546 * Returns TRUE if the given reservation contains the given page index and 547 * FALSE otherwise. 548 */ 549 static __inline boolean_t 550 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 551 { 552 553 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 554 } 555 556 /* 557 * Increases the given reservation's population count. Moves the reservation 558 * to the tail of the partially populated reservation queue. 559 */ 560 static void 561 vm_reserv_populate(vm_reserv_t rv, int index) 562 { 563 564 vm_reserv_assert_locked(rv); 565 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 566 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 567 KASSERT(rv->object != NULL, 568 ("vm_reserv_populate: reserv %p is free", rv)); 569 KASSERT(!bit_test(rv->popmap, index), 570 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 571 index)); 572 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 573 ("vm_reserv_populate: reserv %p is already full", rv)); 574 KASSERT(rv->pages->psind >= 0 && 575 rv->pages->psind < VM_LEVEL_0_PSIND, 576 ("vm_reserv_populate: reserv %p is already promoted", rv)); 577 KASSERT(rv->domain < vm_ndomains, 578 ("vm_reserv_populate: reserv %p's domain is corrupted %d", 579 rv, rv->domain)); 580 bit_set(rv->popmap, index); 581 #ifdef VM_SUBLEVEL_0_NPAGES 582 if (vm_reserv_is_sublevel_full(rv, index)) 583 rv->pages[rounddown2(index, VM_SUBLEVEL_0_NPAGES)].psind = 1; 584 #endif 585 rv->popcnt++; 586 if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP && 587 rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES) 588 return; 589 rv->lasttick = ticks; 590 vm_reserv_domain_lock(rv->domain); 591 if (rv->inpartpopq) { 592 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 593 rv->inpartpopq = FALSE; 594 } 595 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 596 rv->inpartpopq = TRUE; 597 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq); 598 } else { 599 KASSERT(rv->pages->psind == VM_LEVEL_0_PSIND - 1, 600 ("vm_reserv_populate: reserv %p is already promoted", 601 rv)); 602 rv->pages->psind = VM_LEVEL_0_PSIND; 603 } 604 vm_reserv_domain_unlock(rv->domain); 605 } 606 607 /* 608 * Allocates a contiguous set of physical pages of the given size "npages" 609 * from existing or newly created reservations. All of the physical pages 610 * must be at or above the given physical address "low" and below the given 611 * physical address "high". The given value "alignment" determines the 612 * alignment of the first physical page in the set. If the given value 613 * "boundary" is non-zero, then the set of physical pages cannot cross any 614 * physical address boundary that is a multiple of that value. Both 615 * "alignment" and "boundary" must be a power of two. 616 * 617 * The page "mpred" must immediately precede the offset "pindex" within the 618 * specified object. 619 * 620 * The object must be locked. 621 */ 622 vm_page_t 623 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain, 624 int req, vm_page_t mpred, u_long npages, vm_paddr_t low, vm_paddr_t high, 625 u_long alignment, vm_paddr_t boundary) 626 { 627 struct vm_domain *vmd; 628 vm_paddr_t pa, size; 629 vm_page_t m, m_ret, msucc; 630 vm_pindex_t first, leftcap, rightcap; 631 vm_reserv_t rv; 632 u_long allocpages, maxpages, minpages; 633 int i, index, n; 634 635 VM_OBJECT_ASSERT_WLOCKED(object); 636 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 637 638 /* 639 * Is a reservation fundamentally impossible? 640 */ 641 if (pindex < VM_RESERV_INDEX(object, pindex) || 642 pindex + npages > object->size) 643 return (NULL); 644 645 /* 646 * All reservations of a particular size have the same alignment. 647 * Assuming that the first page is allocated from a reservation, the 648 * least significant bits of its physical address can be determined 649 * from its offset from the beginning of the reservation and the size 650 * of the reservation. 