1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2006 Rice University 5 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Alan L. Cox, 9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Superpage reservation management module 36 * 37 * Any external functions defined by this module are only to be used by the 38 * virtual memory system. 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_vm.h" 45 46 #include <sys/param.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mutex.h> 51 #include <sys/queue.h> 52 #include <sys/rwlock.h> 53 #include <sys/sbuf.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 #include <sys/counter.h> 57 #include <sys/ktr.h> 58 #include <sys/vmmeter.h> 59 #include <sys/smp.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_param.h> 63 #include <vm/vm_object.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_pageout.h> 66 #include <vm/vm_pagequeue.h> 67 #include <vm/vm_phys.h> 68 #include <vm/vm_radix.h> 69 #include <vm/vm_reserv.h> 70 71 /* 72 * The reservation system supports the speculative allocation of large physical 73 * pages ("superpages"). Speculative allocation enables the fully automatic 74 * utilization of superpages by the virtual memory system. In other words, no 75 * programmatic directives are required to use superpages. 76 */ 77 78 #if VM_NRESERVLEVEL > 0 79 80 #ifndef VM_LEVEL_0_ORDER_MAX 81 #define VM_LEVEL_0_ORDER_MAX VM_LEVEL_0_ORDER 82 #endif 83 84 /* 85 * The number of small pages that are contained in a level 0 reservation 86 */ 87 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 88 #define VM_LEVEL_0_NPAGES_MAX (1 << VM_LEVEL_0_ORDER_MAX) 89 90 /* 91 * The number of bits by which a physical address is shifted to obtain the 92 * reservation number 93 */ 94 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 95 96 /* 97 * The size of a level 0 reservation in bytes 98 */ 99 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 100 101 /* 102 * Computes the index of the small page underlying the given (object, pindex) 103 * within the reservation's array of small pages. 104 */ 105 #define VM_RESERV_INDEX(object, pindex) \ 106 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 107 108 /* 109 * The size of a population map entry 110 */ 111 typedef u_long popmap_t; 112 113 /* 114 * The number of bits in a population map entry 115 */ 116 #define NBPOPMAP (NBBY * sizeof(popmap_t)) 117 118 /* 119 * The number of population map entries in a reservation 120 */ 121 #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP) 122 #define NPOPMAP_MAX howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP) 123 124 /* 125 * Number of elapsed ticks before we update the LRU queue position. Used 126 * to reduce contention and churn on the list. 127 */ 128 #define PARTPOPSLOP 1 129 130 /* 131 * Clear a bit in the population map. 132 */ 133 static __inline void 134 popmap_clear(popmap_t popmap[], int i) 135 { 136 137 popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP)); 138 } 139 140 /* 141 * Set a bit in the population map. 142 */ 143 static __inline void 144 popmap_set(popmap_t popmap[], int i) 145 { 146 147 popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP); 148 } 149 150 /* 151 * Is a bit in the population map clear? 152 */ 153 static __inline boolean_t 154 popmap_is_clear(popmap_t popmap[], int i) 155 { 156 157 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0); 158 } 159 160 /* 161 * Is a bit in the population map set? 162 */ 163 static __inline boolean_t 164 popmap_is_set(popmap_t popmap[], int i) 165 { 166 167 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0); 168 } 169 170 /* 171 * The reservation structure 172 * 173 * A reservation structure is constructed whenever a large physical page is 174 * speculatively allocated to an object. The reservation provides the small 175 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 176 * within that object. The reservation's "popcnt" tracks the number of these 177 * small physical pages that are in use at any given time. When and if the 178 * reservation is not fully utilized, it appears in the queue of partially 179 * populated reservations. The reservation always appears on the containing 180 * object's list of reservations. 181 * 182 * A partially populated reservation can be broken and reclaimed at any time. 183 * 184 * c - constant after boot 185 * d - vm_reserv_domain_lock 186 * o - vm_reserv_object_lock 187 * r - vm_reserv_lock 188 * s - vm_reserv_domain_scan_lock 189 */ 190 struct vm_reserv { 191 struct mtx lock; /* reservation lock. */ 192 TAILQ_ENTRY(vm_reserv) partpopq; /* (d, r) per-domain queue. */ 193 LIST_ENTRY(vm_reserv) objq; /* (o, r) object queue */ 194 vm_object_t object; /* (o, r) containing object */ 195 vm_pindex_t pindex; /* (o, r) offset in object */ 196 vm_page_t pages; /* (c) first page */ 197 uint16_t popcnt; /* (r) # of pages in use */ 198 uint8_t domain; /* (c) NUMA domain. */ 199 char inpartpopq; /* (d, r) */ 200 int lasttick; /* (r) last pop update tick. */ 201 popmap_t popmap[NPOPMAP_MAX]; /* (r) bit vector, used pages */ 202 }; 203 204 TAILQ_HEAD(vm_reserv_queue, vm_reserv); 205 206 #define vm_reserv_lockptr(rv) (&(rv)->lock) 207 #define vm_reserv_assert_locked(rv) \ 208 mtx_assert(vm_reserv_lockptr(rv), MA_OWNED) 209 #define vm_reserv_lock(rv) mtx_lock(vm_reserv_lockptr(rv)) 210 #define vm_reserv_trylock(rv) mtx_trylock(vm_reserv_lockptr(rv)) 211 #define vm_reserv_unlock(rv) mtx_unlock(vm_reserv_lockptr(rv)) 212 213 /* 214 * The reservation array 215 * 216 * This array is analoguous in function to vm_page_array. It differs in the 217 * respect that it may contain a greater number of useful reservation 218 * structures than there are (physical) superpages. These "invalid" 219 * reservation structures exist to trade-off space for time in the 220 * implementation of vm_reserv_from_page(). Invalid reservation structures are 221 * distinguishable from "valid" reservation structures by inspecting the 222 * reservation's "pages" field. Invalid reservation structures have a NULL 223 * "pages" field. 