1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Superpage reservation management module 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_vm.h" 40 41 #include <sys/param.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/queue.h> 47 #include <sys/sbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/systm.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_param.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_page.h> 55 #include <vm/vm_phys.h> 56 #include <vm/vm_reserv.h> 57 58 /* 59 * The reservation system supports the speculative allocation of large physical 60 * pages ("superpages"). Speculative allocation enables the fully-automatic 61 * utilization of superpages by the virtual memory system. In other words, no 62 * programmatic directives are required to use superpages. 63 */ 64 65 #if VM_NRESERVLEVEL > 0 66 67 /* 68 * The number of small pages that are contained in a level 0 reservation 69 */ 70 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 71 72 /* 73 * The number of bits by which a physical address is shifted to obtain the 74 * reservation number 75 */ 76 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 77 78 /* 79 * The size of a level 0 reservation in bytes 80 */ 81 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 82 83 /* 84 * Computes the index of the small page underlying the given (object, pindex) 85 * within the reservation's array of small pages. 86 */ 87 #define VM_RESERV_INDEX(object, pindex) \ 88 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 89 90 /* 91 * The reservation structure 92 * 93 * A reservation structure is constructed whenever a large physical page is 94 * speculatively allocated to an object. The reservation provides the small 95 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 96 * within that object. The reservation's "popcnt" tracks the number of these 97 * small physical pages that are in use at any given time. When and if the 98 * reservation is not fully utilized, it appears in the queue of partially- 99 * populated reservations. The reservation always appears on the containing 100 * object's list of reservations. 101 * 102 * A partially-populated reservation can be broken and reclaimed at any time. 103 */ 104 struct vm_reserv { 105 TAILQ_ENTRY(vm_reserv) partpopq; 106 LIST_ENTRY(vm_reserv) objq; 107 vm_object_t object; /* containing object */ 108 vm_pindex_t pindex; /* offset within object */ 109 vm_page_t pages; /* first page of a superpage */ 110 int popcnt; /* # of pages in use */ 111 char inpartpopq; 112 }; 113 114 /* 115 * The reservation array 116 * 117 * This array is analoguous in function to vm_page_array. It differs in the 118 * respect that it may contain a greater number of useful reservation 119 * structures than there are (physical) superpages. These "invalid" 120 * reservation structures exist to trade-off space for time in the 121 * implementation of vm_reserv_from_page(). Invalid reservation structures are 122 * distinguishable from "valid" reservation structures by inspecting the 123 * reservation's "pages" field. Invalid reservation structures have a NULL 124 * "pages" field. 125 * 126 * vm_reserv_from_page() maps a small (physical) page to an element of this 127 * array by computing a physical reservation number from the page's physical 128 * address. The physical reservation number is used as the array index. 129 * 130 * An "active" reservation is a valid reservation structure that has a non-NULL 131 * "object" field and a non-zero "popcnt" field. In other words, every active 132 * reservation belongs to a particular object. Moreover, every active 133 * reservation has an entry in the containing object's list of reservations. 134 */ 135 static vm_reserv_t vm_reserv_array; 136 137 /* 138 * The partially-populated reservation queue 139 * 140 * This queue enables the fast recovery of an unused cached or free small page 141 * from a partially-populated reservation. The reservation at the head of 142 * this queue is the least-recently-changed, partially-populated reservation. 