xref: /freebsd/sys/vm/vm_reserv.c (revision 9517e866259191fcd39434a97ad849a9b59b9b9f)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Superpage reservation management module
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_vm.h"
40 
41 #include <sys/param.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_phys.h>
56 #include <vm/vm_reserv.h>
57 
58 /*
59  * The reservation system supports the speculative allocation of large physical
60  * pages ("superpages").  Speculative allocation enables the fully-automatic
61  * utilization of superpages by the virtual memory system.  In other words, no
62  * programmatic directives are required to use superpages.
63  */
64 
65 #if VM_NRESERVLEVEL > 0
66 
67 /*
68  * The number of small pages that are contained in a level 0 reservation
69  */
70 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
71 
72 /*
73  * The number of bits by which a physical address is shifted to obtain the
74  * reservation number
75  */
76 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
77 
78 /*
79  * The size of a level 0 reservation in bytes
80  */
81 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
82 
83 /*
84  * Computes the index of the small page underlying the given (object, pindex)
85  * within the reservation's array of small pages.
86  */
87 #define	VM_RESERV_INDEX(object, pindex)	\
88     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
89 
90 /*
91  * The reservation structure
92  *
93  * A reservation structure is constructed whenever a large physical page is
94  * speculatively allocated to an object.  The reservation provides the small
95  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
96  * within that object.  The reservation's "popcnt" tracks the number of these
97  * small physical pages that are in use at any given time.  When and if the
98  * reservation is not fully utilized, it appears in the queue of partially-
99  * populated reservations.  The reservation always appears on the containing
100  * object's list of reservations.
101  *
102  * A partially-populated reservation can be broken and reclaimed at any time.
103  */
104 struct vm_reserv {
105 	TAILQ_ENTRY(vm_reserv) partpopq;
106 	LIST_ENTRY(vm_reserv) objq;
107 	vm_object_t	object;			/* containing object */
108 	vm_pindex_t	pindex;			/* offset within object */
109 	vm_page_t	pages;			/* first page of a superpage */
110 	int		popcnt;			/* # of pages in use */
111 	char		inpartpopq;
112 };
113 
114 /*
115  * The reservation array
116  *
117  * This array is analoguous in function to vm_page_array.  It differs in the
118  * respect that it may contain a greater number of useful reservation
119  * structures than there are (physical) superpages.  These "invalid"
120  * reservation structures exist to trade-off space for time in the
121  * implementation of vm_reserv_from_page().  Invalid reservation structures are
122  * distinguishable from "valid" reservation structures by inspecting the
123  * reservation's "pages" field.  Invalid reservation structures have a NULL
124  * "pages" field.
125  *
126  * vm_reserv_from_page() maps a small (physical) page to an element of this
127  * array by computing a physical reservation number from the page's physical
128  * address.  The physical reservation number is used as the array index.
129  *
130  * An "active" reservation is a valid reservation structure that has a non-NULL
131  * "object" field and a non-zero "popcnt" field.  In other words, every active
132  * reservation belongs to a particular object.  Moreover, every active
133  * reservation has an entry in the containing object's list of reservations.
134  */
135 static vm_reserv_t vm_reserv_array;
136 
137 /*
138  * The partially-populated reservation queue
139  *
140  * This queue enables the fast recovery of an unused cached or free small page
141  * from a partially-populated reservation.  The reservation at the head of
142  * this queue is the least-recently-changed, partially-populated reservation.
143  *
144  * Access to this queue is synchronized by the free page queue lock.
145  */
146 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
147 			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
148 
149 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
150 
151 static long vm_reserv_broken;
152 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
153     &vm_reserv_broken, 0, "Cumulative number of broken reservations");
154 
155 static long vm_reserv_freed;
156 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
157     &vm_reserv_freed, 0, "Cumulative number of freed reservations");
158 
159 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
160 
161 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
162     sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
163 
164 static long vm_reserv_reclaimed;
165 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
166     &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
167 
168 static void		vm_reserv_depopulate(vm_reserv_t rv);
169 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
170 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
171 			    vm_pindex_t pindex);
172 static void		vm_reserv_populate(vm_reserv_t rv);
173 static void		vm_reserv_reclaim(vm_reserv_t rv);
174 
175 /*
176  * Describes the current state of the partially-populated reservation queue.