651 * 652 * Could the specified index within a reservation of the smallest 653 * possible size satisfy the alignment and boundary requirements? 654 */ 655 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 656 size = npages << PAGE_SHIFT; 657 if (!vm_addr_ok(pa, size, alignment, boundary)) 658 return (NULL); 659 660 /* 661 * Look for an existing reservation. 662 */ 663 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 664 if (rv != NULL) { 665 KASSERT(object != kernel_object || rv->domain == domain, 666 ("vm_reserv_alloc_contig: domain mismatch")); 667 index = VM_RESERV_INDEX(object, pindex); 668 /* Does the allocation fit within the reservation? */ 669 if (index + npages > VM_LEVEL_0_NPAGES) 670 return (NULL); 671 domain = rv->domain; 672 vmd = VM_DOMAIN(domain); 673 vm_reserv_lock(rv); 674 /* Handle reclaim race. */ 675 if (rv->object != object) 676 goto out; 677 m = &rv->pages[index]; 678 pa = VM_PAGE_TO_PHYS(m); 679 if (pa < low || pa + size > high || 680 !vm_addr_ok(pa, size, alignment, boundary)) 681 goto out; 682 /* Handle vm_page_iter_rename(..., m, new_object, ...). */ 683 if (!bit_ntest(rv->popmap, index, index + npages - 1, 0)) 684 goto out; 685 if (!vm_domain_allocate(vmd, req, npages)) 686 goto out; 687 for (i = 0; i < npages; i++) 688 vm_reserv_populate(rv, index + i); 689 vm_reserv_unlock(rv); 690 return (m); 691 out: 692 vm_reserv_unlock(rv); 693 return (NULL); 694 } 695 696 /* 697 * Could at least one reservation fit between the first index to the 698 * left that can be used ("leftcap") and the first index to the right 699 * that cannot be used ("rightcap")? 700 * 701 * We must synchronize with the reserv object lock to protect the 702 * pindex/object of the resulting reservations against rename while 703 * we are inspecting. 704 */ 705 first = pindex - VM_RESERV_INDEX(object, pindex); 706 minpages = VM_RESERV_INDEX(object, pindex) + npages; 707 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 708 allocpages = maxpages; 709 vm_reserv_object_lock(object); 710 if (mpred != NULL) { 711 if ((rv = vm_reserv_from_page(mpred))->object != object) 712 leftcap = mpred->pindex + 1; 713 else 714 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 715 if (leftcap > first) { 716 vm_reserv_object_unlock(object); 717 return (NULL); 718 } 719 } 720 if (msucc != NULL) { 721 if ((rv = vm_reserv_from_page(msucc))->object != object) 722 rightcap = msucc->pindex; 723 else 724 rightcap = rv->pindex; 725 if (first + maxpages > rightcap) { 726 if (maxpages == VM_LEVEL_0_NPAGES) { 727 vm_reserv_object_unlock(object); 728 return (NULL); 729 } 730 731 /* 732 * At least one reservation will fit between "leftcap" 733 * and "rightcap". However, a reservation for the 734 * last of the requested pages will not fit. Reduce 735 * the size of the upcoming allocation accordingly. 736 */ 737 allocpages = minpages; 738 } 739 } 740 vm_reserv_object_unlock(object); 741 742 /* 743 * Would the last new reservation extend past the end of the object? 744 * 745 * If the object is unlikely to grow don't allocate a reservation for 746 * the tail. 747 */ 748 if ((object->flags & OBJ_ANON) == 0 && 749 first + maxpages > object->size) { 750 if (maxpages == VM_LEVEL_0_NPAGES) 751 return (NULL); 752 allocpages = minpages; 753 } 754 755 /* 756 * Allocate the physical pages. The alignment and boundary specified 757 * for this allocation may be different from the alignment and 758 * boundary specified for the requested pages. For instance, the 759 * specified index may not be the first page within the first new 760 * reservation. 