143 * 144 * Access to this queue is synchronized by the free page queue lock. 145 */ 146 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop = 147 TAILQ_HEAD_INITIALIZER(vm_rvq_partpop); 148 149 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); 150 151 static long vm_reserv_broken; 152 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 153 &vm_reserv_broken, 0, "Cumulative number of broken reservations"); 154 155 static long vm_reserv_freed; 156 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 157 &vm_reserv_freed, 0, "Cumulative number of freed reservations"); 158 159 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 160 161 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 162 sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues"); 163 164 static long vm_reserv_reclaimed; 165 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 166 &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations"); 167 168 static void vm_reserv_depopulate(vm_reserv_t rv); 169 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 170 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 171 vm_pindex_t pindex); 172 static void vm_reserv_populate(vm_reserv_t rv); 173 static void vm_reserv_reclaim(vm_reserv_t rv); 174 175 /* 176 * Describes the current state of the partially-populated reservation queue. 177 */ 178 static int 179 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 180 { 181 struct sbuf sbuf; 182 vm_reserv_t rv; 183 int counter, error, level, unused_pages; 184 185 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 186 sbuf_printf(&sbuf, "\nLEVEL SIZE NUMBER\n\n"); 187 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 188 counter = 0; 189 unused_pages = 0; 190 mtx_lock(&vm_page_queue_free_mtx); 191 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) { 192 counter++; 193 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 194 } 195 mtx_unlock(&vm_page_queue_free_mtx); 196 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level, 197 unused_pages * ((int)PAGE_SIZE / 1024), counter); 198 } 199 error = sbuf_finish(&sbuf); 200 sbuf_delete(&sbuf); 201 return (error); 202 } 203 204 /* 205 * Reduces the given reservation's population count. If the population count 206 * becomes zero, the reservation is destroyed. Additionally, moves the 207 * reservation to the tail of the partially-populated reservations queue if the 208 * population count is non-zero. 209 * 210 * The free page queue lock must be held. 211 */ 212 static void 213 vm_reserv_depopulate(vm_reserv_t rv) 214 { 215 216 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 217 KASSERT(rv->object != NULL, 218 ("vm_reserv_depopulate: reserv %p is free", rv)); 219 KASSERT(rv->popcnt > 0, 220 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 221 if (rv->inpartpopq) { 222 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 223 rv->inpartpopq = FALSE; 224 } 225 rv->popcnt--; 226 if (rv->popcnt == 0) { 227 LIST_REMOVE(rv, objq); 228 rv->object = NULL; 229 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 230 vm_reserv_freed++; 231 } else { 232 rv->inpartpopq = TRUE; 233 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 234 } 235 } 236 237 /* 238 * Returns the reservation to which the given page might belong. 239 */ 240 static __inline vm_reserv_t 241 vm_reserv_from_page(vm_page_t m) 242 { 243 244 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 245 } 246 247 /* 248 * Returns TRUE if the given reservation contains the given page index and 249 * FALSE otherwise. 250 */ 251 static __inline boolean_t 252 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 253 { 254 255 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 256 } 257 258 /* 259 * Increases the given reservation's population count. Moves the reservation 260 * to the tail of the partially-populated reservation queue. 261 * 262 * The free page queue must be locked. 263 */ 264 static void 265 vm_reserv_populate(vm_reserv_t rv) 266 { 267 268 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 269 KASSERT(rv->object != NULL, 270 ("vm_reserv_populate: reserv %p is free", rv)); 271 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 272 ("vm_reserv_populate: reserv %p is already full", rv)); 273 if (rv->inpartpopq) { 274 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 275 rv->inpartpopq = FALSE; 276 } 277 rv->popcnt++; 278 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 279 rv->inpartpopq = TRUE; 280 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 281 } 282 } 283 284 /* 285 * Allocates a page from an existing or newly-created reservation. 286 * 287 * The object and free page queue must be locked. 