xref: /freebsd/sys/vm/vm_reserv.c (revision 864c53ead899f7838cd2e1cca3b485a4a82f5cdc)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Superpage reservation management module
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_vm.h"
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mutex.h>
49 #include <sys/queue.h>
50 #include <sys/rwlock.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_page.h>
59 #include <vm/vm_phys.h>
60 #include <vm/vm_radix.h>
61 #include <vm/vm_reserv.h>
62 
63 /*
64  * The reservation system supports the speculative allocation of large physical
65  * pages ("superpages").  Speculative allocation enables the fully-automatic
66  * utilization of superpages by the virtual memory system.  In other words, no
67  * programmatic directives are required to use superpages.
68  */
69 
70 #if VM_NRESERVLEVEL > 0
71 
72 /*
73  * The number of small pages that are contained in a level 0 reservation
74  */
75 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
76 
77 /*
78  * The number of bits by which a physical address is shifted to obtain the
79  * reservation number
80  */
81 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
82 
83 /*
84  * The size of a level 0 reservation in bytes
85  */
86 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
87 
88 /*
89  * Computes the index of the small page underlying the given (object, pindex)
90  * within the reservation's array of small pages.
91  */
92 #define	VM_RESERV_INDEX(object, pindex)	\
93     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
94 
95 /*
96  * The size of a population map entry
97  */
98 typedef	u_long		popmap_t;
99 
100 /*
101  * The number of bits in a population map entry
102  */
103 #define	NBPOPMAP	(NBBY * sizeof(popmap_t))
104 
105 /*
106  * The number of population map entries in a reservation
107  */
108 #define	NPOPMAP		howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
109 
110 /*
111  * The reservation structure
112  *
113  * A reservation structure is constructed whenever a large physical page is
114  * speculatively allocated to an object.  The reservation provides the small
115  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
116  * within that object.  The reservation's "popcnt" tracks the number of these
117  * small physical pages that are in use at any given time.  When and if the
118  * reservation is not fully utilized, it appears in the queue of partially-
119  * populated reservations.  The reservation always appears on the containing
120  * object's list of reservations.
121  *
122  * A partially-populated reservation can be broken and reclaimed at any time.
123  */
124 struct vm_reserv {
125 	TAILQ_ENTRY(vm_reserv) partpopq;
126 	LIST_ENTRY(vm_reserv) objq;
127 	vm_object_t	object;			/* containing object */
128 	vm_pindex_t	pindex;			/* offset within object */
129 	vm_page_t	pages;			/* first page of a superpage */
130 	int		popcnt;			/* # of pages in use */
131 	char		inpartpopq;
132 	popmap_t	popmap[NPOPMAP];	/* bit vector of used pages */
133 };
134 
135 /*
136  * The reservation array
137  *
138  * This array is analoguous in function to vm_page_array.  It differs in the
139  * respect that it may contain a greater number of useful reservation
140  * structures than there are (physical) superpages.  These "invalid"
141  * reservation structures exist to trade-off space for time in the
142  * implementation of vm_reserv_from_page().  Invalid reservation structures are
143  * distinguishable from "valid" reservation structures by inspecting the
144  * reservation's "pages" field.  Invalid reservation structures have a NULL
145  * "pages" field.
146  *
147  * vm_reserv_from_page() maps a small (physical) page to an element of this
148  * array by computing a physical reservation number from the page's physical
149  * address.  The physical reservation number is used as the array index.
150  *
151  * An "active" reservation is a valid reservation structure that has a non-NULL
152  * "object" field and a non-zero "popcnt" field.  In other words, every active
153  * reservation belongs to a particular object.  Moreover, every active
154  * reservation has an entry in the containing object's list of reservations.
155  */
156 static vm_reserv_t vm_reserv_array;
157 
158 /*
159  * The partially-populated reservation queue
160  *
161  * This queue enables the fast recovery of an unused cached or free small page
162  * from a partially-populated reservation.  The reservation at the head of
163  * this queue is the least-recently-changed, partially-populated reservation.
164  *
165  * Access to this queue is synchronized by the free page queue lock.
166  */
167 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
168 			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
169 
170 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
171 
172 static long vm_reserv_broken;
173 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
174     &vm_reserv_broken, 0, "Cumulative number of broken reservations");
175 
176 static long vm_reserv_freed;
177 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
178     &vm_reserv_freed, 0, "Cumulative number of freed reservations");
179 
180 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
181 
182 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
183     sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
184 
185 static long vm_reserv_reclaimed;
186 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
187     &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
188 
189 static void		vm_reserv_break(vm_reserv_t rv, vm_page_t m);
190 static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
191 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
192 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
193 			    vm_pindex_t pindex);
194 static void		vm_reserv_populate(vm_reserv_t rv, int index);
195 static void		vm_reserv_reclaim(vm_reserv_t rv);
196 
197 /*
198  * Describes the current state of the partially-populated reservation queue.