177  */
178 static int
179 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
180 {
181 	struct sbuf sbuf;
182 	vm_reserv_t rv;
183 	char *cbuf;
184 	const int cbufsize = (VM_NRESERVLEVEL + 1) * 81;
185 	int counter, error, level, unused_pages;
186 
187 	cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
188 	sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
189 	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
190 	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
191 		counter = 0;
192 		unused_pages = 0;
193 		mtx_lock(&vm_page_queue_free_mtx);
194 		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
195 			counter++;
196 			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
197 		}
198 		mtx_unlock(&vm_page_queue_free_mtx);
199 		sbuf_printf(&sbuf, "%5.5d: %6.6dK, %6.6d\n", level,
200 		    unused_pages * (PAGE_SIZE / 1024), counter);
201 	}
202 	sbuf_finish(&sbuf);
203 	error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
204 	sbuf_delete(&sbuf);
205 	free(cbuf, M_TEMP);
206 	return (error);
207 }
208 
209 /*
210  * Reduces the given reservation's population count.  If the population count
211  * becomes zero, the reservation is destroyed.  Additionally, moves the
212  * reservation to the tail of the partially-populated reservations queue if the
213  * population count is non-zero.
214  *
215  * The free page queue lock must be held.
216  */
217 static void
218 vm_reserv_depopulate(vm_reserv_t rv)
219 {
220 
221 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
222 	KASSERT(rv->object != NULL,
223 	    ("vm_reserv_depopulate: reserv %p is free", rv));
224 	KASSERT(rv->popcnt > 0,
225 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
226 	if (rv->inpartpopq) {
227 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
228 		rv->inpartpopq = FALSE;
229 	}
230 	rv->popcnt--;
231 	if (rv->popcnt == 0) {
232 		LIST_REMOVE(rv, objq);
233 		rv->object = NULL;
234 		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
235 		vm_reserv_freed++;
236 	} else {
237 		rv->inpartpopq = TRUE;
238 		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
239 	}
240 }
241 
242 /*
243  * Returns the reservation to which the given page might belong.
244  */
245 static __inline vm_reserv_t
246 vm_reserv_from_page(vm_page_t m)
247 {
248 
249 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
250 }
251 
252 /*
253  * Returns TRUE if the given reservation contains the given page index and
254  * FALSE otherwise.
255  */
256 static __inline boolean_t
257 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
258 {
259 
260 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
261 }
262 
263 /*
264  * Increases the given reservation's population count.  Moves the reservation
265  * to the tail of the partially-populated reservation queue.
266  *
267  * The free page queue must be locked.
268  */
269 static void
270 vm_reserv_populate(vm_reserv_t rv)
271 {
272 
273 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
274 	KASSERT(rv->object != NULL,
275 	    ("vm_reserv_populate: reserv %p is free", rv));
276 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
277 	    ("vm_reserv_populate: reserv %p is already full", rv));
278 	if (rv->inpartpopq) {
279 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
280 		rv->inpartpopq = FALSE;
281 	}
282 	rv->popcnt++;
283 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
284 		rv->inpartpopq = TRUE;
285 		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
286 	}
287 }
288 
289 /*
290  * Allocates a page from an existing or newly-created reservation.
291  *
292  * The object and free page queue must be locked.
293  */
294 vm_page_t
295 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex)
296 {
297 	vm_page_t m, mpred, msucc;
298 	vm_pindex_t first, leftcap, rightcap;
299 	vm_reserv_t rv;
300 
301 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
302 
303 	/*
304 	 * Is a reservation fundamentally not possible?
305 	 */
306 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
307 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
308 	    pindex >= object->size)
309 		return (NULL);
310 
311 	/*
312 	 * Look for an existing reservation.