224 * 225 * vm_reserv_from_page() maps a small (physical) page to an element of this 226 * array by computing a physical reservation number from the page's physical 227 * address. The physical reservation number is used as the array index. 228 * 229 * An "active" reservation is a valid reservation structure that has a non-NULL 230 * "object" field and a non-zero "popcnt" field. In other words, every active 231 * reservation belongs to a particular object. Moreover, every active 232 * reservation has an entry in the containing object's list of reservations. 233 */ 234 static vm_reserv_t vm_reserv_array; 235 236 /* 237 * The per-domain partially populated reservation queues 238 * 239 * These queues enable the fast recovery of an unused free small page from a 240 * partially populated reservation. The reservation at the head of a queue 241 * is the least recently changed, partially populated reservation. 242 * 243 * Access to this queue is synchronized by the per-domain reservation lock. 244 * Threads reclaiming free pages from the queue must hold the per-domain scan 245 * lock. 246 */ 247 struct vm_reserv_domain { 248 struct mtx lock; 249 struct vm_reserv_queue partpop; /* (d) */ 250 struct vm_reserv marker; /* (d, s) scan marker/lock */ 251 } __aligned(CACHE_LINE_SIZE); 252 253 static struct vm_reserv_domain vm_rvd[MAXMEMDOM]; 254 255 #define vm_reserv_domain_lockptr(d) (&vm_rvd[(d)].lock) 256 #define vm_reserv_domain_assert_locked(d) \ 257 mtx_assert(vm_reserv_domain_lockptr(d), MA_OWNED) 258 #define vm_reserv_domain_lock(d) mtx_lock(vm_reserv_domain_lockptr(d)) 259 #define vm_reserv_domain_unlock(d) mtx_unlock(vm_reserv_domain_lockptr(d)) 260 261 #define vm_reserv_domain_scan_lock(d) mtx_lock(&vm_rvd[(d)].marker.lock) 262 #define vm_reserv_domain_scan_unlock(d) mtx_unlock(&vm_rvd[(d)].marker.lock) 263 264 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 265 "Reservation Info"); 266 267 static COUNTER_U64_DEFINE_EARLY(vm_reserv_broken); 268 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 269 &vm_reserv_broken, "Cumulative number of broken reservations"); 270 271 static COUNTER_U64_DEFINE_EARLY(vm_reserv_freed); 272 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 273 &vm_reserv_freed, "Cumulative number of freed reservations"); 274 275 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); 276 277 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, 278 NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); 279 280 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 281 282 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, 283 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 284 sysctl_vm_reserv_partpopq, "A", 285 "Partially populated reservation queues"); 286 287 static COUNTER_U64_DEFINE_EARLY(vm_reserv_reclaimed); 288 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 289 &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations"); 290 291 /* 292 * The object lock pool is used to synchronize the rvq. We can not use a 293 * pool mutex because it is required before malloc works. 294 * 295 * The "hash" function could be made faster without divide and modulo. 296 */ 297 #define VM_RESERV_OBJ_LOCK_COUNT MAXCPU 298 299 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT]; 300 301 #define vm_reserv_object_lock_idx(object) \ 302 (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT) 303 #define vm_reserv_object_lock_ptr(object) \ 304 &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))] 305 #define vm_reserv_object_lock(object) \ 306 mtx_lock(vm_reserv_object_lock_ptr((object))) 307 #define vm_reserv_object_unlock(object) \ 308 mtx_unlock(vm_reserv_object_lock_ptr((object))) 309 310 static void vm_reserv_break(vm_reserv_t rv); 311 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 312 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 313 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 314 vm_pindex_t pindex); 315 static void vm_reserv_populate(vm_reserv_t rv, int index); 316 static void vm_reserv_reclaim(vm_reserv_t rv); 317 318 /* 319 * Returns the current number of full reservations. 320 * 321 * Since the number of full reservations is computed without acquiring any 322 * locks, the returned value is inexact. 323 */ 324 static int 325 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) 326 { 327 vm_paddr_t paddr; 328 struct vm_phys_seg *seg; 329 vm_reserv_t rv; 330 int fullpop, segind; 331 332 fullpop = 0; 333 for (segind = 0; segind < vm_phys_nsegs; segind++) { 334 seg = &vm_phys_segs[segind]; 335 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 336 #ifdef VM_PHYSSEG_SPARSE 337 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) - 338 (seg->start >> VM_LEVEL_0_SHIFT); 339 #else 340 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; 341 #endif 342 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr + 343 VM_LEVEL_0_SIZE <= seg->end) { 344 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; 345 paddr += VM_LEVEL_0_SIZE; 346 rv++; 347 } 348 } 349 return (sysctl_handle_int(oidp, &fullpop, 0, req)); 350 } 351 352 /* 353 * Describes the current state of the partially populated reservation queue. 