xref: /freebsd/sys/vm/vm_reserv.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Superpage reservation management module
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_vm.h"
40 
41 #include <sys/param.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_phys.h>
56 #include <vm/vm_reserv.h>
57 
58 /*
59  * The reservation system supports the speculative allocation of large physical
60  * pages ("superpages").  Speculative allocation enables the fully-automatic
61  * utilization of superpages by the virtual memory system.  In other words, no
62  * programmatic directives are required to use superpages.
63  */
64 
65 #if VM_NRESERVLEVEL > 0
66 
67 /*
68  * The number of small pages that are contained in a level 0 reservation
69  */
70 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
71 
72 /*
73  * The number of bits by which a physical address is shifted to obtain the
74  * reservation number
75  */
76 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
77 
78 /*
79  * The size of a level 0 reservation in bytes
80  */
81 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
82 
83 /*
84  * Computes the index of the small page underlying the given (object, pindex)
85  * within the reservation's array of small pages.
86  */
87 #define	VM_RESERV_INDEX(object, pindex)	\
88     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
89 
90 /*
91  * The reservation structure
92  *
93  * A reservation structure is constructed whenever a large physical page is
94  * speculatively allocated to an object.  The reservation provides the small
95  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
96  * within that object.  The reservation's "popcnt" tracks the number of these
97  * small physical pages that are in use at any given time.  When and if the
98  * reservation is not fully utilized, it appears in the queue of partially-
99  * populated reservations.  The reservation always appears on the containing
100  * object's list of reservations.
101  *
102  * A partially-populated reservation can be broken and reclaimed at any time.
103  */
104 struct vm_reserv {
105 	TAILQ_ENTRY(vm_reserv) partpopq;
106 	LIST_ENTRY(vm_reserv) objq;
107 	vm_object_t	object;			/* containing object */
108 	vm_pindex_t	pindex;			/* offset within object */
109 	vm_page_t	pages;			/* first page of a superpage */
110 	int		popcnt;			/* # of pages in use */
111 	char		inpartpopq;
112 };
113 
114 /*
115  * The reservation array
116  *
117  * This array is analoguous in function to vm_page_array.  It differs in the
118  * respect that it may contain a greater number of useful reservation
119  * structures than there are (physical) superpages.  These "invalid"
120  * reservation structures exist to trade-off space for time in the
121  * implementation of vm_reserv_from_page().  Invalid reservation structures are
122  * distinguishable from "valid" reservation structures by inspecting the
123  * reservation's "pages" field.  Invalid reservation structures have a NULL
124  * "pages" field.
125  *
126  * vm_reserv_from_page() maps a small (physical) page to an element of this
127  * array by computing a physical reservation number from the page's physical
128  * address.  The physical reservation number is used as the array index.
129  *
130  * An "active" reservation is a valid reservation structure that has a non-NULL
131  * "object" field and a non-zero "popcnt" field.  In other words, every active
132  * reservation belongs to a particular object.  Moreover, every active
133  * reservation has an entry in the containing object's list of reservations.
134  */
135 static vm_reserv_t vm_reserv_array;
136 
137 /*
138  * The partially-populated reservation queue
139  *
140  * This queue enables the fast recovery of an unused cached or free small page
141  * from a partially-populated reservation.  The reservation at the head of
142  * this queue is the least-recently-changed, partially-populated reservation.
143  *
144  * Access to this queue is synchronized by the free page queue lock.
145  */
146 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
147 			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
148 
149 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
150 
151 static long vm_reserv_broken;
152 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
153     &vm_reserv_broken, 0, "Cumulative number of broken reservations");
154 
155 static long vm_reserv_freed;
156 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
157     &vm_reserv_freed, 0, "Cumulative number of freed reservations");
158 
159 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
160 
161 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
162     sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
163 
164 static long vm_reserv_reclaimed;
165 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
166     &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
167 
168 static void		vm_reserv_depopulate(vm_reserv_t rv);
169 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
170 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
171 			    vm_pindex_t pindex);
172 static void		vm_reserv_populate(vm_reserv_t rv);
173 static void		vm_reserv_reclaim(vm_reserv_t rv);
174 
175 /*
176  * Describes the current state of the partially-populated reservation queue.