761 */ 762 m = NULL; 763 vmd = VM_DOMAIN(domain); 764 if (vm_domain_allocate(vmd, req, npages)) { 765 vm_domain_free_lock(vmd); 766 m = vm_phys_alloc_contig(domain, allocpages, low, high, 767 ulmax(alignment, VM_LEVEL_0_SIZE), 768 boundary > VM_LEVEL_0_SIZE ? boundary : 0); 769 vm_domain_free_unlock(vmd); 770 if (m == NULL) { 771 vm_domain_freecnt_inc(vmd, npages); 772 return (NULL); 773 } 774 } else 775 return (NULL); 776 KASSERT(vm_page_domain(m) == domain, 777 ("vm_reserv_alloc_contig: Page domain does not match requested.")); 778 779 /* 780 * The allocated physical pages always begin at a reservation 781 * boundary, but they do not always end at a reservation boundary. 782 * Initialize every reservation that is completely covered by the 783 * allocated physical pages. 784 */ 785 m_ret = NULL; 786 index = VM_RESERV_INDEX(object, pindex); 787 do { 788 rv = vm_reserv_from_page(m); 789 KASSERT(rv->pages == m, 790 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 791 rv)); 792 vm_reserv_lock(rv); 793 vm_reserv_insert(rv, object, first); 794 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 795 for (i = 0; i < n; i++) 796 vm_reserv_populate(rv, index + i); 797 npages -= n; 798 if (m_ret == NULL) { 799 m_ret = &rv->pages[index]; 800 index = 0; 801 } 802 vm_reserv_unlock(rv); 803 m += VM_LEVEL_0_NPAGES; 804 first += VM_LEVEL_0_NPAGES; 805 allocpages -= VM_LEVEL_0_NPAGES; 806 } while (allocpages >= VM_LEVEL_0_NPAGES); 807 return (m_ret); 808 } 809 810 /* 811 * Allocate a physical page from an existing or newly created reservation. 812 * 813 * The page "mpred" must immediately precede the offset "pindex" within the 814 * specified object. 815 * 816 * The object must be locked. 817 */ 818 vm_page_t 819 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain, 820 int req, vm_page_t mpred) 821 { 822 struct vm_domain *vmd; 823 vm_page_t m, msucc; 824 vm_pindex_t first, leftcap, rightcap; 825 vm_reserv_t rv; 826 int index; 827 828 VM_OBJECT_ASSERT_WLOCKED(object); 829 830 /* 831 * Is a reservation fundamentally impossible? 832 */ 833 if (pindex < VM_RESERV_INDEX(object, pindex) || 834 pindex >= object->size) 835 return (NULL); 836 837 /* 838 * Look for an existing reservation. 839 */ 840 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 841 if (rv != NULL) { 842 KASSERT(object != kernel_object || rv->domain == domain, 843 ("vm_reserv_alloc_page: domain mismatch")); 844 domain = rv->domain; 845 vmd = VM_DOMAIN(domain); 846 index = VM_RESERV_INDEX(object, pindex); 847 m = &rv->pages[index]; 848 vm_reserv_lock(rv); 849 /* Handle reclaim race. */ 850 if (rv->object != object || 851 /* Handle vm_page_iter_rename(..., m, new_object, ...). */ 852 bit_test(rv->popmap, index)) { 853 m = NULL; 854 goto out; 855 } 856 if (vm_domain_allocate(vmd, req, 1) == 0) 857 m = NULL; 858 else 859 vm_reserv_populate(rv, index); 860 out: 861 vm_reserv_unlock(rv); 862 return (m); 863 } 864 865 /* 866 * Could a reservation fit between the first index to the left that 867 * can be used and the first index to the right that cannot be used? 868 * 869 * We must synchronize with the reserv object lock to protect the 870 * pindex/object of the resulting reservations against rename while 871 * we are inspecting. 872 */ 873 first = pindex - VM_RESERV_INDEX(object, pindex); 874 vm_reserv_object_lock(object); 875 if (mpred != NULL) { 876 if ((rv = vm_reserv_from_page(mpred))->object != object) 877 leftcap = mpred->pindex + 1; 878 else 879 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 880 if (leftcap > first) { 881 vm_reserv_object_unlock(object); 882 return (NULL); 883 } 884 } 885 if (msucc != NULL) { 886 if ((rv = vm_reserv_from_page(msucc))->object != object) 887 rightcap = msucc->pindex; 888 else 889 rightcap = rv->pindex; 890 if (first + VM_LEVEL_0_NPAGES > rightcap) { 891 vm_reserv_object_unlock(object); 892 return (NULL); 893 } 894 } 895 vm_reserv_object_unlock(object); 896 897 /* 898 * Would the last new reservation extend past the end of the object? 