199  */
200 static int
201 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
202 {
203 	struct sbuf sbuf;
204 	vm_reserv_t rv;
205 	int counter, error, level, unused_pages;
206 
207 	error = sysctl_wire_old_buffer(req, 0);
208 	if (error != 0)
209 		return (error);
210 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
211 	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
212 	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
213 		counter = 0;
214 		unused_pages = 0;
215 		mtx_lock(&vm_page_queue_free_mtx);
216 		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
217 			counter++;
218 			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
219 		}
220 		mtx_unlock(&vm_page_queue_free_mtx);
221 		sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
222 		    unused_pages * ((int)PAGE_SIZE / 1024), counter);
223 	}
224 	error = sbuf_finish(&sbuf);
225 	sbuf_delete(&sbuf);
226 	return (error);
227 }
228 
229 /*
230  * Reduces the given reservation's population count.  If the population count
231  * becomes zero, the reservation is destroyed.  Additionally, moves the
232  * reservation to the tail of the partially-populated reservation queue if the
233  * population count is non-zero.
234  *
235  * The free page queue lock must be held.
236  */
237 static void
238 vm_reserv_depopulate(vm_reserv_t rv, int index)
239 {
240 
241 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
242 	KASSERT(rv->object != NULL,
243 	    ("vm_reserv_depopulate: reserv %p is free", rv));
244 	KASSERT(isset(rv->popmap, index),
245 	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
246 	    index));
247 	KASSERT(rv->popcnt > 0,
248 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
249 	if (rv->inpartpopq) {
250 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
251 		rv->inpartpopq = FALSE;
252 	} else {
253 		KASSERT(rv->pages->psind == 1,
254 		    ("vm_reserv_depopulate: reserv %p is already demoted",
255 		    rv));
256 		rv->pages->psind = 0;
257 	}
258 	clrbit(rv->popmap, index);
259 	rv->popcnt--;
260 	if (rv->popcnt == 0) {
261 		LIST_REMOVE(rv, objq);
262 		rv->object = NULL;
263 		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
264 		vm_reserv_freed++;
265 	} else {
266 		rv->inpartpopq = TRUE;
267 		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
268 	}
269 }
270 
271 /*
272  * Returns the reservation to which the given page might belong.
273  */
274 static __inline vm_reserv_t
275 vm_reserv_from_page(vm_page_t m)
276 {
277 
278 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
279 }
280 
281 /*
282  * Returns TRUE if the given reservation contains the given page index and
283  * FALSE otherwise.
284  */
285 static __inline boolean_t
286 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
287 {
288 
289 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
290 }
291 
292 /*
293  * Increases the given reservation's population count.  Moves the reservation
294  * to the tail of the partially-populated reservation queue.
295  *
296  * The free page queue must be locked.
297  */
298 static void
299 vm_reserv_populate(vm_reserv_t rv, int index)
300 {
301 
302 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
303 	KASSERT(rv->object != NULL,
304 	    ("vm_reserv_populate: reserv %p is free", rv));
305 	KASSERT(isclr(rv->popmap, index),
306 	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
307 	    index));
308 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
309 	    ("vm_reserv_populate: reserv %p is already full", rv));
310 	KASSERT(rv->pages->psind == 0,
311 	    ("vm_reserv_populate: reserv %p is already promoted", rv));
312 	if (rv->inpartpopq) {
313 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
314 		rv->inpartpopq = FALSE;
315 	}
316 	setbit(rv->popmap, index);
317 	rv->popcnt++;
318 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
319 		rv->inpartpopq = TRUE;
320 		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
321 	} else
322 		rv->pages->psind = 1;
323 }
324 
325 /*
326  * Allocates a contiguous set of physical pages of the given size "npages"
327  * from an existing or newly-created reservation.  All of the physical pages
328  * must be at or above the given physical address "low" and below the given
329  * physical address "high".  The given value "alignment" determines the
330  * alignment of the first physical page in the set.  If the given value
331  * "boundary" is non-zero, then the set of physical pages cannot cross any
332  * physical address boundary that is a multiple of that value.  Both
333  * "alignment" and "boundary" must be a power of two.
334  *
335  * The object and free page queue must be locked.
336  */
337 vm_page_t
338 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages,
339     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
340 {
341 	vm_paddr_t pa, size;
342 	vm_page_t m, m_ret, mpred, msucc;
343 	vm_pindex_t first, leftcap, rightcap;
344 	vm_reserv_t rv;
345 	u_long allocpages, maxpages, minpages;
346 	int i, index, n;
347 
348 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
349 	VM_OBJECT_ASSERT_WLOCKED(object);
350 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
351 
352 	/*
353 	 * Is a reservation fundamentally impossible?
