1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Superpage reservation management module 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 #include "opt_vm.h" 40 41 #include <sys/param.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/queue.h> 47 #include <sys/sbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/systm.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_param.h> 53 #include <vm/vm_object.h> 54 #include <vm/vm_page.h> 55 #include <vm/vm_phys.h> 56 #include <vm/vm_reserv.h> 57 58 /* 59 * The reservation system supports the speculative allocation of large physical 60 * pages ("superpages"). Speculative allocation enables the fully-automatic 61 * utilization of superpages by the virtual memory system. In other words, no 62 * programmatic directives are required to use superpages. 63 */ 64 65 #if VM_NRESERVLEVEL > 0 66 67 /* 68 * The number of small pages that are contained in a level 0 reservation 69 */ 70 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 71 72 /* 73 * The number of bits by which a physical address is shifted to obtain the 74 * reservation number 75 */ 76 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 77 78 /* 79 * The size of a level 0 reservation in bytes 80 */ 81 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 82 83 /* 84 * Computes the index of the small page underlying the given (object, pindex) 85 * within the reservation's array of small pages. 86 */ 87 #define VM_RESERV_INDEX(object, pindex) \ 88 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 89 90 /* 91 * The reservation structure 92 * 93 * A reservation structure is constructed whenever a large physical page is 94 * speculatively allocated to an object. The reservation provides the small 95 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 96 * within that object. The reservation's "popcnt" tracks the number of these 97 * small physical pages that are in use at any given time. When and if the 98 * reservation is not fully utilized, it appears in the queue of partially- 99 * populated reservations. The reservation always appears on the containing 100 * object's list of reservations. 101 * 102 * A partially-populated reservation can be broken and reclaimed at any time. 103 */ 104 struct vm_reserv { 105 TAILQ_ENTRY(vm_reserv) partpopq; 106 LIST_ENTRY(vm_reserv) objq; 107 vm_object_t object; /* containing object */ 108 vm_pindex_t pindex; /* offset within object */ 109 vm_page_t pages; /* first page of a superpage */ 110 int popcnt; /* # of pages in use */ 111 char inpartpopq; 112 }; 113 114 /* 115 * The reservation array 116 * 117 * This array is analoguous in function to vm_page_array. It differs in the 118 * respect that it may contain a greater number of useful reservation 119 * structures than there are (physical) superpages. These "invalid" 120 * reservation structures exist to trade-off space for time in the 121 * implementation of vm_reserv_from_page(). Invalid reservation structures are 122 * distinguishable from "valid" reservation structures by inspecting the 123 * reservation's "pages" field. Invalid reservation structures have a NULL 124 * "pages" field. 125 * 126 * vm_reserv_from_page() maps a small (physical) page to an element of this 127 * array by computing a physical reservation number from the page's physical 128 * address. The physical reservation number is used as the array index. 129 * 130 * An "active" reservation is a valid reservation structure that has a non-NULL 131 * "object" field and a non-zero "popcnt" field. In other words, every active 132 * reservation belongs to a particular object. Moreover, every active 133 * reservation has an entry in the containing object's list of reservations. 134 */ 135 static vm_reserv_t vm_reserv_array; 136 137 /* 138 * The partially-populated reservation queue 139 * 140 * This queue enables the fast recovery of an unused cached or free small page 141 * from a partially-populated reservation. The reservation at the head of 142 * this queue is the least-recently-changed, partially-populated reservation. 