354 */ 355 static int 356 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 357 { 358 struct sbuf sbuf; 359 vm_reserv_t rv; 360 int counter, error, domain, level, unused_pages; 361 362 error = sysctl_wire_old_buffer(req, 0); 363 if (error != 0) 364 return (error); 365 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 366 sbuf_printf(&sbuf, "\nDOMAIN LEVEL SIZE NUMBER\n\n"); 367 for (domain = 0; domain < vm_ndomains; domain++) { 368 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 369 counter = 0; 370 unused_pages = 0; 371 vm_reserv_domain_lock(domain); 372 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) { 373 if (rv == &vm_rvd[domain].marker) 374 continue; 375 counter++; 376 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 377 } 378 vm_reserv_domain_unlock(domain); 379 sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n", 380 domain, level, 381 unused_pages * ((int)PAGE_SIZE / 1024), counter); 382 } 383 } 384 error = sbuf_finish(&sbuf); 385 sbuf_delete(&sbuf); 386 return (error); 387 } 388 389 /* 390 * Remove a reservation from the object's objq. 391 */ 392 static void 393 vm_reserv_remove(vm_reserv_t rv) 394 { 395 vm_object_t object; 396 397 vm_reserv_assert_locked(rv); 398 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 399 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 400 KASSERT(rv->object != NULL, 401 ("vm_reserv_remove: reserv %p is free", rv)); 402 KASSERT(!rv->inpartpopq, 403 ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv)); 404 object = rv->object; 405 vm_reserv_object_lock(object); 406 LIST_REMOVE(rv, objq); 407 rv->object = NULL; 408 vm_reserv_object_unlock(object); 409 } 410 411 /* 412 * Insert a new reservation into the object's objq. 413 */ 414 static void 415 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex) 416 { 417 int i; 418 419 vm_reserv_assert_locked(rv); 420 CTR6(KTR_VM, 421 "%s: rv %p(%p) object %p new %p popcnt %d", 422 __FUNCTION__, rv, rv->pages, rv->object, object, 423 rv->popcnt); 424 KASSERT(rv->object == NULL, 425 ("vm_reserv_insert: reserv %p isn't free", rv)); 426 KASSERT(rv->popcnt == 0, 427 ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv)); 428 KASSERT(!rv->inpartpopq, 429 ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv)); 430 for (i = 0; i < NPOPMAP; i++) 431 KASSERT(rv->popmap[i] == 0, 432 ("vm_reserv_insert: reserv %p's popmap is corrupted", rv)); 433 vm_reserv_object_lock(object); 434 rv->pindex = pindex; 435 rv->object = object; 436 rv->lasttick = ticks; 437 LIST_INSERT_HEAD(&object->rvq, rv, objq); 438 vm_reserv_object_unlock(object); 439 } 440 441 /* 442 * Reduces the given reservation's population count. If the population count 443 * becomes zero, the reservation is destroyed. Additionally, moves the 444 * reservation to the tail of the partially populated reservation queue if the 445 * population count is non-zero. 446 */ 447 static void 448 vm_reserv_depopulate(vm_reserv_t rv, int index) 449 { 450 struct vm_domain *vmd; 451 452 vm_reserv_assert_locked(rv); 453 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 454 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 455 KASSERT(rv->object != NULL, 456 ("vm_reserv_depopulate: reserv %p is free", rv)); 457 KASSERT(popmap_is_set(rv->popmap, index), 458 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 459 index)); 460 KASSERT(rv->popcnt > 0, 461 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 462 KASSERT(rv->domain < vm_ndomains, 463 ("vm_reserv_depopulate: reserv %p's domain is corrupted %d", 464 rv, rv->domain)); 465 if (rv->popcnt == VM_LEVEL_0_NPAGES) { 466 KASSERT(rv->pages->psind == 1, 467 ("vm_reserv_depopulate: reserv %p is already demoted", 468 rv)); 469 rv->pages->psind = 0; 470 } 471 popmap_clear(rv->popmap, index); 472 rv->popcnt--; 473 if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP || 474 rv->popcnt == 0) { 475 vm_reserv_domain_lock(rv->domain); 476 if (rv->inpartpopq) { 477 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 478 rv->inpartpopq = FALSE; 479 } 480 if (rv->popcnt != 0) { 481 rv->inpartpopq = TRUE; 482 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, 483 partpopq); 484 } 485 vm_reserv_domain_unlock(rv->domain); 486 rv->lasttick = ticks; 487 } 488 vmd = VM_DOMAIN(rv->domain); 489 if (rv->popcnt == 0) { 490 vm_reserv_remove(rv); 491 vm_domain_free_lock(vmd); 492 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 493 vm_domain_free_unlock(vmd); 494 counter_u64_add(vm_reserv_freed, 1); 495 } 496 vm_domain_freecnt_inc(vmd, 1); 497 } 498 499 /* 500 * Returns the reservation to which the given page might belong. 501 */ 502 static __inline vm_reserv_t 503 vm_reserv_from_page(vm_page_t m) 504 { 505 #ifdef VM_PHYSSEG_SPARSE 506 struct vm_phys_seg *seg; 507 508 seg = &vm_phys_segs[m->segind]; 509 return (seg->first_reserv + (VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT) - 510 (seg->start >> VM_LEVEL_0_SHIFT)); 511 #else 512 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 513 #endif 514 } 515 516 /* 517 * Returns an existing reservation or NULL and initialized successor pointer. 518 */ 519 static vm_reserv_t 520 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex, 521 vm_page_t mpred, vm_page_t *msuccp) 522 { 523 vm_reserv_t rv; 524 vm_page_t msucc; 525 526 msucc = NULL; 527 if (mpred != NULL) { 528 KASSERT(mpred->object == object, 529 ("vm_reserv_from_object: object doesn't contain mpred")); 530 KASSERT(mpred->pindex < pindex, 531 ("vm_reserv_from_object: mpred doesn't precede pindex")); 532 rv = vm_reserv_from_page(mpred); 533 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 534 goto found; 535 msucc = TAILQ_NEXT(mpred, listq); 536 } else 537 msucc = TAILQ_FIRST(&object->memq); 538 if (msucc != NULL) { 539 KASSERT(msucc->pindex > pindex, 540 ("vm_reserv_from_object: msucc doesn't succeed pindex")); 541 rv = vm_reserv_from_page(msucc); 542 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 543 goto found; 544 } 545 rv = NULL; 546 547 found: 548 *msuccp = msucc; 549 550 return (rv); 551 } 552 553 /* 554 * Returns TRUE if the given reservation contains the given page index and 555 * FALSE otherwise. 556 */ 557 static __inline boolean_t 558 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 559 { 560 561 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 562 } 563 564 /* 565 * Increases the given reservation's population count. Moves the reservation 566 * to the tail of the partially populated reservation queue. 