899 * 900 * If the object is unlikely to grow don't allocate a reservation for 901 * the tail. 902 */ 903 if ((object->flags & OBJ_ANON) == 0 && 904 first + VM_LEVEL_0_NPAGES > object->size) 905 return (NULL); 906 907 /* 908 * Allocate and populate the new reservation. 909 */ 910 m = NULL; 911 vmd = VM_DOMAIN(domain); 912 if (vm_domain_allocate(vmd, req, 1)) { 913 vm_domain_free_lock(vmd); 914 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 915 VM_LEVEL_0_ORDER); 916 vm_domain_free_unlock(vmd); 917 if (m == NULL) { 918 vm_domain_freecnt_inc(vmd, 1); 919 return (NULL); 920 } 921 } else 922 return (NULL); 923 rv = vm_reserv_from_page(m); 924 vm_reserv_lock(rv); 925 KASSERT(rv->pages == m, 926 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 927 vm_reserv_insert(rv, object, first); 928 index = VM_RESERV_INDEX(object, pindex); 929 vm_reserv_populate(rv, index); 930 vm_reserv_unlock(rv); 931 932 return (&rv->pages[index]); 933 } 934 935 /* 936 * Breaks the given reservation. All free pages in the reservation 937 * are returned to the physical memory allocator. The reservation's 938 * population count and map are reset to their initial state. 939 * 940 * The given reservation must not be in the partially populated reservation 941 * queue. 942 */ 943 static void 944 vm_reserv_break(vm_reserv_t rv) 945 { 946 vm_page_t m; 947 int pool, pos, pos0, pos1; 948 949 vm_reserv_assert_locked(rv); 950 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 951 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 952 vm_reserv_remove(rv); 953 m = rv->pages; 954 #ifdef VM_SUBLEVEL_0_NPAGES 955 for (; m < rv->pages + VM_LEVEL_0_NPAGES; m += VM_SUBLEVEL_0_NPAGES) 956 #endif 957 m->psind = 0; 958 pool = VM_FREEPOOL_DIRECT; 959 pos0 = bit_test(rv->popmap, 0) ? -1 : 0; 960 pos1 = -1 - pos0; 961 for (pos = 0; pos < VM_LEVEL_0_NPAGES; ) { 962 /* Find the first different bit after pos. */ 963 bit_ff_at(rv->popmap, pos + 1, VM_LEVEL_0_NPAGES, 964 pos1 < pos0, &pos); 965 if (pos == -1) 966 pos = VM_LEVEL_0_NPAGES; 967 if (pos0 < pos1) { 968 /* Set pool for pages from pos1 to pos. */ 969 pos0 = pos1; 970 while (pos0 < pos) 971 rv->pages[pos0++].pool = pool; 972 continue; 973 } 974 /* Free unused pages from pos0 to pos. */ 975 pos1 = pos; 976 vm_domain_free_lock(VM_DOMAIN(rv->domain)); 977 vm_phys_enqueue_contig(&rv->pages[pos0], pool, pos1 - pos0); 978 vm_domain_free_unlock(VM_DOMAIN(rv->domain)); 979 } 980 bit_nclear(rv->popmap, 0, VM_LEVEL_0_NPAGES - 1); 981 rv->popcnt = 0; 982 counter_u64_add(vm_reserv_broken, 1); 983 } 984 985 /* 986 * Breaks all reservations belonging to the given object. 987 */ 988 void 989 vm_reserv_break_all(vm_object_t object) 990 { 991 vm_reserv_t rv; 992 993 /* 994 * This access of object->rvq is unsynchronized so that the 995 * object rvq lock can nest after the domain_free lock. We 996 * must check for races in the results. However, the object 997 * lock prevents new additions, so we are guaranteed that when 998 * it returns NULL the object is properly empty. 999 */ 1000 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 1001 vm_reserv_lock(rv); 1002 /* Reclaim race. */ 1003 if (rv->object != object) { 1004 vm_reserv_unlock(rv); 1005 continue; 1006 } 1007 vm_reserv_domain_lock(rv->domain); 1008 if (rv->inpartpopq) { 1009 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 1010 rv->inpartpopq = FALSE; 1011 } 1012 vm_reserv_domain_unlock(rv->domain); 1013 vm_reserv_break(rv); 1014 vm_reserv_unlock(rv); 1015 } 1016 } 1017 1018 /* 1019 * Frees the given page if it belongs to a reservation. Returns TRUE if the 1020 * page is freed and FALSE otherwise. 