143 * 144 * Access to this queue is synchronized by the free page queue lock. 145 */ 146 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop = 147 TAILQ_HEAD_INITIALIZER(vm_rvq_partpop); 148 149 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); 150 151 static long vm_reserv_broken; 152 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 153 &vm_reserv_broken, 0, "Cumulative number of broken reservations"); 154 155 static long vm_reserv_freed; 156 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 157 &vm_reserv_freed, 0, "Cumulative number of freed reservations"); 158 159 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 160 161 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 162 sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues"); 163 164 static long vm_reserv_reclaimed; 165 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 166 &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations"); 167 168 static void vm_reserv_depopulate(vm_reserv_t rv); 169 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 170 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 171 vm_pindex_t pindex); 172 static void vm_reserv_populate(vm_reserv_t rv); 173 static void vm_reserv_reclaim(vm_reserv_t rv); 174 175 /* 176 * Describes the current state of the partially-populated reservation queue. 177 */ 178 static int 179 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 180 { 181 struct sbuf sbuf; 182 vm_reserv_t rv; 183 int counter, error, level, unused_pages; 184 185 error = sysctl_wire_old_buffer(req, 0); 186 if (error != 0) 187 return (error); 188 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 189 sbuf_printf(&sbuf, "\nLEVEL SIZE NUMBER\n\n"); 190 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 191 counter = 0; 192 unused_pages = 0; 193 mtx_lock(&vm_page_queue_free_mtx); 194 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) { 195 counter++; 196 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 197 } 198 mtx_unlock(&vm_page_queue_free_mtx); 199 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level, 200 unused_pages * ((int)PAGE_SIZE / 1024), counter); 201 } 202 error = sbuf_finish(&sbuf); 203 sbuf_delete(&sbuf); 204 return (error); 205 } 206 207 /* 208 * Reduces the given reservation's population count. If the population count 209 * becomes zero, the reservation is destroyed. Additionally, moves the 210 * reservation to the tail of the partially-populated reservations queue if the 211 * population count is non-zero. 212 * 213 * The free page queue lock must be held. 214 */ 215 static void 216 vm_reserv_depopulate(vm_reserv_t rv) 217 { 218 219 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 220 KASSERT(rv->object != NULL, 221 ("vm_reserv_depopulate: reserv %p is free", rv)); 222 KASSERT(rv->popcnt > 0, 223 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 224 if (rv->inpartpopq) { 225 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 226 rv->inpartpopq = FALSE; 227 } 228 rv->popcnt--; 229 if (rv->popcnt == 0) { 230 LIST_REMOVE(rv, objq); 231 rv->object = NULL; 232 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 233 vm_reserv_freed++; 234 } else { 235 rv->inpartpopq = TRUE; 236 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 237 } 238 } 239 240 /* 241 * Returns the reservation to which the given page might belong. 242 */ 243 static __inline vm_reserv_t 244 vm_reserv_from_page(vm_page_t m) 245 { 246 247 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 248 } 249 250 /* 251 * Returns TRUE if the given reservation contains the given page index and 252 * FALSE otherwise. 253 */ 254 static __inline boolean_t 255 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 256 { 257 258 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 259 } 260 261 /* 262 * Increases the given reservation's population count. Moves the reservation 263 * to the tail of the partially-populated reservation queue. 264 * 265 * The free page queue must be locked. 266 */ 267 static void 268 vm_reserv_populate(vm_reserv_t rv) 269 { 270 271 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 272 KASSERT(rv->object != NULL, 273 ("vm_reserv_populate: reserv %p is free", rv)); 274 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 275 ("vm_reserv_populate: reserv %p is already full", rv)); 276 if (rv->inpartpopq) { 277 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 278 rv->inpartpopq = FALSE; 279 } 280 rv->popcnt++; 281 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 282 rv->inpartpopq = TRUE; 283 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 284 } 285 } 286 287 /* 288 * Allocates a page from an existing or newly-created reservation. 