177  */
178 static int
179 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
180 {
181 	struct sbuf sbuf;
182 	vm_reserv_t rv;
183 	int counter, error, level, unused_pages;
184 
185 	error = sysctl_wire_old_buffer(req, 0);
186 	if (error != 0)
187 		return (error);
188 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
189 	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
190 	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
191 		counter = 0;
192 		unused_pages = 0;
193 		mtx_lock(&vm_page_queue_free_mtx);
194 		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
195 			counter++;
196 			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
197 		}
198 		mtx_unlock(&vm_page_queue_free_mtx);
199 		sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
200 		    unused_pages * ((int)PAGE_SIZE / 1024), counter);
201 	}
202 	error = sbuf_finish(&sbuf);
203 	sbuf_delete(&sbuf);
204 	return (error);
205 }
206 
207 /*
208  * Reduces the given reservation's population count.  If the population count
209  * becomes zero, the reservation is destroyed.  Additionally, moves the
210  * reservation to the tail of the partially-populated reservations queue if the
211  * population count is non-zero.
212  *
213  * The free page queue lock must be held.
214  */
215 static void
216 vm_reserv_depopulate(vm_reserv_t rv)
217 {
218 
219 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
220 	KASSERT(rv->object != NULL,
221 	    ("vm_reserv_depopulate: reserv %p is free", rv));
222 	KASSERT(rv->popcnt > 0,
223 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
224 	if (rv->inpartpopq) {
225 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
226 		rv->inpartpopq = FALSE;
227 	}
228 	rv->popcnt--;
229 	if (rv->popcnt == 0) {
230 		LIST_REMOVE(rv, objq);
231 		rv->object = NULL;
232 		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
233 		vm_reserv_freed++;
234 	} else {
235 		rv->inpartpopq = TRUE;
236 		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
237 	}
238 }
239 
240 /*
241  * Returns the reservation to which the given page might belong.
242  */
243 static __inline vm_reserv_t
244 vm_reserv_from_page(vm_page_t m)
245 {
246 
247 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
248 }
249 
250 /*
251  * Returns TRUE if the given reservation contains the given page index and
252  * FALSE otherwise.
253  */
254 static __inline boolean_t
255 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
256 {
257 
258 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
259 }
260 
261 /*
262  * Increases the given reservation's population count.  Moves the reservation
263  * to the tail of the partially-populated reservation queue.
264  *
265  * The free page queue must be locked.
266  */
267 static void
268 vm_reserv_populate(vm_reserv_t rv)
269 {
270 
271 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
272 	KASSERT(rv->object != NULL,
273 	    ("vm_reserv_populate: reserv %p is free", rv));
274 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
275 	    ("vm_reserv_populate: reserv %p is already full", rv));
276 	if (rv->inpartpopq) {
277 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
278 		rv->inpartpopq = FALSE;
279 	}
280 	rv->popcnt++;
281 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
282 		rv->inpartpopq = TRUE;
283 		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
284 	}
285 }
286 
287 /*
288  * Allocates a page from an existing or newly-created reservation.
289  *
290  * The object and free page queue must be locked.
291  */
292 vm_page_t
293 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex)
294 {
295 	vm_page_t m, mpred, msucc;
296 	vm_pindex_t first, leftcap, rightcap;
297 	vm_reserv_t rv;
298 
299 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
300 
301 	/*
302 	 * Is a reservation fundamentally not possible?
303 	 */
304 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
305 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
306 	    pindex >= object->size)
307 		return (NULL);
308 
309 	/*
310 	 * Look for an existing reservation.