313 	 */
314 	msucc = NULL;
315 	mpred = object->root;
316 	while (mpred != NULL) {
317 		KASSERT(mpred->pindex != pindex,
318 		    ("vm_reserv_alloc_page: pindex already allocated"));
319 		rv = vm_reserv_from_page(mpred);
320 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) {
321 			m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
322 			/* Handle vm_page_rename(m, new_object, ...). */
323 			if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
324 				return (NULL);
325 			vm_reserv_populate(rv);
326 			return (m);
327 		} else if (mpred->pindex < pindex) {
328 			if (msucc != NULL ||
329 			    (msucc = TAILQ_NEXT(mpred, listq)) == NULL)
330 				break;
331 			KASSERT(msucc->pindex != pindex,
332 			    ("vm_reserv_alloc_page: pindex already allocated"));
333 			rv = vm_reserv_from_page(msucc);
334 			if (rv->object == object &&
335 			    vm_reserv_has_pindex(rv, pindex)) {
336 				m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
337 				/* Handle vm_page_rename(m, new_object, ...). */
338 				if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
339 					return (NULL);
340 				vm_reserv_populate(rv);
341 				return (m);
342 			} else if (pindex < msucc->pindex)
343 				break;
344 		} else if (msucc == NULL) {
345 			msucc = mpred;
346 			mpred = TAILQ_PREV(msucc, pglist, listq);
347 			continue;
348 		}
349 		msucc = NULL;
350 		mpred = object->root = vm_page_splay(pindex, object->root);
351 	}
352 
353 	/*
354 	 * Determine the first index to the left that can be used.
355 	 */
356 	if (mpred == NULL)
357 		leftcap = 0;
358 	else if ((rv = vm_reserv_from_page(mpred))->object != object)
359 		leftcap = mpred->pindex + 1;
360 	else
361 		leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
362 
363 	/*
364 	 * Determine the first index to the right that cannot be used.
365 	 */
366 	if (msucc == NULL)
367 		rightcap = pindex + VM_LEVEL_0_NPAGES;
368 	else if ((rv = vm_reserv_from_page(msucc))->object != object)
369 		rightcap = msucc->pindex;
370 	else
371 		rightcap = rv->pindex;
372 
373 	/*
374 	 * Determine if a reservation fits between the first index to
375 	 * the left that can be used and the first index to the right
376 	 * that cannot be used.
377 	 */
378 	first = pindex - VM_RESERV_INDEX(object, pindex);
379 	if (first < leftcap || first + VM_LEVEL_0_NPAGES > rightcap)
380 		return (NULL);
381 
382 	/*
383 	 * Would a new reservation extend past the end of the given object?
384 	 */
385 	if (object->size < first + VM_LEVEL_0_NPAGES) {
386 		/*
387 		 * Don't allocate a new reservation if the object is a vnode or
388 		 * backed by another object that is a vnode.
389 		 */
390 		if (object->type == OBJT_VNODE ||
391 		    (object->backing_object != NULL &&
392 		    object->backing_object->type == OBJT_VNODE))
393 			return (NULL);
394 		/* Speculate that the object may grow. */
395 	}
396 
397 	/*
398 	 * Allocate a new reservation.
399 	 */
400 	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
401 	if (m != NULL) {
402 		rv = vm_reserv_from_page(m);
403 		KASSERT(rv->pages == m,
404 		    ("vm_reserv_alloc_page: reserv %p's pages is corrupted",
405 		    rv));
406 		KASSERT(rv->object == NULL,
407 		    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
408 		LIST_INSERT_HEAD(&object->rvq, rv, objq);
409 		rv->object = object;
410 		rv->pindex = first;
411 		KASSERT(rv->popcnt == 0,
412 		    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted",
413 		    rv));
414 		KASSERT(!rv->inpartpopq,
415 		    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE",
416 		    rv));
417 		vm_reserv_populate(rv);
418 		m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
419 	}
420 	return (m);
421 }
422 
423 /*
424  * Breaks all reservations belonging to the given object.
425  */
426 void
427 vm_reserv_break_all(vm_object_t object)
428 {
429 	vm_reserv_t rv;
430 	int i;
431 
432 	mtx_lock(&vm_page_queue_free_mtx);
433 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
434 		KASSERT(rv->object == object,
435 		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
436 		if (rv->inpartpopq) {
437 			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
438 			rv->inpartpopq = FALSE;
439 		}
440 		LIST_REMOVE(rv, objq);
441 		rv->object = NULL;
442 		for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
443 			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
444 				vm_phys_free_pages(&rv->pages[i], 0);
445 			else
446 				rv->popcnt--;
447 		}
448 		KASSERT(rv->popcnt == 0,
449 		    ("vm_reserv_break_all: reserv %p's popcnt is corrupted",
450 		    rv));
451 		vm_reserv_broken++;
452 	}
453 	mtx_unlock(&vm_page_queue_free_mtx);
454 }
455 
456 /*
457  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
458  * page is freed and FALSE otherwise.