567 */ 568 static void 569 vm_reserv_populate(vm_reserv_t rv, int index) 570 { 571 572 vm_reserv_assert_locked(rv); 573 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 574 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 575 KASSERT(rv->object != NULL, 576 ("vm_reserv_populate: reserv %p is free", rv)); 577 KASSERT(popmap_is_clear(rv->popmap, index), 578 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 579 index)); 580 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 581 ("vm_reserv_populate: reserv %p is already full", rv)); 582 KASSERT(rv->pages->psind == 0, 583 ("vm_reserv_populate: reserv %p is already promoted", rv)); 584 KASSERT(rv->domain < vm_ndomains, 585 ("vm_reserv_populate: reserv %p's domain is corrupted %d", 586 rv, rv->domain)); 587 popmap_set(rv->popmap, index); 588 rv->popcnt++; 589 if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP && 590 rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES) 591 return; 592 rv->lasttick = ticks; 593 vm_reserv_domain_lock(rv->domain); 594 if (rv->inpartpopq) { 595 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 596 rv->inpartpopq = FALSE; 597 } 598 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 599 rv->inpartpopq = TRUE; 600 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq); 601 } else { 602 KASSERT(rv->pages->psind == 0, 603 ("vm_reserv_populate: reserv %p is already promoted", 604 rv)); 605 rv->pages->psind = 1; 606 } 607 vm_reserv_domain_unlock(rv->domain); 608 } 609 610 /* 611 * Allocates a contiguous set of physical pages of the given size "npages" 612 * from existing or newly created reservations. All of the physical pages 613 * must be at or above the given physical address "low" and below the given 614 * physical address "high". The given value "alignment" determines the 615 * alignment of the first physical page in the set. If the given value 616 * "boundary" is non-zero, then the set of physical pages cannot cross any 617 * physical address boundary that is a multiple of that value. Both 618 * "alignment" and "boundary" must be a power of two. 619 * 620 * The page "mpred" must immediately precede the offset "pindex" within the 621 * specified object. 622 * 623 * The object must be locked. 624 */ 625 vm_page_t 626 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain, 627 int req, vm_page_t mpred, u_long npages, vm_paddr_t low, vm_paddr_t high, 628 u_long alignment, vm_paddr_t boundary) 629 { 630 struct vm_domain *vmd; 631 vm_paddr_t pa, size; 632 vm_page_t m, m_ret, msucc; 633 vm_pindex_t first, leftcap, rightcap; 634 vm_reserv_t rv; 635 u_long allocpages, maxpages, minpages; 636 int i, index, n; 637 638 VM_OBJECT_ASSERT_WLOCKED(object); 639 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 640 641 /* 642 * Is a reservation fundamentally impossible? 643 */ 644 if (pindex < VM_RESERV_INDEX(object, pindex) || 645 pindex + npages > object->size) 646 return (NULL); 647 648 /* 649 * All reservations of a particular size have the same alignment. 650 * Assuming that the first page is allocated from a reservation, the 651 * least significant bits of its physical address can be determined 652 * from its offset from the beginning of the reservation and the size 653 * of the reservation. 654 * 655 * Could the specified index within a reservation of the smallest 656 * possible size satisfy the alignment and boundary requirements? 657 */ 658 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 659 size = npages << PAGE_SHIFT; 660 if (!vm_addr_ok(pa, size, alignment, boundary)) 661 return (NULL); 662 663 /* 664 * Look for an existing reservation. 665 */ 666 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 667 if (rv != NULL) { 668 KASSERT(object != kernel_object || rv->domain == domain, 669 ("vm_reserv_alloc_contig: domain mismatch")); 670 index = VM_RESERV_INDEX(object, pindex); 671 /* Does the allocation fit within the reservation? */ 672 if (index + npages > VM_LEVEL_0_NPAGES) 673 return (NULL); 674 domain = rv->domain; 675 vmd = VM_DOMAIN(domain); 676 vm_reserv_lock(rv); 677 /* Handle reclaim race. */ 678 if (rv->object != object) 679 goto out; 680 m = &rv->pages[index]; 681 pa = VM_PAGE_TO_PHYS(m); 682 if (pa < low || pa + size > high || 683 !vm_addr_ok(pa, size, alignment, boundary)) 684 goto out; 685 /* Handle vm_page_rename(m, new_object, ...). */ 686 for (i = 0; i < npages; i++) 687 if (popmap_is_set(rv->popmap, index + i)) 688 goto out; 689 if (!vm_domain_allocate(vmd, req, npages)) 690 goto out; 691 for (i = 0; i < npages; i++) 692 vm_reserv_populate(rv, index + i); 693 vm_reserv_unlock(rv); 694 return (m); 695 out: 696 vm_reserv_unlock(rv); 697 return (NULL); 698 } 699 700 /* 701 * Could at least one reservation fit between the first index to the 702 * left that can be used ("leftcap") and the first index to the right 703 * that cannot be used ("rightcap")? 704 * 705 * We must synchronize with the reserv object lock to protect the 706 * pindex/object of the resulting reservations against rename while 707 * we are inspecting. 708 */ 709 first = pindex - VM_RESERV_INDEX(object, pindex); 710 minpages = VM_RESERV_INDEX(object, pindex) + npages; 711 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 712 allocpages = maxpages; 713 vm_reserv_object_lock(object); 714 if (mpred != NULL) { 715 if ((rv = vm_reserv_from_page(mpred))->object != object) 716 leftcap = mpred->pindex + 1; 717 else 718 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 719 if (leftcap > first) { 720 vm_reserv_object_unlock(object); 721 return (NULL); 722 } 723 } 724 if (msucc != NULL) { 725 if ((rv = vm_reserv_from_page(msucc))->object != object) 726 rightcap = msucc->pindex; 727 else 728 rightcap = rv->pindex; 729 if (first + maxpages > rightcap) { 730 if (maxpages == VM_LEVEL_0_NPAGES) { 731 vm_reserv_object_unlock(object); 732 return (NULL); 733 } 734 735 /* 736 * At least one reservation will fit between "leftcap" 737 * and "rightcap". However, a reservation for the 738 * last of the requested pages will not fit. Reduce 739 * the size of the upcoming allocation accordingly. 