1021 */ 1022 boolean_t 1023 vm_reserv_free_page(vm_page_t m) 1024 { 1025 vm_reserv_t rv; 1026 boolean_t ret; 1027 1028 rv = vm_reserv_from_page(m); 1029 if (rv->object == NULL) 1030 return (FALSE); 1031 vm_reserv_lock(rv); 1032 /* Re-validate after lock. */ 1033 if (rv->object != NULL) { 1034 vm_reserv_depopulate(rv, m - rv->pages); 1035 ret = TRUE; 1036 } else 1037 ret = FALSE; 1038 vm_reserv_unlock(rv); 1039 1040 return (ret); 1041 } 1042 1043 /* 1044 * Initializes the reservation management system. Specifically, initializes 1045 * the reservation array. 1046 * 1047 * Requires that vm_page_array and first_page are initialized! 1048 */ 1049 void 1050 vm_reserv_init(void) 1051 { 1052 vm_paddr_t paddr; 1053 struct vm_phys_seg *seg; 1054 struct vm_reserv *rv; 1055 struct vm_reserv_domain *rvd; 1056 #ifdef VM_PHYSSEG_SPARSE 1057 vm_pindex_t used; 1058 #endif 1059 int i, segind; 1060 1061 /* 1062 * Initialize the reservation array. Specifically, initialize the 1063 * "pages" field for every element that has an underlying superpage. 1064 */ 1065 #ifdef VM_PHYSSEG_SPARSE 1066 used = 0; 1067 #endif 1068 for (segind = 0; segind < vm_phys_nsegs; segind++) { 1069 seg = &vm_phys_segs[segind]; 1070 #ifdef VM_PHYSSEG_SPARSE 1071 seg->first_reserv = &vm_reserv_array[used]; 1072 used += howmany(seg->end, VM_LEVEL_0_SIZE) - 1073 seg->start / VM_LEVEL_0_SIZE; 1074 #else 1075 seg->first_reserv = 1076 &vm_reserv_array[seg->start >> VM_LEVEL_0_SHIFT]; 1077 #endif 1078 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 1079 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) - 1080 (seg->start >> VM_LEVEL_0_SHIFT); 1081 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr + 1082 VM_LEVEL_0_SIZE <= seg->end) { 1083 rv->pages = PHYS_TO_VM_PAGE(paddr); 1084 rv->domain = seg->domain; 1085 mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF); 1086 paddr += VM_LEVEL_0_SIZE; 1087 rv++; 1088 } 1089 } 1090 for (i = 0; i < MAXMEMDOM; i++) { 1091 rvd = &vm_rvd[i]; 1092 mtx_init(&rvd->lock, "vm reserv domain", NULL, MTX_DEF); 1093 TAILQ_INIT(&rvd->partpop); 1094 mtx_init(&rvd->marker.lock, "vm reserv marker", NULL, MTX_DEF); 1095 1096 /* 1097 * Fully populated reservations should never be present in the 1098 * partially populated reservation queues. 1099 */ 1100 rvd->marker.popcnt = VM_LEVEL_0_NPAGES; 1101 bit_nset(rvd->marker.popmap, 0, VM_LEVEL_0_NPAGES - 1); 1102 } 1103 1104 for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++) 1105 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL, 1106 MTX_DEF); 1107 } 1108 1109 /* 1110 * Returns true if the given page belongs to a reservation and that page is 1111 * free. Otherwise, returns false. 1112 */ 1113 bool 1114 vm_reserv_is_page_free(vm_page_t m) 1115 { 1116 vm_reserv_t rv; 1117 1118 rv = vm_reserv_from_page(m); 1119 if (rv->object == NULL) 1120 return (false); 1121 return (!bit_test(rv->popmap, m - rv->pages)); 1122 } 1123 1124 /* 1125 * Returns true if the given page is part of a block of npages, starting at a 1126 * multiple of npages, that are all allocated. Otherwise, returns false. 1127 */ 1128 bool 1129 vm_reserv_is_populated(vm_page_t m, int npages) 1130 { 1131 vm_reserv_t rv; 1132 int index; 1133 1134 KASSERT(npages <= VM_LEVEL_0_NPAGES, 1135 ("%s: npages %d exceeds VM_LEVEL_0_NPAGES", __func__, npages)); 1136 KASSERT(powerof2(npages), 1137 ("%s: npages %d is not a power of 2", __func__, npages)); 1138 rv = vm_reserv_from_page(m); 1139 if (rv->object == NULL) 1140 return (false); 1141 index = rounddown2(m - rv->pages, npages); 1142 return (bit_ntest(rv->popmap, index, index + npages - 1, 1)); 1143 } 1144 1145 /* 1146 * If the given page belongs to a reservation, returns the level of that 1147 * reservation. Otherwise, returns -1. 1148 */ 1149 int 1150 vm_reserv_level(vm_page_t m) 1151 { 1152 vm_reserv_t rv; 1153 1154 rv = vm_reserv_from_page(m); 1155 #ifdef VM_SUBLEVEL_0_NPAGES 1156 return (rv->object != NULL ? 1 : -1); 1157 #else 1158 return (rv->object != NULL ? 