311 	 */
312 	msucc = NULL;
313 	mpred = object->root;
314 	while (mpred != NULL) {
315 		KASSERT(mpred->pindex != pindex,
316 		    ("vm_reserv_alloc_page: pindex already allocated"));
317 		rv = vm_reserv_from_page(mpred);
318 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) {
319 			m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
320 			/* Handle vm_page_rename(m, new_object, ...). */
321 			if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
322 				return (NULL);
323 			vm_reserv_populate(rv);
324 			return (m);
325 		} else if (mpred->pindex < pindex) {
326 			if (msucc != NULL ||
327 			    (msucc = TAILQ_NEXT(mpred, listq)) == NULL)
328 				break;
329 			KASSERT(msucc->pindex != pindex,
330 			    ("vm_reserv_alloc_page: pindex already allocated"));
331 			rv = vm_reserv_from_page(msucc);
332 			if (rv->object == object &&
333 			    vm_reserv_has_pindex(rv, pindex)) {
334 				m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
335 				/* Handle vm_page_rename(m, new_object, ...). */
336 				if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
337 					return (NULL);
338 				vm_reserv_populate(rv);
339 				return (m);
340 			} else if (pindex < msucc->pindex)
341 				break;
342 		} else if (msucc == NULL) {
343 			msucc = mpred;
344 			mpred = TAILQ_PREV(msucc, pglist, listq);
345 			continue;
346 		}
347 		msucc = NULL;
348 		mpred = object->root = vm_page_splay(pindex, object->root);
349 	}
350 
351 	/*
352 	 * Determine the first index to the left that can be used.
353 	 */
354 	if (mpred == NULL)
355 		leftcap = 0;
356 	else if ((rv = vm_reserv_from_page(mpred))->object != object)
357 		leftcap = mpred->pindex + 1;
358 	else
359 		leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
360 
361 	/*
362 	 * Determine the first index to the right that cannot be used.
363 	 */
364 	if (msucc == NULL)
365 		rightcap = pindex + VM_LEVEL_0_NPAGES;
366 	else if ((rv = vm_reserv_from_page(msucc))->object != object)
367 		rightcap = msucc->pindex;
368 	else
369 		rightcap = rv->pindex;
370 
371 	/*
372 	 * Determine if a reservation fits between the first index to
373 	 * the left that can be used and the first index to the right
374 	 * that cannot be used.
375 	 */
376 	first = pindex - VM_RESERV_INDEX(object, pindex);
377 	if (first < leftcap || first + VM_LEVEL_0_NPAGES > rightcap)
378 		return (NULL);
379 
380 	/*
381 	 * Would a new reservation extend past the end of the given object?
382 	 */
383 	if (object->size < first + VM_LEVEL_0_NPAGES) {
384 		/*
385 		 * Don't allocate a new reservation if the object is a vnode or
386 		 * backed by another object that is a vnode.
387 		 */
388 		if (object->type == OBJT_VNODE ||
389 		    (object->backing_object != NULL &&
390 		    object->backing_object->type == OBJT_VNODE))
391 			return (NULL);
392 		/* Speculate that the object may grow. */
393 	}
394 
395 	/*
396 	 * Allocate a new reservation.
397 	 */
398 	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
399 	if (m != NULL) {
400 		rv = vm_reserv_from_page(m);
401 		KASSERT(rv->pages == m,
402 		    ("vm_reserv_alloc_page: reserv %p's pages is corrupted",
403 		    rv));
404 		KASSERT(rv->object == NULL,
405 		    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
406 		LIST_INSERT_HEAD(&object->rvq, rv, objq);
407 		rv->object = object;
408 		rv->pindex = first;
409 		KASSERT(rv->popcnt == 0,
410 		    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted",
411 		    rv));
412 		KASSERT(!rv->inpartpopq,
413 		    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE",
414 		    rv));
415 		vm_reserv_populate(rv);
416 		m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
417 	}
418 	return (m);
419 }
420 
421 /*
422  * Breaks all reservations belonging to the given object.
423  */
424 void
425 vm_reserv_break_all(vm_object_t object)
426 {
427 	vm_reserv_t rv;
428 	int i;
429 
430 	mtx_lock(&vm_page_queue_free_mtx);
431 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
432 		KASSERT(rv->object == object,
433 		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
434 		if (rv->inpartpopq) {
435 			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
436 			rv->inpartpopq = FALSE;
437 		}
438 		LIST_REMOVE(rv, objq);
439 		rv->object = NULL;
440 		for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
441 			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
442 				vm_phys_free_pages(&rv->pages[i], 0);
443 			else
444 				rv->popcnt--;
445 		}
446 		KASSERT(rv->popcnt == 0,
447 		    ("vm_reserv_break_all: reserv %p's popcnt is corrupted",
448 		    rv));
449 		vm_reserv_broken++;
450 	}
451 	mtx_unlock(&vm_page_queue_free_mtx);
452 }
453 
454 /*
455  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
456  * page is freed and FALSE otherwise.