740 */ 741 allocpages = minpages; 742 } 743 } 744 vm_reserv_object_unlock(object); 745 746 /* 747 * Would the last new reservation extend past the end of the object? 748 * 749 * If the object is unlikely to grow don't allocate a reservation for 750 * the tail. 751 */ 752 if ((object->flags & OBJ_ANON) == 0 && 753 first + maxpages > object->size) { 754 if (maxpages == VM_LEVEL_0_NPAGES) 755 return (NULL); 756 allocpages = minpages; 757 } 758 759 /* 760 * Allocate the physical pages. The alignment and boundary specified 761 * for this allocation may be different from the alignment and 762 * boundary specified for the requested pages. For instance, the 763 * specified index may not be the first page within the first new 764 * reservation. 765 */ 766 m = NULL; 767 vmd = VM_DOMAIN(domain); 768 if (vm_domain_allocate(vmd, req, npages)) { 769 vm_domain_free_lock(vmd); 770 m = vm_phys_alloc_contig(domain, allocpages, low, high, 771 ulmax(alignment, VM_LEVEL_0_SIZE), 772 boundary > VM_LEVEL_0_SIZE ? boundary : 0); 773 vm_domain_free_unlock(vmd); 774 if (m == NULL) { 775 vm_domain_freecnt_inc(vmd, npages); 776 return (NULL); 777 } 778 } else 779 return (NULL); 780 KASSERT(vm_page_domain(m) == domain, 781 ("vm_reserv_alloc_contig: Page domain does not match requested.")); 782 783 /* 784 * The allocated physical pages always begin at a reservation 785 * boundary, but they do not always end at a reservation boundary. 786 * Initialize every reservation that is completely covered by the 787 * allocated physical pages. 788 */ 789 m_ret = NULL; 790 index = VM_RESERV_INDEX(object, pindex); 791 do { 792 rv = vm_reserv_from_page(m); 793 KASSERT(rv->pages == m, 794 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 795 rv)); 796 vm_reserv_lock(rv); 797 vm_reserv_insert(rv, object, first); 798 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 799 for (i = 0; i < n; i++) 800 vm_reserv_populate(rv, index + i); 801 npages -= n; 802 if (m_ret == NULL) { 803 m_ret = &rv->pages[index]; 804 index = 0; 805 } 806 vm_reserv_unlock(rv); 807 m += VM_LEVEL_0_NPAGES; 808 first += VM_LEVEL_0_NPAGES; 809 allocpages -= VM_LEVEL_0_NPAGES; 810 } while (allocpages >= VM_LEVEL_0_NPAGES); 811 return (m_ret); 812 } 813 814 /* 815 * Allocate a physical page from an existing or newly created reservation. 816 * 817 * The page "mpred" must immediately precede the offset "pindex" within the 818 * specified object. 819 * 820 * The object must be locked. 821 */ 822 vm_page_t 823 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain, 824 int req, vm_page_t mpred) 825 { 826 struct vm_domain *vmd; 827 vm_page_t m, msucc; 828 vm_pindex_t first, leftcap, rightcap; 829 vm_reserv_t rv; 830 int index; 831 832 VM_OBJECT_ASSERT_WLOCKED(object); 833 834 /* 835 * Is a reservation fundamentally impossible? 836 */ 837 if (pindex < VM_RESERV_INDEX(object, pindex) || 838 pindex >= object->size) 839 return (NULL); 840 841 /* 842 * Look for an existing reservation. 843 */ 844 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 845 if (rv != NULL) { 846 KASSERT(object != kernel_object || rv->domain == domain, 847 ("vm_reserv_alloc_page: domain mismatch")); 848 domain = rv->domain; 849 vmd = VM_DOMAIN(domain); 850 index = VM_RESERV_INDEX(object, pindex); 851 m = &rv->pages[index]; 852 vm_reserv_lock(rv); 853 /* Handle reclaim race. */ 854 if (rv->object != object || 855 /* Handle vm_page_rename(m, new_object, ...). */ 856 popmap_is_set(rv->popmap, index)) { 857 m = NULL; 858 goto out; 859 } 860 if (vm_domain_allocate(vmd, req, 1) == 0) 861 m = NULL; 862 else 863 vm_reserv_populate(rv, index); 864 out: 865 vm_reserv_unlock(rv); 866 return (m); 867 } 868 869 /* 870 * Could a reservation fit between the first index to the left that 871 * can be used and the first index to the right that cannot be used? 872 * 873 * We must synchronize with the reserv object lock to protect the 874 * pindex/object of the resulting reservations against rename while 875 * we are inspecting. 876 */ 877 first = pindex - VM_RESERV_INDEX(object, pindex); 878 vm_reserv_object_lock(object); 879 if (mpred != NULL) { 880 if ((rv = vm_reserv_from_page(mpred))->object != object) 881 leftcap = mpred->pindex + 1; 882 else 883 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 884 if (leftcap > first) { 885 vm_reserv_object_unlock(object); 886 return (NULL); 887 } 888 } 889 if (msucc != NULL) { 890 if ((rv = vm_reserv_from_page(msucc))->object != object) 891 rightcap = msucc->pindex; 892 else 893 rightcap = rv->pindex; 894 if (first + VM_LEVEL_0_NPAGES > rightcap) { 895 vm_reserv_object_unlock(object); 896 return (NULL); 897 } 898 } 899 vm_reserv_object_unlock(object); 900 901 /* 902 * Would the last new reservation extend past the end of the object? 903 * 904 * If the object is unlikely to grow don't allocate a reservation for 905 * the tail. 906 */ 907 if ((object->flags & OBJ_ANON) == 0 && 908 first + VM_LEVEL_0_NPAGES > object->size) 909 return (NULL); 910 911 /* 912 * Allocate and populate the new reservation. 913 */ 914 m = NULL; 915 vmd = VM_DOMAIN(domain); 916 if (vm_domain_allocate(vmd, req, 1)) { 917 vm_domain_free_lock(vmd); 918 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 919 VM_LEVEL_0_ORDER); 920 vm_domain_free_unlock(vmd); 921 if (m == NULL) { 922 vm_domain_freecnt_inc(vmd, 1); 923 return (NULL); 924 } 925 } else 926 return (NULL); 927 rv = vm_reserv_from_page(m); 928 vm_reserv_lock(rv); 929 KASSERT(rv->pages == m, 930 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 931 vm_reserv_insert(rv, object, first); 932 index = VM_RESERV_INDEX(object, pindex); 933 vm_reserv_populate(rv, index); 934 vm_reserv_unlock(rv); 935 936 return (&rv->pages[index]); 937 } 938 939 /* 940 * Breaks the given reservation. All free pages in the reservation 941 * are returned to the physical memory allocator. The reservation's 942 * population count and map are reset to their initial state. 943 * 944 * The given reservation must not be in the partially populated reservation 945 * queue. 