0 : -1); 1159 #endif 1160 } 1161 1162 /* 1163 * Returns a reservation level if the given page belongs to a fully populated 1164 * reservation and -1 otherwise. 1165 */ 1166 int 1167 vm_reserv_level_iffullpop(vm_page_t m) 1168 { 1169 vm_reserv_t rv; 1170 1171 rv = vm_reserv_from_page(m); 1172 if (rv->popcnt == VM_LEVEL_0_NPAGES) { 1173 #ifdef VM_SUBLEVEL_0_NPAGES 1174 return (1); 1175 } else if (rv->pages != NULL && 1176 vm_reserv_is_sublevel_full(rv, m - rv->pages)) { 1177 #endif 1178 return (0); 1179 } 1180 return (-1); 1181 } 1182 1183 /* 1184 * Remove a partially populated reservation from the queue. 1185 */ 1186 static void 1187 vm_reserv_dequeue(vm_reserv_t rv) 1188 { 1189 1190 vm_reserv_domain_assert_locked(rv->domain); 1191 vm_reserv_assert_locked(rv); 1192 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 1193 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 1194 KASSERT(rv->inpartpopq, 1195 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 1196 1197 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 1198 rv->inpartpopq = FALSE; 1199 } 1200 1201 /* 1202 * Breaks the given partially populated reservation, releasing its free pages 1203 * to the physical memory allocator. 1204 */ 1205 static void 1206 vm_reserv_reclaim(vm_reserv_t rv) 1207 { 1208 1209 vm_reserv_assert_locked(rv); 1210 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 1211 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 1212 if (rv->inpartpopq) { 1213 vm_reserv_domain_lock(rv->domain); 1214 vm_reserv_dequeue(rv); 1215 vm_reserv_domain_unlock(rv->domain); 1216 } 1217 vm_reserv_break(rv); 1218 counter_u64_add(vm_reserv_reclaimed, 1); 1219 } 1220 1221 /* 1222 * Breaks a reservation near the head of the partially populated reservation 1223 * queue, releasing its free pages to the physical memory allocator. Returns 1224 * TRUE if a reservation is broken and FALSE otherwise. 1225 */ 1226 bool 1227 vm_reserv_reclaim_inactive(int domain) 1228 { 1229 vm_reserv_t rv; 1230 1231 vm_reserv_domain_lock(domain); 1232 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) { 1233 /* 1234 * A locked reservation is likely being updated or reclaimed, 1235 * so just skip ahead. 1236 */ 1237 if (rv != &vm_rvd[domain].marker && vm_reserv_trylock(rv)) { 1238 vm_reserv_dequeue(rv); 1239 break; 1240 } 1241 } 1242 vm_reserv_domain_unlock(domain); 1243 if (rv != NULL) { 1244 vm_reserv_reclaim(rv); 1245 vm_reserv_unlock(rv); 1246 return (true); 1247 } 1248 return (false); 1249 } 1250 1251 /* 1252 * Determine whether this reservation has free pages that satisfy the given 1253 * request for contiguous physical memory. Start searching from the lower 1254 * bound, defined by lo, and stop at the upper bound, hi. Return the index 1255 * of the first satisfactory free page, or -1 if none is found. 1256 */ 1257 static int 1258 vm_reserv_find_contig(vm_reserv_t rv, int npages, int lo, 1259 int hi, int ppn_align, int ppn_bound) 1260 { 1261 1262 vm_reserv_assert_locked(rv); 1263 KASSERT(npages <= VM_LEVEL_0_NPAGES - 1, 1264 ("%s: Too many pages", __func__)); 1265 KASSERT(ppn_bound <= VM_LEVEL_0_NPAGES, 1266 ("%s: Too big a boundary for reservation size", __func__)); 1267 KASSERT(npages <= ppn_bound, 1268 ("%s: Too many pages for given boundary", __func__)); 1269 KASSERT(ppn_align != 0 && powerof2(ppn_align), 1270 ("ppn_align is not a positive power of 2")); 1271 KASSERT(ppn_bound != 0 && powerof2(ppn_bound), 1272 ("ppn_bound is not a positive power of 2")); 1273 while (bit_ffc_area_at(rv->popmap, lo, hi, npages, &lo), lo != -1) { 1274 if (lo < roundup2(lo, ppn_align)) { 1275 /* Skip to next aligned page. */ 1276 lo = roundup2(lo, ppn_align); 1277 } else if (roundup2(lo + 1, ppn_bound) >= lo + npages) 1278 return (lo); 1279 if (roundup2(lo + 1, ppn_bound) < lo + npages) { 1280 /* Skip to next boundary-matching page. */ 1281 lo = roundup2(lo + 1, ppn_bound); 1282 } 1283 } 1284 return (-1); 1285 } 1286 1287 /* 1288 * Searches the partially populated reservation queue for the least recently 1289 * changed reservation with free pages that satisfy the given request for 1290 * contiguous physical memory. If a satisfactory reservation is found, it is 1291 * broken. Returns a page if a reservation is broken and NULL otherwise. 