459  *
460  * The free page queue lock must be held.
461  */
462 boolean_t
463 vm_reserv_free_page(vm_page_t m)
464 {
465 	vm_reserv_t rv;
466 
467 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
468 	rv = vm_reserv_from_page(m);
469 	if (rv->object != NULL) {
470 		vm_reserv_depopulate(rv);
471 		return (TRUE);
472 	}
473 	return (FALSE);
474 }
475 
476 /*
477  * Initializes the reservation management system.  Specifically, initializes
478  * the reservation array.
479  *
480  * Requires that vm_page_array and first_page are initialized!
481  */
482 void
483 vm_reserv_init(void)
484 {
485 	vm_paddr_t paddr;
486 	int i;
487 
488 	/*
489 	 * Initialize the reservation array.  Specifically, initialize the
490 	 * "pages" field for every element that has an underlying superpage.
491 	 */
492 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
493 		paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
494 		while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
495 			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
496 			    PHYS_TO_VM_PAGE(paddr);
497 			paddr += VM_LEVEL_0_SIZE;
498 		}
499 	}
500 }
501 
502 /*
503  * Returns a reservation level if the given page belongs to a fully-populated
504  * reservation and -1 otherwise.
505  */
506 int
507 vm_reserv_level_iffullpop(vm_page_t m)
508 {
509 	vm_reserv_t rv;
510 
511 	rv = vm_reserv_from_page(m);
512 	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
513 }
514 
515 /*
516  * Prepare for the reactivation of a cached page.
517  *
518  * First, suppose that the given page "m" was allocated individually, i.e., not
519  * as part of a reservation, and cached.  Then, suppose a reservation
520  * containing "m" is allocated by the same object.  Although "m" and the
521  * reservation belong to the same object, "m"'s pindex may not match the
522  * reservation's.
523  *
524  * The free page queue must be locked.
525  */
526 boolean_t
527 vm_reserv_reactivate_page(vm_page_t m)
528 {
529 	vm_reserv_t rv;
530 	int i, m_index;
531 
532 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
533 	rv = vm_reserv_from_page(m);
534 	if (rv->object == NULL)
535 		return (FALSE);
536 	KASSERT((m->flags & PG_CACHED) != 0,
537 	    ("vm_reserv_uncache_page: page %p is not cached", m));
538 	if (m->object == rv->object &&
539 	    m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
540 		vm_reserv_populate(rv);
541 	else {
542 		KASSERT(rv->inpartpopq,
543 		    ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
544 		    rv));
545 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
546 		rv->inpartpopq = FALSE;
547 		LIST_REMOVE(rv, objq);
548 		rv->object = NULL;
549 		/* Don't vm_phys_free_pages(m, 0). */
550 		m_index = m - rv->pages;
551 		for (i = 0; i < m_index; i++) {
552 			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
553 				vm_phys_free_pages(&rv->pages[i], 0);
554 			else
555 				rv->popcnt--;
556 		}
557 		for (i++; i < VM_LEVEL_0_NPAGES; i++) {
558 			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
559 				vm_phys_free_pages(&rv->pages[i], 0);
560 			else
561 				rv->popcnt--;
562 		}
563 		KASSERT(rv->popcnt == 0,
564 		    ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
565 		    rv));
566 		vm_reserv_broken++;
567 	}
568 	return (TRUE);
569 }
570 
571 /*
572  * Breaks the given partially-populated reservation, releasing its cached and
573  * free pages to the physical memory allocator.
574  *
575  * The free page queue lock must be held.
576  */
577 static void
578 vm_reserv_reclaim(vm_reserv_t rv)
579 {
580 	int i;
581 
582 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
583 	KASSERT(rv->inpartpopq,
584 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv));
585 	TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
586 	rv->inpartpopq = FALSE;
587 	KASSERT(rv->object != NULL,
588 	    ("vm_reserv_reclaim: reserv %p is free", rv));
589 	LIST_REMOVE(rv, objq);
590 	rv->object = NULL;
591 	for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
592 		if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
593 			vm_phys_free_pages(&rv->pages[i], 0);
594 		else
595 			rv->popcnt--;
596 	}
597 	KASSERT(rv->popcnt == 0,
598 	    ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv));
599 	vm_reserv_reclaimed++;
600 }
601 
602 /*
603  * Breaks the reservation at the head of the partially-populated reservation
604  * queue, releasing its cached and free pages to the physical memory
605  * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
606  *
607  * The free page queue lock must be held.