288 */ 289 vm_page_t 290 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex) 291 { 292 vm_page_t m, mpred, msucc; 293 vm_pindex_t first, leftcap, rightcap; 294 vm_reserv_t rv; 295 296 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 297 298 /* 299 * Is a reservation fundamentally not possible? 300 */ 301 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 302 if (pindex < VM_RESERV_INDEX(object, pindex) || 303 pindex >= object->size) 304 return (NULL); 305 306 /* 307 * Look for an existing reservation. 308 */ 309 msucc = NULL; 310 mpred = object->root; 311 while (mpred != NULL) { 312 KASSERT(mpred->pindex != pindex, 313 ("vm_reserv_alloc_page: pindex already allocated")); 314 rv = vm_reserv_from_page(mpred); 315 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) { 316 m = &rv->pages[VM_RESERV_INDEX(object, pindex)]; 317 /* Handle vm_page_rename(m, new_object, ...). */ 318 if ((m->flags & (PG_CACHED | PG_FREE)) == 0) 319 return (NULL); 320 vm_reserv_populate(rv); 321 return (m); 322 } else if (mpred->pindex < pindex) { 323 if (msucc != NULL || 324 (msucc = TAILQ_NEXT(mpred, listq)) == NULL) 325 break; 326 KASSERT(msucc->pindex != pindex, 327 ("vm_reserv_alloc_page: pindex already allocated")); 328 rv = vm_reserv_from_page(msucc); 329 if (rv->object == object && 330 vm_reserv_has_pindex(rv, pindex)) { 331 m = &rv->pages[VM_RESERV_INDEX(object, pindex)]; 332 /* Handle vm_page_rename(m, new_object, ...). */ 333 if ((m->flags & (PG_CACHED | PG_FREE)) == 0) 334 return (NULL); 335 vm_reserv_populate(rv); 336 return (m); 337 } else if (pindex < msucc->pindex) 338 break; 339 } else if (msucc == NULL) { 340 msucc = mpred; 341 mpred = TAILQ_PREV(msucc, pglist, listq); 342 continue; 343 } 344 msucc = NULL; 345 mpred = object->root = vm_page_splay(pindex, object->root); 346 } 347 348 /* 349 * Determine the first index to the left that can be used. 350 */ 351 if (mpred == NULL) 352 leftcap = 0; 353 else if ((rv = vm_reserv_from_page(mpred))->object != object) 354 leftcap = mpred->pindex + 1; 355 else 356 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 357 358 /* 359 * Determine the first index to the right that cannot be used. 360 */ 361 if (msucc == NULL) 362 rightcap = pindex + VM_LEVEL_0_NPAGES; 363 else if ((rv = vm_reserv_from_page(msucc))->object != object) 364 rightcap = msucc->pindex; 365 else 366 rightcap = rv->pindex; 367 368 /* 369 * Determine if a reservation fits between the first index to 370 * the left that can be used and the first index to the right 371 * that cannot be used. 372 */ 373 first = pindex - VM_RESERV_INDEX(object, pindex); 374 if (first < leftcap || first + VM_LEVEL_0_NPAGES > rightcap) 375 return (NULL); 376 377 /* 378 * Would a new reservation extend past the end of the given object? 379 */ 380 if (object->size < first + VM_LEVEL_0_NPAGES) { 381 /* 382 * Don't allocate a new reservation if the object is a vnode or 383 * backed by another object that is a vnode. 384 */ 385 if (object->type == OBJT_VNODE || 386 (object->backing_object != NULL && 387 object->backing_object->type == OBJT_VNODE)) 388 return (NULL); 389 /* Speculate that the object may grow. */ 390 } 391 392 /* 393 * Allocate a new reservation. 394 */ 395 m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); 396 if (m != NULL) { 397 rv = vm_reserv_from_page(m); 398 KASSERT(rv->pages == m, 399 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", 400 rv)); 401 KASSERT(rv->object == NULL, 402 ("vm_reserv_alloc_page: reserv %p isn't free", rv)); 403 LIST_INSERT_HEAD(&object->rvq, rv, objq); 404 rv->object = object; 405 rv->pindex = first; 406 KASSERT(rv->popcnt == 0, 407 ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", 408 rv)); 409 KASSERT(!rv->inpartpopq, 410 ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", 411 rv)); 412 vm_reserv_populate(rv); 413 m = &rv->pages[VM_RESERV_INDEX(object, pindex)]; 414 } 415 return (m); 416 } 417 418 /* 419 * Breaks all reservations belonging to the given object. 