289 * 290 * The object and free page queue must be locked. 291 */ 292 vm_page_t 293 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex) 294 { 295 vm_page_t m, mpred, msucc; 296 vm_pindex_t first, leftcap, rightcap; 297 vm_reserv_t rv; 298 299 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 300 301 /* 302 * Is a reservation fundamentally not possible? 303 */ 304 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 305 if (pindex < VM_RESERV_INDEX(object, pindex) || 306 pindex >= object->size) 307 return (NULL); 308 309 /* 310 * Look for an existing reservation. 311 */ 312 msucc = NULL; 313 mpred = object->root; 314 while (mpred != NULL) { 315 KASSERT(mpred->pindex != pindex, 316 ("vm_reserv_alloc_page: pindex already allocated")); 317 rv = vm_reserv_from_page(mpred); 318 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) { 319 m = &rv->pages[VM_RESERV_INDEX(object, pindex)]; 320 /* Handle vm_page_rename(m, new_object, ...). */ 321 if ((m->flags & (PG_CACHED | PG_FREE)) == 0) 322 return (NULL); 323 vm_reserv_populate(rv); 324 return (m); 325 } else if (mpred->pindex < pindex) { 326 if (msucc != NULL || 327 (msucc = TAILQ_NEXT(mpred, listq)) == NULL) 328 break; 329 KASSERT(msucc->pindex != pindex, 330 ("vm_reserv_alloc_page: pindex already allocated")); 331 rv = vm_reserv_from_page(msucc); 332 if (rv->object == object && 333 vm_reserv_has_pindex(rv, pindex)) { 334 m = &rv->pages[VM_RESERV_INDEX(object, pindex)]; 335 /* Handle vm_page_rename(m, new_object, ...). */ 336 if ((m->flags & (PG_CACHED | PG_FREE)) == 0) 337 return (NULL); 338 vm_reserv_populate(rv); 339 return (m); 340 } else if (pindex < msucc->pindex) 341 break; 342 } else if (msucc == NULL) { 343 msucc = mpred; 344 mpred = TAILQ_PREV(msucc, pglist, listq); 345 continue; 346 } 347 msucc = NULL; 348 mpred = object->root = vm_page_splay(pindex, object->root); 349 } 350 351 /* 352 * Determine the first index to the left that can be used. 353 */ 354 if (mpred == NULL) 355 leftcap = 0; 356 else if ((rv = vm_reserv_from_page(mpred))->object != object) 357 leftcap = mpred->pindex + 1; 358 else 359 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 360 361 /* 362 * Determine the first index to the right that cannot be used. 363 */ 364 if (msucc == NULL) 365 rightcap = pindex + VM_LEVEL_0_NPAGES; 366 else if ((rv = vm_reserv_from_page(msucc))->object != object) 367 rightcap = msucc->pindex; 368 else 369 rightcap = rv->pindex; 370 371 /* 372 * Determine if a reservation fits between the first index to 373 * the left that can be used and the first index to the right 374 * that cannot be used. 375 */ 376 first = pindex - VM_RESERV_INDEX(object, pindex); 377 if (first < leftcap || first + VM_LEVEL_0_NPAGES > rightcap) 378 return (NULL); 379 380 /* 381 * Would a new reservation extend past the end of the given object? 382 */ 383 if (object->size < first + VM_LEVEL_0_NPAGES) { 384 /* 385 * Don't allocate a new reservation if the object is a vnode or 386 * backed by another object that is a vnode. 387 */ 388 if (object->type == OBJT_VNODE || 389 (object->backing_object != NULL && 390 object->backing_object->type == OBJT_VNODE)) 391 return (NULL); 392 /* Speculate that the object may grow. */ 393 } 394 395 /* 396 * Allocate a new reservation. 397 */ 398 m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); 399 if (m != NULL) { 400 rv = vm_reserv_from_page(m); 401 KASSERT(rv->pages == m, 402 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", 403 rv)); 404 KASSERT(rv->object == NULL, 405 ("vm_reserv_alloc_page: reserv %p isn't free", rv)); 406 LIST_INSERT_HEAD(&object->rvq, rv, objq); 407 rv->object = object; 408 rv->pindex = first; 409 KASSERT(rv->popcnt == 0, 410 ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", 411 rv)); 412 KASSERT(!rv->inpartpopq, 413 ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", 414 rv)); 415 vm_reserv_populate(rv); 416 m = &rv->pages[VM_RESERV_INDEX(object, pindex)]; 417 } 418 return (m); 419 } 420 421 /* 422 * Breaks all reservations belonging to the given object. 