457  *
458  * The free page queue lock must be held.
459  */
460 boolean_t
461 vm_reserv_free_page(vm_page_t m)
462 {
463 	vm_reserv_t rv;
464 
465 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
466 	rv = vm_reserv_from_page(m);
467 	if (rv->object != NULL) {
468 		vm_reserv_depopulate(rv);
469 		return (TRUE);
470 	}
471 	return (FALSE);
472 }
473 
474 /*
475  * Initializes the reservation management system.  Specifically, initializes
476  * the reservation array.
477  *
478  * Requires that vm_page_array and first_page are initialized!
479  */
480 void
481 vm_reserv_init(void)
482 {
483 	vm_paddr_t paddr;
484 	int i;
485 
486 	/*
487 	 * Initialize the reservation array.  Specifically, initialize the
488 	 * "pages" field for every element that has an underlying superpage.
489 	 */
490 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
491 		paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
492 		while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
493 			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
494 			    PHYS_TO_VM_PAGE(paddr);
495 			paddr += VM_LEVEL_0_SIZE;
496 		}
497 	}
498 }
499 
500 /*
501  * Returns a reservation level if the given page belongs to a fully-populated
502  * reservation and -1 otherwise.
503  */
504 int
505 vm_reserv_level_iffullpop(vm_page_t m)
506 {
507 	vm_reserv_t rv;
508 
509 	rv = vm_reserv_from_page(m);
510 	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
511 }
512 
513 /*
514  * Prepare for the reactivation of a cached page.
515  *
516  * First, suppose that the given page "m" was allocated individually, i.e., not
517  * as part of a reservation, and cached.  Then, suppose a reservation
518  * containing "m" is allocated by the same object.  Although "m" and the
519  * reservation belong to the same object, "m"'s pindex may not match the
520  * reservation's.
521  *
522  * The free page queue must be locked.
523  */
524 boolean_t
525 vm_reserv_reactivate_page(vm_page_t m)
526 {
527 	vm_reserv_t rv;
528 	int i, m_index;
529 
530 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
531 	rv = vm_reserv_from_page(m);
532 	if (rv->object == NULL)
533 		return (FALSE);
534 	KASSERT((m->flags & PG_CACHED) != 0,
535 	    ("vm_reserv_uncache_page: page %p is not cached", m));
536 	if (m->object == rv->object &&
537 	    m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
538 		vm_reserv_populate(rv);
539 	else {
540 		KASSERT(rv->inpartpopq,
541 		    ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
542 		    rv));
543 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
544 		rv->inpartpopq = FALSE;
545 		LIST_REMOVE(rv, objq);
546 		rv->object = NULL;
547 		/* Don't vm_phys_free_pages(m, 0). */
548 		m_index = m - rv->pages;
549 		for (i = 0; i < m_index; i++) {
550 			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
551 				vm_phys_free_pages(&rv->pages[i], 0);
552 			else
553 				rv->popcnt--;
554 		}
555 		for (i++; i < VM_LEVEL_0_NPAGES; i++) {
556 			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
557 				vm_phys_free_pages(&rv->pages[i], 0);
558 			else
559 				rv->popcnt--;
560 		}
561 		KASSERT(rv->popcnt == 0,
562 		    ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
563 		    rv));
564 		vm_reserv_broken++;
565 	}
566 	return (TRUE);
567 }
568 
569 /*
570  * Breaks the given partially-populated reservation, releasing its cached and
571  * free pages to the physical memory allocator.
572  *
573  * The free page queue lock must be held.
574  */
575 static void
576 vm_reserv_reclaim(vm_reserv_t rv)
577 {
578 	int i;
579 
580 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
581 	KASSERT(rv->inpartpopq,
582 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv));
583 	TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
584 	rv->inpartpopq = FALSE;
585 	KASSERT(rv->object != NULL,
586 	    ("vm_reserv_reclaim: reserv %p is free", rv));
587 	LIST_REMOVE(rv, objq);
588 	rv->object = NULL;
589 	for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
590 		if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
591 			vm_phys_free_pages(&rv->pages[i], 0);
592 		else
593 			rv->popcnt--;
594 	}
595 	KASSERT(rv->popcnt == 0,
596 	    ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv));
597 	vm_reserv_reclaimed++;
598 }
599 
600 /*
601  * Breaks the reservation at the head of the partially-populated reservation
602  * queue, releasing its cached and free pages to the physical memory
603  * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
604  *
605  * The free page queue lock must be held.