1292 */ 1293 vm_page_t 1294 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low, 1295 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 1296 { 1297 struct vm_reserv_queue *queue; 1298 vm_paddr_t pa, size; 1299 vm_page_t m_ret; 1300 vm_reserv_t marker, rv, rvn; 1301 int hi, lo, posn, ppn_align, ppn_bound; 1302 1303 KASSERT(npages > 0, ("npages is 0")); 1304 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1305 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1306 if (npages > VM_LEVEL_0_NPAGES - 1) 1307 return (NULL); 1308 size = npages << PAGE_SHIFT; 1309 /* 1310 * Ensure that a free range starting at a boundary-multiple 1311 * doesn't include a boundary-multiple within it. Otherwise, 1312 * no boundary-constrained allocation is possible. 1313 */ 1314 if (!vm_addr_bound_ok(0, size, boundary)) 1315 return (NULL); 1316 marker = &vm_rvd[domain].marker; 1317 queue = &vm_rvd[domain].partpop; 1318 /* 1319 * Compute shifted alignment, boundary values for page-based 1320 * calculations. Constrain to range [1, VM_LEVEL_0_NPAGES] to 1321 * avoid overflow. 1322 */ 1323 ppn_align = (int)(ulmin(ulmax(PAGE_SIZE, alignment), 1324 VM_LEVEL_0_SIZE) >> PAGE_SHIFT); 1325 ppn_bound = boundary == 0 ? VM_LEVEL_0_NPAGES : 1326 (int)(MIN(MAX(PAGE_SIZE, boundary), 1327 VM_LEVEL_0_SIZE) >> PAGE_SHIFT); 1328 1329 vm_reserv_domain_scan_lock(domain); 1330 vm_reserv_domain_lock(domain); 1331 TAILQ_FOREACH_SAFE(rv, queue, partpopq, rvn) { 1332 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 1333 if (pa + VM_LEVEL_0_SIZE - size < low) { 1334 /* This entire reservation is too low; go to next. */ 1335 continue; 1336 } 1337 if (pa + size > high) { 1338 /* This entire reservation is too high; go to next. */ 1339 continue; 1340 } 1341 if (!vm_addr_align_ok(pa, alignment)) { 1342 /* This entire reservation is unaligned; go to next. */ 1343 continue; 1344 } 1345 1346 if (vm_reserv_trylock(rv) == 0) { 1347 TAILQ_INSERT_AFTER(queue, rv, marker, partpopq); 1348 vm_reserv_domain_unlock(domain); 1349 vm_reserv_lock(rv); 1350 if (TAILQ_PREV(marker, vm_reserv_queue, partpopq) != 1351 rv) { 1352 vm_reserv_unlock(rv); 1353 vm_reserv_domain_lock(domain); 1354 rvn = TAILQ_NEXT(marker, partpopq); 1355 TAILQ_REMOVE(queue, marker, partpopq); 1356 continue; 1357 } 1358 vm_reserv_domain_lock(domain); 1359 TAILQ_REMOVE(queue, marker, partpopq); 1360 } 1361 vm_reserv_domain_unlock(domain); 1362 lo = (pa >= low) ? 0 : 1363 (int)((low + PAGE_MASK - pa) >> PAGE_SHIFT); 1364 hi = (pa + VM_LEVEL_0_SIZE <= high) ? VM_LEVEL_0_NPAGES : 1365 (int)((high - pa) >> PAGE_SHIFT); 1366 posn = vm_reserv_find_contig(rv, (int)npages, lo, hi, 1367 ppn_align, ppn_bound); 1368 if (posn >= 0) { 1369 vm_reserv_domain_scan_unlock(domain); 1370 /* Allocate requested space */ 1371 rv->popcnt += npages; 1372 bit_nset(rv->popmap, posn, posn + npages - 1); 1373 vm_reserv_reclaim(rv); 1374 vm_reserv_unlock(rv); 1375 m_ret = &rv->pages[posn]; 1376 pa = VM_PAGE_TO_PHYS(m_ret); 1377 KASSERT(vm_addr_ok(pa, size, alignment, boundary), 1378 ("%s: adjusted address not aligned/bounded to " 1379 "%lx/%jx", 1380 __func__, alignment, (uintmax_t)boundary)); 1381 return (m_ret); 1382 } 1383 vm_reserv_domain_lock(domain); 1384 rvn = TAILQ_NEXT(rv, partpopq); 1385 vm_reserv_unlock(rv); 1386 } 1387 vm_reserv_domain_unlock(domain); 1388 vm_reserv_domain_scan_unlock(domain); 1389 return (NULL); 1390 } 1391 1392 /* 1393 * Transfers the reservation underlying the given page to a new object. 