946 */ 947 static void 948 vm_reserv_break(vm_reserv_t rv) 949 { 950 u_long changes; 951 int bitpos, hi, i, lo; 952 953 vm_reserv_assert_locked(rv); 954 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 955 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 956 vm_reserv_remove(rv); 957 rv->pages->psind = 0; 958 hi = lo = -1; 959 for (i = 0; i <= NPOPMAP; i++) { 960 /* 961 * "changes" is a bitmask that marks where a new sequence of 962 * 0s or 1s begins in popmap[i], with last bit in popmap[i-1] 963 * considered to be 1 if and only if lo == hi. The bits of 964 * popmap[-1] and popmap[NPOPMAP] are considered all 1s. 965 */ 966 if (i == NPOPMAP) 967 changes = lo != hi; 968 else { 969 changes = rv->popmap[i]; 970 changes ^= (changes << 1) | (lo == hi); 971 rv->popmap[i] = 0; 972 } 973 while (changes != 0) { 974 /* 975 * If the next change marked begins a run of 0s, set 976 * lo to mark that position. Otherwise set hi and 977 * free pages from lo up to hi. 978 */ 979 bitpos = ffsl(changes) - 1; 980 changes ^= 1UL << bitpos; 981 if (lo == hi) 982 lo = NBPOPMAP * i + bitpos; 983 else { 984 hi = NBPOPMAP * i + bitpos; 985 vm_domain_free_lock(VM_DOMAIN(rv->domain)); 986 vm_phys_enqueue_contig(&rv->pages[lo], hi - lo); 987 vm_domain_free_unlock(VM_DOMAIN(rv->domain)); 988 lo = hi; 989 } 990 } 991 } 992 rv->popcnt = 0; 993 counter_u64_add(vm_reserv_broken, 1); 994 } 995 996 /* 997 * Breaks all reservations belonging to the given object. 998 */ 999 void 1000 vm_reserv_break_all(vm_object_t object) 1001 { 1002 vm_reserv_t rv; 1003 1004 /* 1005 * This access of object->rvq is unsynchronized so that the 1006 * object rvq lock can nest after the domain_free lock. We 1007 * must check for races in the results. However, the object 1008 * lock prevents new additions, so we are guaranteed that when 1009 * it returns NULL the object is properly empty. 1010 */ 1011 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 1012 vm_reserv_lock(rv); 1013 /* Reclaim race. */ 1014 if (rv->object != object) { 1015 vm_reserv_unlock(rv); 1016 continue; 1017 } 1018 vm_reserv_domain_lock(rv->domain); 1019 if (rv->inpartpopq) { 1020 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 1021 rv->inpartpopq = FALSE; 1022 } 1023 vm_reserv_domain_unlock(rv->domain); 1024 vm_reserv_break(rv); 1025 vm_reserv_unlock(rv); 1026 } 1027 } 1028 1029 /* 1030 * Frees the given page if it belongs to a reservation. Returns TRUE if the 1031 * page is freed and FALSE otherwise. 1032 */ 1033 boolean_t 1034 vm_reserv_free_page(vm_page_t m) 1035 { 1036 vm_reserv_t rv; 1037 boolean_t ret; 1038 1039 rv = vm_reserv_from_page(m); 1040 if (rv->object == NULL) 1041 return (FALSE); 1042 vm_reserv_lock(rv); 1043 /* Re-validate after lock. */ 1044 if (rv->object != NULL) { 1045 vm_reserv_depopulate(rv, m - rv->pages); 1046 ret = TRUE; 1047 } else 1048 ret = FALSE; 1049 vm_reserv_unlock(rv); 1050 1051 return (ret); 1052 } 1053 1054 /* 1055 * Initializes the reservation management system. Specifically, initializes 1056 * the reservation array. 1057 * 1058 * Requires that vm_page_array and first_page are initialized! 1059 */ 1060 void 1061 vm_reserv_init(void) 1062 { 1063 vm_paddr_t paddr; 1064 struct vm_phys_seg *seg; 1065 struct vm_reserv *rv; 1066 struct vm_reserv_domain *rvd; 1067 #ifdef VM_PHYSSEG_SPARSE 1068 vm_pindex_t used; 1069 #endif 1070 int i, j, segind; 1071 1072 /* 1073 * Initialize the reservation array. Specifically, initialize the 1074 * "pages" field for every element that has an underlying superpage. 1075 */ 1076 #ifdef VM_PHYSSEG_SPARSE 1077 used = 0; 1078 #endif 1079 for (segind = 0; segind < vm_phys_nsegs; segind++) { 1080 seg = &vm_phys_segs[segind]; 1081 #ifdef VM_PHYSSEG_SPARSE 1082 seg->first_reserv = &vm_reserv_array[used]; 1083 used += howmany(seg->end, VM_LEVEL_0_SIZE) - 1084 seg->start / VM_LEVEL_0_SIZE; 1085 #else 1086 seg->first_reserv = 1087 &vm_reserv_array[seg->start >> VM_LEVEL_0_SHIFT]; 1088 #endif 1089 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 1090 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) - 1091 (seg->start >> VM_LEVEL_0_SHIFT); 1092 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr + 1093 VM_LEVEL_0_SIZE <= seg->end) { 1094 rv->pages = PHYS_TO_VM_PAGE(paddr); 1095 rv->domain = seg->domain; 1096 mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF); 1097 paddr += VM_LEVEL_0_SIZE; 1098 rv++; 1099 } 1100 } 1101 for (i = 0; i < MAXMEMDOM; i++) { 1102 rvd = &vm_rvd[i]; 1103 mtx_init(&rvd->lock, "vm reserv domain", NULL, MTX_DEF); 1104 TAILQ_INIT(&rvd->partpop); 1105 mtx_init(&rvd->marker.lock, "vm reserv marker", NULL, MTX_DEF); 1106 1107 /* 1108 * Fully populated reservations should never be present in the 1109 * partially populated reservation queues. 1110 */ 1111 rvd->marker.popcnt = VM_LEVEL_0_NPAGES; 1112 for (j = 0; j < VM_LEVEL_0_NPAGES; j++) 1113 popmap_set(rvd->marker.popmap, j); 1114 } 1115 1116 for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++) 1117 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL, 1118 MTX_DEF); 1119 } 1120 1121 /* 1122 * Returns true if the given page belongs to a reservation and that page is 1123 * free. Otherwise, returns false. 1124 */ 1125 bool 1126 vm_reserv_is_page_free(vm_page_t m) 1127 { 1128 vm_reserv_t rv; 1129 1130 rv = vm_reserv_from_page(m); 1131 if (rv->object == NULL) 1132 return (false); 1133 return (popmap_is_clear(rv->popmap, m - rv->pages)); 1134 } 1135 1136 /* 1137 * If the given page belongs to a reservation, returns the level of that 1138 * reservation. Otherwise, returns -1. 1139 */ 1140 int 1141 vm_reserv_level(vm_page_t m) 1142 { 1143 vm_reserv_t rv; 1144 1145 rv = vm_reserv_from_page(m); 1146 return (rv->object != NULL ? 0 : -1); 1147 } 1148 1149 /* 1150 * Returns a reservation level if the given page belongs to a fully populated 1151 * reservation and -1 otherwise. 