423 */ 424 void 425 vm_reserv_break_all(vm_object_t object) 426 { 427 vm_reserv_t rv; 428 int i; 429 430 mtx_lock(&vm_page_queue_free_mtx); 431 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 432 KASSERT(rv->object == object, 433 ("vm_reserv_break_all: reserv %p is corrupted", rv)); 434 if (rv->inpartpopq) { 435 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 436 rv->inpartpopq = FALSE; 437 } 438 LIST_REMOVE(rv, objq); 439 rv->object = NULL; 440 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) { 441 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 442 vm_phys_free_pages(&rv->pages[i], 0); 443 else 444 rv->popcnt--; 445 } 446 KASSERT(rv->popcnt == 0, 447 ("vm_reserv_break_all: reserv %p's popcnt is corrupted", 448 rv)); 449 vm_reserv_broken++; 450 } 451 mtx_unlock(&vm_page_queue_free_mtx); 452 } 453 454 /* 455 * Frees the given page if it belongs to a reservation. Returns TRUE if the 456 * page is freed and FALSE otherwise. 457 * 458 * The free page queue lock must be held. 459 */ 460 boolean_t 461 vm_reserv_free_page(vm_page_t m) 462 { 463 vm_reserv_t rv; 464 465 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 466 rv = vm_reserv_from_page(m); 467 if (rv->object != NULL) { 468 vm_reserv_depopulate(rv); 469 return (TRUE); 470 } 471 return (FALSE); 472 } 473 474 /* 475 * Initializes the reservation management system. Specifically, initializes 476 * the reservation array. 477 * 478 * Requires that vm_page_array and first_page are initialized! 479 */ 480 void 481 vm_reserv_init(void) 482 { 483 vm_paddr_t paddr; 484 int i; 485 486 /* 487 * Initialize the reservation array. Specifically, initialize the 488 * "pages" field for every element that has an underlying superpage. 489 */ 490 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 491 paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE); 492 while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) { 493 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages = 494 PHYS_TO_VM_PAGE(paddr); 495 paddr += VM_LEVEL_0_SIZE; 496 } 497 } 498 } 499 500 /* 501 * Returns a reservation level if the given page belongs to a fully-populated 502 * reservation and -1 otherwise. 503 */ 504 int 505 vm_reserv_level_iffullpop(vm_page_t m) 506 { 507 vm_reserv_t rv; 508 509 rv = vm_reserv_from_page(m); 510 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 511 } 512 513 /* 514 * Prepare for the reactivation of a cached page. 515 * 516 * First, suppose that the given page "m" was allocated individually, i.e., not 517 * as part of a reservation, and cached. Then, suppose a reservation 518 * containing "m" is allocated by the same object. Although "m" and the 519 * reservation belong to the same object, "m"'s pindex may not match the 520 * reservation's. 521 * 522 * The free page queue must be locked. 523 */ 524 boolean_t 525 vm_reserv_reactivate_page(vm_page_t m) 526 { 527 vm_reserv_t rv; 528 int i, m_index; 529 530 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 531 rv = vm_reserv_from_page(m); 532 if (rv->object == NULL) 533 return (FALSE); 534 KASSERT((m->flags & PG_CACHED) != 0, 535 ("vm_reserv_uncache_page: page %p is not cached", m)); 536 if (m->object == rv->object && 537 m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex)) 538 vm_reserv_populate(rv); 539 else { 540 KASSERT(rv->inpartpopq, 541 ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE", 542 rv)); 543 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 544 rv->inpartpopq = FALSE; 545 LIST_REMOVE(rv, objq); 546 rv->object = NULL; 547 /* Don't vm_phys_free_pages(m, 0). */ 548 m_index = m - rv->pages; 549 for (i = 0; i < m_index; i++) { 550 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 551 vm_phys_free_pages(&rv->pages[i], 0); 552 else 553 rv->popcnt--; 554 } 555 for (i++; i < VM_LEVEL_0_NPAGES; i++) { 556 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 557 vm_phys_free_pages(&rv->pages[i], 0); 558 else 559 rv->popcnt--; 560 } 561 KASSERT(rv->popcnt == 0, 562 ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted", 563 rv)); 564 vm_reserv_broken++; 565 } 566 return (TRUE); 567 } 568 569 /* 570 * Breaks the given partially-populated reservation, releasing its cached and 571 * free pages to the physical memory allocator. 