606  */
607 boolean_t
608 vm_reserv_reclaim_inactive(void)
609 {
610 	vm_reserv_t rv;
611 
612 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
613 	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
614 		vm_reserv_reclaim(rv);
615 		return (TRUE);
616 	}
617 	return (FALSE);
618 }
619 
620 /*
621  * Searches the partially-populated reservation queue for the least recently
622  * active reservation with unused pages, i.e., cached or free, that satisfy the
623  * given request for contiguous physical memory.  If a satisfactory reservation
624  * is found, it is broken.  Returns TRUE if a reservation is broken and FALSE
625  * otherwise.
626  *
627  * The free page queue lock must be held.
628  */
629 boolean_t
630 vm_reserv_reclaim_contig(vm_paddr_t size, vm_paddr_t low, vm_paddr_t high,
631     unsigned long alignment, unsigned long boundary)
632 {
633 	vm_paddr_t pa, pa_length;
634 	vm_reserv_t rv;
635 	int i;
636 
637 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
638 	if (size > VM_LEVEL_0_SIZE - PAGE_SIZE)
639 		return (FALSE);
640 	TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
641 		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
642 		if (pa + PAGE_SIZE - size < low) {
643 			/* this entire reservation is too low; go to next */
644 			continue;
645 		}
646 		pa_length = 0;
647 		for (i = 0; i < VM_LEVEL_0_NPAGES; i++)
648 			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) {
649 				pa_length += PAGE_SIZE;
650 				if (pa_length == PAGE_SIZE) {
651 					pa = VM_PAGE_TO_PHYS(&rv->pages[i]);
652 					if (pa + size > high) {
653 						/* skip to next reservation */
654 						break;
655 					} else if (pa < low ||
656 					    (pa & (alignment - 1)) != 0 ||
657 					    ((pa ^ (pa + size - 1)) &
658 					    ~(boundary - 1)) != 0)
659 						pa_length = 0;
660 				}
661 				if (pa_length >= size) {
662 					vm_reserv_reclaim(rv);
663 					return (TRUE);
664 				}
665 			} else
666 				pa_length = 0;
667 	}
668 	return (FALSE);
669 }
670 
671 /*
672  * Transfers the reservation underlying the given page to a new object.
673  *
674  * The object must be locked.
675  */
676 void
677 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
678     vm_pindex_t old_object_offset)
679 {
680 	vm_reserv_t rv;
681 
682 	VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
683 	rv = vm_reserv_from_page(m);
684 	if (rv->object == old_object) {
685 		mtx_lock(&vm_page_queue_free_mtx);
686 		if (rv->object == old_object) {
687 			LIST_REMOVE(rv, objq);
688 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
689 			rv->object = new_object;
690 			rv->pindex -= old_object_offset;
691 		}
692 		mtx_unlock(&vm_page_queue_free_mtx);
693 	}
694 }
695 
696 /*
697  * Allocates the virtual and physical memory required by the reservation
698  * management system's data structures, in particular, the reservation array.
699  */
700 vm_paddr_t
701 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
702 {
703 	vm_paddr_t new_end;
704 	size_t size;
705 
706 	/*
707 	 * Calculate the size (in bytes) of the reservation array.  Round up
708 	 * from "high_water" because every small page is mapped to an element
709 	 * in the reservation array based on its physical address.  Thus, the
710 	 * number of elements in the reservation array can be greater than the
711 	 * number of superpages.
712 	 */
713 	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
714 
715 	/*
716 	 * Allocate and map the physical memory for the reservation array.  The
717 	 * next available virtual address is returned by reference.
718 	 */
719 	new_end = end - round_page(size);
720 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
721 	    VM_PROT_READ | VM_PROT_WRITE);
722 	bzero(vm_reserv_array, size);
723 
724 	/*
725 	 * Return the next available physical address.
726 	 */
727 	return (new_end);
728 }
729 
730 #endif	/* VM_NRESERVLEVEL > 0 */
731