1152 */ 1153 int 1154 vm_reserv_level_iffullpop(vm_page_t m) 1155 { 1156 vm_reserv_t rv; 1157 1158 rv = vm_reserv_from_page(m); 1159 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 1160 } 1161 1162 /* 1163 * Remove a partially populated reservation from the queue. 1164 */ 1165 static void 1166 vm_reserv_dequeue(vm_reserv_t rv) 1167 { 1168 1169 vm_reserv_domain_assert_locked(rv->domain); 1170 vm_reserv_assert_locked(rv); 1171 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 1172 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 1173 KASSERT(rv->inpartpopq, 1174 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 1175 1176 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 1177 rv->inpartpopq = FALSE; 1178 } 1179 1180 /* 1181 * Breaks the given partially populated reservation, releasing its free pages 1182 * to the physical memory allocator. 1183 */ 1184 static void 1185 vm_reserv_reclaim(vm_reserv_t rv) 1186 { 1187 1188 vm_reserv_assert_locked(rv); 1189 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 1190 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 1191 if (rv->inpartpopq) { 1192 vm_reserv_domain_lock(rv->domain); 1193 vm_reserv_dequeue(rv); 1194 vm_reserv_domain_unlock(rv->domain); 1195 } 1196 vm_reserv_break(rv); 1197 counter_u64_add(vm_reserv_reclaimed, 1); 1198 } 1199 1200 /* 1201 * Breaks a reservation near the head of the partially populated reservation 1202 * queue, releasing its free pages to the physical memory allocator. Returns 1203 * TRUE if a reservation is broken and FALSE otherwise. 1204 */ 1205 bool 1206 vm_reserv_reclaim_inactive(int domain) 1207 { 1208 vm_reserv_t rv; 1209 1210 vm_reserv_domain_lock(domain); 1211 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) { 1212 /* 1213 * A locked reservation is likely being updated or reclaimed, 1214 * so just skip ahead. 1215 */ 1216 if (rv != &vm_rvd[domain].marker && vm_reserv_trylock(rv)) { 1217 vm_reserv_dequeue(rv); 1218 break; 1219 } 1220 } 1221 vm_reserv_domain_unlock(domain); 1222 if (rv != NULL) { 1223 vm_reserv_reclaim(rv); 1224 vm_reserv_unlock(rv); 1225 return (true); 1226 } 1227 return (false); 1228 } 1229 1230 /* 1231 * Determine whether this reservation has free pages that satisfy the given 1232 * request for contiguous physical memory. Start searching from the lower 1233 * bound, defined by lo, and stop at the upper bound, hi. Return the index 1234 * of the first satisfactory free page, or -1 if none is found. 1235 */ 1236 static int 1237 vm_reserv_find_contig(vm_reserv_t rv, int npages, int lo, 1238 int hi, int ppn_align, int ppn_bound) 1239 { 1240 u_long changes; 1241 int bitpos, bits_left, i, n; 1242 1243 vm_reserv_assert_locked(rv); 1244 KASSERT(npages <= VM_LEVEL_0_NPAGES - 1, 1245 ("%s: Too many pages", __func__)); 1246 KASSERT(ppn_bound <= VM_LEVEL_0_NPAGES, 1247 ("%s: Too big a boundary for reservation size", __func__)); 1248 KASSERT(npages <= ppn_bound, 1249 ("%s: Too many pages for given boundary", __func__)); 1250 KASSERT(ppn_align != 0 && powerof2(ppn_align), 1251 ("ppn_align is not a positive power of 2")); 1252 KASSERT(ppn_bound != 0 && powerof2(ppn_bound), 1253 ("ppn_bound is not a positive power of 2")); 1254 i = lo / NBPOPMAP; 1255 changes = rv->popmap[i] | ((1UL << (lo % NBPOPMAP)) - 1); 1256 n = hi / NBPOPMAP; 1257 bits_left = hi % NBPOPMAP; 1258 hi = lo = -1; 1259 for (;;) { 1260 /* 1261 * "changes" is a bitmask that marks where a new sequence of 1262 * 0s or 1s begins in popmap[i], with last bit in popmap[i-1] 1263 * considered to be 1 if and only if lo == hi. The bits of 1264 * popmap[-1] and popmap[NPOPMAP] are considered all 1s. 1265 */ 1266 changes ^= (changes << 1) | (lo == hi); 1267 while (changes != 0) { 1268 /* 1269 * If the next change marked begins a run of 0s, set 1270 * lo to mark that position. Otherwise set hi and 1271 * look for a satisfactory first page from lo up to hi. 1272 */ 1273 bitpos = ffsl(changes) - 1; 1274 changes ^= 1UL << bitpos; 1275 if (lo == hi) { 1276 lo = NBPOPMAP * i + bitpos; 1277 continue; 1278 } 1279 hi = NBPOPMAP * i + bitpos; 1280 if (lo < roundup2(lo, ppn_align)) { 1281 /* Skip to next aligned page. */ 1282 lo = roundup2(lo, ppn_align); 1283 if (lo >= VM_LEVEL_0_NPAGES) 1284 return (-1); 1285 } 1286 if (lo + npages > roundup2(lo, ppn_bound)) { 1287 /* Skip to next boundary-matching page. */ 1288 lo = roundup2(lo, ppn_bound); 1289 if (lo >= VM_LEVEL_0_NPAGES) 1290 return (-1); 1291 } 1292 if (lo + npages <= hi) 1293 return (lo); 1294 lo = hi; 1295 } 1296 if (++i < n) 1297 changes = rv->popmap[i]; 1298 else if (i == n) 1299 changes = bits_left == 0 ? -1UL : 1300 (rv->popmap[n] | (-1UL << bits_left)); 1301 else 1302 return (-1); 1303 } 1304 } 1305 1306 /* 1307 * Searches the partially populated reservation queue for the least recently 1308 * changed reservation with free pages that satisfy the given request for 1309 * contiguous physical memory. If a satisfactory reservation is found, it is 1310 * broken. Returns true if a reservation is broken and false otherwise. 1311 */ 1312 vm_page_t 1313 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low, 1314 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 1315 { 1316 struct vm_reserv_queue *queue; 1317 vm_paddr_t pa, size; 1318 vm_page_t m_ret; 1319 vm_reserv_t marker, rv, rvn; 1320 int hi, lo, posn, ppn_align, ppn_bound; 1321 1322 KASSERT(npages > 0, ("npages is 0")); 1323 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1324 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1325 if (npages > VM_LEVEL_0_NPAGES - 1) 1326 return (false); 1327 size = npages << PAGE_SHIFT; 1328 /* 1329 * Ensure that a free range starting at a boundary-multiple 1330 * doesn't include a boundary-multiple within it. Otherwise, 1331 * no boundary-constrained allocation is possible. 1332 */ 1333 if (!vm_addr_bound_ok(0, size, boundary)) 1334 return (NULL); 1335 marker = &vm_rvd[domain].marker; 1336 queue = &vm_rvd[domain].partpop; 1337 /* 1338 * Compute shifted alignment, boundary values for page-based 1339 * calculations. Constrain to range [1, VM_LEVEL_0_NPAGES] to 1340 * avoid overflow. 