1394 * 1395 * The object must be locked. 1396 */ 1397 void 1398 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 1399 vm_pindex_t old_object_offset) 1400 { 1401 vm_reserv_t rv; 1402 1403 VM_OBJECT_ASSERT_WLOCKED(new_object); 1404 rv = vm_reserv_from_page(m); 1405 if (rv->object == old_object) { 1406 vm_reserv_lock(rv); 1407 CTR6(KTR_VM, 1408 "%s: rv %p object %p new %p popcnt %d inpartpop %d", 1409 __FUNCTION__, rv, rv->object, new_object, rv->popcnt, 1410 rv->inpartpopq); 1411 if (rv->object == old_object) { 1412 vm_reserv_object_lock(old_object); 1413 rv->object = NULL; 1414 LIST_REMOVE(rv, objq); 1415 vm_reserv_object_unlock(old_object); 1416 vm_reserv_object_lock(new_object); 1417 rv->object = new_object; 1418 rv->pindex -= old_object_offset; 1419 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 1420 vm_reserv_object_unlock(new_object); 1421 } 1422 vm_reserv_unlock(rv); 1423 } 1424 } 1425 1426 /* 1427 * Returns the size (in bytes) of a reservation of the specified level. 1428 */ 1429 int 1430 vm_reserv_size(int level) 1431 { 1432 1433 switch (level) { 1434 case 0: 1435 #ifdef VM_SUBLEVEL_0_NPAGES 1436 return (VM_SUBLEVEL_0_NPAGES * PAGE_SIZE); 1437 case 1: 1438 #endif 1439 return (VM_LEVEL_0_SIZE); 1440 case -1: 1441 return (PAGE_SIZE); 1442 default: 1443 return (0); 1444 } 1445 } 1446 1447 /* 1448 * Allocates the virtual and physical memory required by the reservation 1449 * management system's data structures, in particular, the reservation array. 1450 */ 1451 vm_paddr_t 1452 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end) 1453 { 1454 vm_paddr_t new_end; 1455 vm_pindex_t count; 1456 size_t size; 1457 int i; 1458 1459 count = 0; 1460 for (i = 0; i < vm_phys_nsegs; i++) { 1461 #ifdef VM_PHYSSEG_SPARSE 1462 count += howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE) - 1463 vm_phys_segs[i].start / VM_LEVEL_0_SIZE; 1464 #else 1465 count = MAX(count, 1466 howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE)); 1467 #endif 1468 } 1469 1470 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 1471 #ifdef VM_PHYSSEG_SPARSE 1472 count += howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE) - 1473 phys_avail[i] / VM_LEVEL_0_SIZE; 1474 #else 1475 count = MAX(count, 1476 howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE)); 1477 #endif 1478 } 1479 1480 /* 1481 * Calculate the size (in bytes) of the reservation array. Rounding up 1482 * for partial superpages at boundaries, as every small page is mapped 1483 * to an element in the reservation array based on its physical address. 1484 * Thus, the number of elements in the reservation array can be greater 1485 * than the number of superpages. 1486 */ 1487 size = count * sizeof(struct vm_reserv); 1488 1489 /* 1490 * Allocate and map the physical memory for the reservation array. The 1491 * next available virtual address is returned by reference. 1492 */ 1493 new_end = end - round_page(size); 1494 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 1495 VM_PROT_READ | VM_PROT_WRITE); 1496 bzero(vm_reserv_array, size); 1497 1498 /* 1499 * Return the next available physical address. 1500 */ 1501 return (new_end); 1502 } 1503 1504 /* 1505 * Returns the superpage containing the given page. 1506 */ 1507 vm_page_t 1508 vm_reserv_to_superpage(vm_page_t m) 1509 { 1510 vm_reserv_t rv; 1511 1512 VM_OBJECT_ASSERT_LOCKED(m->object); 1513 rv = vm_reserv_from_page(m); 1514 if (rv->object == m->object) { 1515 if (rv->popcnt == VM_LEVEL_0_NPAGES) 1516 return (rv->pages); 1517 #ifdef VM_SUBLEVEL_0_NPAGES 1518 if (vm_reserv_is_sublevel_full(rv, m - rv->pages)) 1519 return (rv->pages + rounddown2(m - rv->pages, 1520 VM_SUBLEVEL_0_NPAGES)); 1521 #endif 1522 } 1523 return (NULL); 1524 } 1525 1526 #endif /* VM_NRESERVLEVEL > 0 */ 1527