572 * 573 * The free page queue lock must be held. 574 */ 575 static void 576 vm_reserv_reclaim(vm_reserv_t rv) 577 { 578 int i; 579 580 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 581 KASSERT(rv->inpartpopq, 582 ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv)); 583 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 584 rv->inpartpopq = FALSE; 585 KASSERT(rv->object != NULL, 586 ("vm_reserv_reclaim: reserv %p is free", rv)); 587 LIST_REMOVE(rv, objq); 588 rv->object = NULL; 589 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) { 590 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) 591 vm_phys_free_pages(&rv->pages[i], 0); 592 else 593 rv->popcnt--; 594 } 595 KASSERT(rv->popcnt == 0, 596 ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv)); 597 vm_reserv_reclaimed++; 598 } 599 600 /* 601 * Breaks the reservation at the head of the partially-populated reservation 602 * queue, releasing its cached and free pages to the physical memory 603 * allocator. Returns TRUE if a reservation is broken and FALSE otherwise. 604 * 605 * The free page queue lock must be held. 606 */ 607 boolean_t 608 vm_reserv_reclaim_inactive(void) 609 { 610 vm_reserv_t rv; 611 612 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 613 if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) { 614 vm_reserv_reclaim(rv); 615 return (TRUE); 616 } 617 return (FALSE); 618 } 619 620 /* 621 * Searches the partially-populated reservation queue for the least recently 622 * active reservation with unused pages, i.e., cached or free, that satisfy the 623 * given request for contiguous physical memory. If a satisfactory reservation 624 * is found, it is broken. Returns TRUE if a reservation is broken and FALSE 625 * otherwise. 626 * 627 * The free page queue lock must be held. 628 */ 629 boolean_t 630 vm_reserv_reclaim_contig(vm_paddr_t size, vm_paddr_t low, vm_paddr_t high, 631 unsigned long alignment, unsigned long boundary) 632 { 633 vm_paddr_t pa, pa_length; 634 vm_reserv_t rv; 635 int i; 636 637 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 638 if (size > VM_LEVEL_0_SIZE - PAGE_SIZE) 639 return (FALSE); 640 TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) { 641 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); 642 if (pa + PAGE_SIZE - size < low) { 643 /* this entire reservation is too low; go to next */ 644 continue; 645 } 646 pa_length = 0; 647 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) 648 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) { 649 pa_length += PAGE_SIZE; 650 if (pa_length == PAGE_SIZE) { 651 pa = VM_PAGE_TO_PHYS(&rv->pages[i]); 652 if (pa + size > high) { 653 /* skip to next reservation */ 654 break; 655 } else if (pa < low || 656 (pa & (alignment - 1)) != 0 || 657 ((pa ^ (pa + size - 1)) & 658 ~(boundary - 1)) != 0) 659 pa_length = 0; 660 } 661 if (pa_length >= size) { 662 vm_reserv_reclaim(rv); 663 return (TRUE); 664 } 665 } else 666 pa_length = 0; 667 } 668 return (FALSE); 669 } 670 671 /* 672 * Transfers the reservation underlying the given page to a new object. 673 * 674 * The object must be locked. 675 */ 676 void 677 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 678 vm_pindex_t old_object_offset) 679 { 680 vm_reserv_t rv; 681 682 VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED); 683 rv = vm_reserv_from_page(m); 684 if (rv->object == old_object) { 685 mtx_lock(&vm_page_queue_free_mtx); 686 if (rv->object == old_object) { 687 LIST_REMOVE(rv, objq); 688 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 689 rv->object = new_object; 690 rv->pindex -= old_object_offset; 691 } 692 mtx_unlock(&vm_page_queue_free_mtx); 693 } 694 } 695 696 /* 697 * Allocates the virtual and physical memory required by the reservation 698 * management system's data structures, in particular, the reservation array. 699 */ 700 vm_paddr_t 701 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) 702 { 703 vm_paddr_t new_end; 704 size_t size; 705 706 /* 707 * Calculate the size (in bytes) of the reservation array. Round up 708 * from "high_water" because every small page is mapped to an element 709 * in the reservation array based on its physical address. Thus, the 710 * number of elements in the reservation array can be greater than the 711 * number of superpages. 712 */ 713 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); 714 715 /* 716 * Allocate and map the physical memory for the reservation array. The 717 * next available virtual address is returned by reference. 718 */ 719 new_end = end - round_page(size); 720 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 721 VM_PROT_READ | VM_PROT_WRITE); 722 bzero(vm_reserv_array, size); 723 724 /* 725 * Return the next available physical address. 726 */ 727 return (new_end); 728 } 729 730 #endif /* VM_NRESERVLEVEL > 0 */ 731