1341 */ 1342 ppn_align = (int)(ulmin(ulmax(PAGE_SIZE, alignment), 1343 VM_LEVEL_0_SIZE) >> PAGE_SHIFT); 1344 ppn_bound = boundary == 0 ? VM_LEVEL_0_NPAGES : 1345 (int)(MIN(MAX(PAGE_SIZE, boundary), 1346 VM_LEVEL_0_SIZE) >> PAGE_SHIFT); 1347 1348 vm_reserv_domain_scan_lock(domain); 1349 vm_reserv_domain_lock(domain); 1350 TAILQ_FOREACH_SAFE(rv, queue, partpopq, rvn) { 1351 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 1352 if (pa + VM_LEVEL_0_SIZE - size < low) { 1353 /* This entire reservation is too low; go to next. */ 1354 continue; 1355 } 1356 if (pa + size > high) { 1357 /* This entire reservation is too high; go to next. */ 1358 continue; 1359 } 1360 if (!vm_addr_align_ok(pa, alignment)) { 1361 /* This entire reservation is unaligned; go to next. */ 1362 continue; 1363 } 1364 1365 if (vm_reserv_trylock(rv) == 0) { 1366 TAILQ_INSERT_AFTER(queue, rv, marker, partpopq); 1367 vm_reserv_domain_unlock(domain); 1368 vm_reserv_lock(rv); 1369 if (TAILQ_PREV(marker, vm_reserv_queue, partpopq) != 1370 rv) { 1371 vm_reserv_unlock(rv); 1372 vm_reserv_domain_lock(domain); 1373 rvn = TAILQ_NEXT(marker, partpopq); 1374 TAILQ_REMOVE(queue, marker, partpopq); 1375 continue; 1376 } 1377 vm_reserv_domain_lock(domain); 1378 TAILQ_REMOVE(queue, marker, partpopq); 1379 } 1380 vm_reserv_domain_unlock(domain); 1381 lo = (pa >= low) ? 0 : 1382 (int)((low + PAGE_MASK - pa) >> PAGE_SHIFT); 1383 hi = (pa + VM_LEVEL_0_SIZE <= high) ? VM_LEVEL_0_NPAGES : 1384 (int)((high - pa) >> PAGE_SHIFT); 1385 posn = vm_reserv_find_contig(rv, (int)npages, lo, hi, 1386 ppn_align, ppn_bound); 1387 if (posn >= 0) { 1388 vm_reserv_domain_scan_unlock(domain); 1389 /* Allocate requested space */ 1390 rv->popcnt += npages; 1391 while (npages-- > 0) 1392 popmap_set(rv->popmap, posn + npages); 1393 vm_reserv_reclaim(rv); 1394 vm_reserv_unlock(rv); 1395 m_ret = &rv->pages[posn]; 1396 pa = VM_PAGE_TO_PHYS(m_ret); 1397 KASSERT(vm_addr_ok(pa, size, alignment, boundary), 1398 ("%s: adjusted address not aligned/bounded to " 1399 "%lx/%jx", 1400 __func__, alignment, (uintmax_t)boundary)); 1401 return (m_ret); 1402 } 1403 vm_reserv_domain_lock(domain); 1404 rvn = TAILQ_NEXT(rv, partpopq); 1405 vm_reserv_unlock(rv); 1406 } 1407 vm_reserv_domain_unlock(domain); 1408 vm_reserv_domain_scan_unlock(domain); 1409 return (NULL); 1410 } 1411 1412 /* 1413 * Transfers the reservation underlying the given page to a new object. 1414 * 1415 * The object must be locked. 1416 */ 1417 void 1418 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 1419 vm_pindex_t old_object_offset) 1420 { 1421 vm_reserv_t rv; 1422 1423 VM_OBJECT_ASSERT_WLOCKED(new_object); 1424 rv = vm_reserv_from_page(m); 1425 if (rv->object == old_object) { 1426 vm_reserv_lock(rv); 1427 CTR6(KTR_VM, 1428 "%s: rv %p object %p new %p popcnt %d inpartpop %d", 1429 __FUNCTION__, rv, rv->object, new_object, rv->popcnt, 1430 rv->inpartpopq); 1431 if (rv->object == old_object) { 1432 vm_reserv_object_lock(old_object); 1433 rv->object = NULL; 1434 LIST_REMOVE(rv, objq); 1435 vm_reserv_object_unlock(old_object); 1436 vm_reserv_object_lock(new_object); 1437 rv->object = new_object; 1438 rv->pindex -= old_object_offset; 1439 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 1440 vm_reserv_object_unlock(new_object); 1441 } 1442 vm_reserv_unlock(rv); 1443 } 1444 } 1445 1446 /* 1447 * Returns the size (in bytes) of a reservation of the specified level. 1448 */ 1449 int 1450 vm_reserv_size(int level) 1451 { 1452 1453 switch (level) { 1454 case 0: 1455 return (VM_LEVEL_0_SIZE); 1456 case -1: 1457 return (PAGE_SIZE); 1458 default: 1459 return (0); 1460 } 1461 } 1462 1463 /* 1464 * Allocates the virtual and physical memory required by the reservation 1465 * management system's data structures, in particular, the reservation array. 1466 */ 1467 vm_paddr_t 1468 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end) 1469 { 1470 vm_paddr_t new_end; 1471 vm_pindex_t count; 1472 size_t size; 1473 int i; 1474 1475 count = 0; 1476 for (i = 0; i < vm_phys_nsegs; i++) { 1477 #ifdef VM_PHYSSEG_SPARSE 1478 count += howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE) - 1479 vm_phys_segs[i].start / VM_LEVEL_0_SIZE; 1480 #else 1481 count = MAX(count, 1482 howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE)); 1483 #endif 1484 } 1485 1486 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 1487 #ifdef VM_PHYSSEG_SPARSE 1488 count += howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE) - 1489 phys_avail[i] / VM_LEVEL_0_SIZE; 1490 #else 1491 count = MAX(count, 1492 howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE)); 1493 #endif 1494 } 1495 1496 /* 1497 * Calculate the size (in bytes) of the reservation array. Rounding up 1498 * for partial superpages at boundaries, as every small page is mapped 1499 * to an element in the reservation array based on its physical address. 1500 * Thus, the number of elements in the reservation array can be greater 1501 * than the number of superpages. 1502 */ 1503 size = count * sizeof(struct vm_reserv); 1504 1505 /* 1506 * Allocate and map the physical memory for the reservation array. The 1507 * next available virtual address is returned by reference. 1508 */ 1509 new_end = end - round_page(size); 1510 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 1511 VM_PROT_READ | VM_PROT_WRITE); 1512 bzero(vm_reserv_array, size); 1513 1514 /* 1515 * Return the next available physical address. 1516 */ 1517 return (new_end); 1518 } 1519 1520 /* 1521 * Returns the superpage containing the given page. 1522 */ 1523 vm_page_t 1524 vm_reserv_to_superpage(vm_page_t m) 1525 { 1526 vm_reserv_t rv; 1527 1528 VM_OBJECT_ASSERT_LOCKED(m->object); 1529 rv = vm_reserv_from_page(m); 1530 if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES) 1531 m = rv->pages; 1532 else 1533 m = NULL; 1534 1535 return (m); 1536 } 1537 1538 #endif /* VM_NRESERVLEVEL > 0 */ 1539