420 */ 421 void 422 vm_reserv_break_all(vm_object_t object) 423 { 424 vm_reserv_t rv; 425 int i; 426 427 mtx_lock(&vm_page_queue_free_mtx); 428 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 429 KASSERT(rv->object == object, 430 ("vm_reserv_break_all: reserv %p is corrupted", rv)); 431 if (rv->inpartpopq) { 432 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 433 rv->inpartpopq = FALSE; 434 } 435 LIST_REMOVE(rv, objq); 436 rv->object = NULL; 437 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) { 438 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 439 vm_phys_free_pages(&rv->pages[i], 0); 440 else 441 rv->popcnt--; 442 } 443 KASSERT(rv->popcnt == 0, 444 ("vm_reserv_break_all: reserv %p's popcnt is corrupted", 445 rv)); 446 vm_reserv_broken++; 447 } 448 mtx_unlock(&vm_page_queue_free_mtx); 449 } 450 451 /* 452 * Frees the given page if it belongs to a reservation. Returns TRUE if the 453 * page is freed and FALSE otherwise. 454 * 455 * The free page queue lock must be held. 456 */ 457 boolean_t 458 vm_reserv_free_page(vm_page_t m) 459 { 460 vm_reserv_t rv; 461 462 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 463 rv = vm_reserv_from_page(m); 464 if (rv->object != NULL) { 465 vm_reserv_depopulate(rv); 466 return (TRUE); 467 } 468 return (FALSE); 469 } 470 471 /* 472 * Initializes the reservation management system. Specifically, initializes 473 * the reservation array. 474 * 475 * Requires that vm_page_array and first_page are initialized! 476 */ 477 void 478 vm_reserv_init(void) 479 { 480 vm_paddr_t paddr; 481 int i; 482 483 /* 484 * Initialize the reservation array. Specifically, initialize the 485 * "pages" field for every element that has an underlying superpage. 486 */ 487 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 488 paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE); 489 while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) { 490 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages = 491 PHYS_TO_VM_PAGE(paddr); 492 paddr += VM_LEVEL_0_SIZE; 493 } 494 } 495 } 496 497 /* 498 * Returns a reservation level if the given page belongs to a fully-populated 499 * reservation and -1 otherwise. 500 */ 501 int 502 vm_reserv_level_iffullpop(vm_page_t m) 503 { 504 vm_reserv_t rv; 505 506 rv = vm_reserv_from_page(m); 507 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 508 } 509 510 /* 511 * Prepare for the reactivation of a cached page. 512 * 513 * First, suppose that the given page "m" was allocated individually, i.e., not 514 * as part of a reservation, and cached. Then, suppose a reservation 515 * containing "m" is allocated by the same object. Although "m" and the 516 * reservation belong to the same object, "m"'s pindex may not match the 517 * reservation's. 518 * 519 * The free page queue must be locked. 520 */ 521 boolean_t 522 vm_reserv_reactivate_page(vm_page_t m) 523 { 524 vm_reserv_t rv; 525 int i, m_index; 526 527 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 528 rv = vm_reserv_from_page(m); 529 if (rv->object == NULL) 530 return (FALSE); 531 KASSERT((m->flags & PG_CACHED) != 0, 532 ("vm_reserv_uncache_page: page %p is not cached", m)); 533 if (m->object == rv->object && 534 m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex)) 535 vm_reserv_populate(rv); 536 else { 537 KASSERT(rv->inpartpopq, 538 ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE", 539 rv)); 540 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 541 rv->inpartpopq = FALSE; 542 LIST_REMOVE(rv, objq); 543 rv->object = NULL; 544 /* Don't vm_phys_free_pages(m, 0). */ 545 m_index = m - rv->pages; 546 for (i = 0; i < m_index; i++) { 547 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 548 vm_phys_free_pages(&rv->pages[i], 0); 549 else 550 rv->popcnt--; 551 } 552 for (i++; i < VM_LEVEL_0_NPAGES; i++) { 553 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 554 vm_phys_free_pages(&rv->pages[i], 0); 555 else 556 rv->popcnt--; 557 } 558 KASSERT(rv->popcnt == 0, 559 ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted", 560 rv)); 561 vm_reserv_broken++; 562 } 563 return (TRUE); 564 } 565 566 /* 567 * Breaks the given partially-populated reservation, releasing its cached and 568 * free pages to the physical memory allocator. 