608  */
609 boolean_t
610 vm_reserv_reclaim_inactive(void)
611 {
612 	vm_reserv_t rv;
613 
614 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
615 	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
616 		vm_reserv_reclaim(rv);
617 		return (TRUE);
618 	}
619 	return (FALSE);
620 }
621 
622 /*
623  * Searches the partially-populated reservation queue for the least recently
624  * active reservation with unused pages, i.e., cached or free, that satisfy the
625  * given request for contiguous physical memory.  If a satisfactory reservation
626  * is found, it is broken.  Returns TRUE if a reservation is broken and FALSE
627  * otherwise.
628  *
629  * The free page queue lock must be held.
630  */
631 boolean_t
632 vm_reserv_reclaim_contig(vm_paddr_t size, vm_paddr_t low, vm_paddr_t high,
633     unsigned long alignment, unsigned long boundary)
634 {
635 	vm_paddr_t pa, pa_length;
636 	vm_reserv_t rv;
637 	int i;
638 
639 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
640 	if (size > VM_LEVEL_0_SIZE - PAGE_SIZE)
641 		return (FALSE);
642 	TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
643 		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
644 		if (pa + PAGE_SIZE - size < low) {
645 			/* this entire reservation is too low; go to next */
646 			continue;
647 		}
648 		pa_length = 0;
649 		for (i = 0; i < VM_LEVEL_0_NPAGES; i++)
650 			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) {
651 				pa_length += PAGE_SIZE;
652 				if (pa_length == PAGE_SIZE) {
653 					pa = VM_PAGE_TO_PHYS(&rv->pages[i]);
654 					if (pa + size > high) {
655 						/* skip to next reservation */
656 						break;
657 					} else if (pa < low ||
658 					    (pa & (alignment - 1)) != 0 ||
659 					    ((pa ^ (pa + size - 1)) &
660 					    ~(boundary - 1)) != 0)
661 						pa_length = 0;
662 				} else if (pa_length >= size) {
663 					vm_reserv_reclaim(rv);
664 					return (TRUE);
665 				}
666 			} else
667 				pa_length = 0;
668 	}
669 	return (FALSE);
670 }
671 
672 /*
673  * Transfers the reservation underlying the given page to a new object.
674  *
675  * The object must be locked.
676  */
677 void
678 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
679     vm_pindex_t old_object_offset)
680 {
681 	vm_reserv_t rv;
682 
683 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
684 	rv = vm_reserv_from_page(m);
685 	if (rv->object == old_object) {
686 		mtx_lock(&vm_page_queue_free_mtx);
687 		if (rv->object == old_object) {
688 			LIST_REMOVE(rv, objq);
689 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
690 			rv->object = new_object;
691 			rv->pindex -= old_object_offset;
692 		}
693 		mtx_unlock(&vm_page_queue_free_mtx);
694 	}
695 }
696 
697 /*
698  * Allocates the virtual and physical memory required by the reservation
699  * management system's data structures, in particular, the reservation array.
700  */
701 vm_paddr_t
702 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
703 {
704 	vm_paddr_t new_end;
705 	size_t size;
706 
707 	/*
708 	 * Calculate the size (in bytes) of the reservation array.  Round up
709 	 * from "high_water" because every small page is mapped to an element
710 	 * in the reservation array based on its physical address.  Thus, the
711 	 * number of elements in the reservation array can be greater than the
712 	 * number of superpages.
713 	 */
714 	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
715 
716 	/*
717 	 * Allocate and map the physical memory for the reservation array.  The
718 	 * next available virtual address is returned by reference.
719 	 */
720 	new_end = end - round_page(size);
721 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
722 	    VM_PROT_READ | VM_PROT_WRITE);
723 	bzero(vm_reserv_array, size);
724 
725 	/*
726 	 * Return the next available physical address.
727 	 */
728 	return (new_end);
729 }
730 
731 #endif	/* VM_NRESERVLEVEL > 0 */
732