569 * 570 * The free page queue lock must be held. 571 */ 572 static void 573 vm_reserv_reclaim(vm_reserv_t rv) 574 { 575 int i; 576 577 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 578 KASSERT(rv->inpartpopq, 579 ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv)); 580 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 581 rv->inpartpopq = FALSE; 582 KASSERT(rv->object != NULL, 583 ("vm_reserv_reclaim: reserv %p is free", rv)); 584 LIST_REMOVE(rv, objq); 585 rv->object = NULL; 586 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) { 587 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 588 vm_phys_free_pages(&rv->pages[i], 0); 589 else 590 rv->popcnt--; 591 } 592 KASSERT(rv->popcnt == 0, 593 ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv)); 594 vm_reserv_reclaimed++; 595 } 596 597 /* 598 * Breaks the reservation at the head of the partially-populated reservation 599 * queue, releasing its cached and free pages to the physical memory 600 * allocator. Returns TRUE if a reservation is broken and FALSE otherwise. 601 * 602 * The free page queue lock must be held. 603 */ 604 boolean_t 605 vm_reserv_reclaim_inactive(void) 606 { 607 vm_reserv_t rv; 608 609 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 610 if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) { 611 vm_reserv_reclaim(rv); 612 return (TRUE); 613 } 614 return (FALSE); 615 } 616 617 /* 618 * Searches the partially-populated reservation queue for the least recently 619 * active reservation with unused pages, i.e., cached or free, that satisfy the 620 * given request for contiguous physical memory. If a satisfactory reservation 621 * is found, it is broken. Returns TRUE if a reservation is broken and FALSE 622 * otherwise. 623 * 624 * The free page queue lock must be held. 625 */ 626 boolean_t 627 vm_reserv_reclaim_contig(vm_paddr_t size, vm_paddr_t low, vm_paddr_t high, 628 unsigned long alignment, unsigned long boundary) 629 { 630 vm_paddr_t pa, pa_length; 631 vm_reserv_t rv; 632 int i; 633 634 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 635 if (size > VM_LEVEL_0_SIZE - PAGE_SIZE) 636 return (FALSE); 637 TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) { 638 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); 639 if (pa + PAGE_SIZE - size < low) { 640 /* this entire reservation is too low; go to next */ 641 continue; 642 } 643 pa_length = 0; 644 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) 645 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) { 646 pa_length += PAGE_SIZE; 647 if (pa_length == PAGE_SIZE) { 648 pa = VM_PAGE_TO_PHYS(&rv->pages[i]); 649 if (pa + size > high) { 650 /* skip to next reservation */ 651 break; 652 } else if (pa < low || 653 (pa & (alignment - 1)) != 0 || 654 ((pa ^ (pa + size - 1)) & 655 ~(boundary - 1)) != 0) 656 pa_length = 0; 657 } else if (pa_length >= size) { 658 vm_reserv_reclaim(rv); 659 return (TRUE); 660 } 661 } else 662 pa_length = 0; 663 } 664 return (FALSE); 665 } 666 667 /* 668 * Transfers the reservation underlying the given page to a new object. 669 * 670 * The object must be locked. 671 */ 672 void 673 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 674 vm_pindex_t old_object_offset) 675 { 676 vm_reserv_t rv; 677 678 VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED); 679 rv = vm_reserv_from_page(m); 680 if (rv->object == old_object) { 681 mtx_lock(&vm_page_queue_free_mtx); 682 if (rv->object == old_object) { 683 LIST_REMOVE(rv, objq); 684 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 685 rv->object = new_object; 686 rv->pindex -= old_object_offset; 687 } 688 mtx_unlock(&vm_page_queue_free_mtx); 689 } 690 } 691 692 /* 693 * Allocates the virtual and physical memory required by the reservation 694 * management system's data structures, in particular, the reservation array. 695 */ 696 vm_paddr_t 697 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) 698 { 699 vm_paddr_t new_end; 700 size_t size; 701 702 /* 703 * Calculate the size (in bytes) of the reservation array. Round up 704 * from "high_water" because every small page is mapped to an element 705 * in the reservation array based on its physical address. Thus, the 706 * number of elements in the reservation array can be greater than the 707 * number of superpages. 708 */ 709 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); 710 711 /* 712 * Allocate and map the physical memory for the reservation array. The 713 * next available virtual address is returned by reference. 714 */ 715 new_end = end - round_page(size); 716 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 717 VM_PROT_READ | VM_PROT_WRITE); 718 bzero(vm_reserv_array, size); 719 720 /* 721 * Return the next available physical address. 722 */ 723 return (new_end); 724 } 725 726 #endif /* VM_NRESERVLEVEL > 0 */ 727