354 	 */
355 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
356 	    pindex + npages > object->size)
357 		return (NULL);
358 
359 	/*
360 	 * All reservations of a particular size have the same alignment.
361 	 * Assuming that the first page is allocated from a reservation, the
362 	 * least significant bits of its physical address can be determined
363 	 * from its offset from the beginning of the reservation and the size
364 	 * of the reservation.
365 	 *
366 	 * Could the specified index within a reservation of the smallest
367 	 * possible size satisfy the alignment and boundary requirements?
368 	 */
369 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
370 	if ((pa & (alignment - 1)) != 0)
371 		return (NULL);
372 	size = npages << PAGE_SHIFT;
373 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
374 		return (NULL);
375 
376 	/*
377 	 * Look for an existing reservation.
378 	 */
379 	mpred = vm_radix_lookup_le(&object->rtree, pindex);
380 	if (mpred != NULL) {
381 		KASSERT(mpred->pindex < pindex,
382 		    ("vm_reserv_alloc_contig: pindex already allocated"));
383 		rv = vm_reserv_from_page(mpred);
384 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
385 			goto found;
386 		msucc = TAILQ_NEXT(mpred, listq);
387 	} else
388 		msucc = TAILQ_FIRST(&object->memq);
389 	if (msucc != NULL) {
390 		KASSERT(msucc->pindex > pindex,
391 		    ("vm_reserv_alloc_page: pindex already allocated"));
392 		rv = vm_reserv_from_page(msucc);
393 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
394 			goto found;
395 	}
396 
397 	/*
398 	 * Could at least one reservation fit between the first index to the
399 	 * left that can be used and the first index to the right that cannot
400 	 * be used?
401 	 */
402 	first = pindex - VM_RESERV_INDEX(object, pindex);
403 	if (mpred != NULL) {
404 		if ((rv = vm_reserv_from_page(mpred))->object != object)
405 			leftcap = mpred->pindex + 1;
406 		else
407 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
408 		if (leftcap > first)
409 			return (NULL);
410 	}
411 	minpages = VM_RESERV_INDEX(object, pindex) + npages;
412 	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
413 	allocpages = maxpages;
414 	if (msucc != NULL) {
415 		if ((rv = vm_reserv_from_page(msucc))->object != object)
416 			rightcap = msucc->pindex;
417 		else
418 			rightcap = rv->pindex;
419 		if (first + maxpages > rightcap) {
420 			if (maxpages == VM_LEVEL_0_NPAGES)
421 				return (NULL);
422 			allocpages = minpages;
423 		}
424 	}
425 
426 	/*
427 	 * Would the last new reservation extend past the end of the object?
428 	 */
429 	if (first + maxpages > object->size) {
430 		/*
431 		 * Don't allocate the last new reservation if the object is a
432 		 * vnode or backed by another object that is a vnode.
433 		 */
434 		if (object->type == OBJT_VNODE ||
435 		    (object->backing_object != NULL &&
436 		    object->backing_object->type == OBJT_VNODE)) {
437 			if (maxpages == VM_LEVEL_0_NPAGES)
438 				return (NULL);
439 			allocpages = minpages;
440 		}
441 		/* Speculate that the object may grow. */
442 	}
443 
444 	/*
445 	 * Allocate and populate the new reservations.  The alignment and
446 	 * boundary specified for this allocation may be different from the
447 	 * alignment and boundary specified for the requested pages.  For
448 	 * instance, the specified index may not be the first page within the
449 	 * first new reservation.
450 	 */
451 	m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment,
452 	    VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0);
453 	if (m == NULL)
454 		return (NULL);
455 	m_ret = NULL;
456 	index = VM_RESERV_INDEX(object, pindex);
457 	do {
458 		rv = vm_reserv_from_page(m);
459 		KASSERT(rv->pages == m,
460 		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
461 		    rv));
462 		KASSERT(rv->object == NULL,
463 		    ("vm_reserv_alloc_contig: reserv %p isn't free", rv));
464 		LIST_INSERT_HEAD(&object->rvq, rv, objq);
465 		rv->object = object;
466 		rv->pindex = first;
467 		KASSERT(rv->popcnt == 0,
468 		    ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted",
469 		    rv));
470 		KASSERT(!rv->inpartpopq,
471 		    ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE",
472 		    rv));
473 		for (i = 0; i < NPOPMAP; i++)
474 			KASSERT(rv->popmap[i] == 0,
475 		    ("vm_reserv_alloc_contig: reserv %p's popmap is corrupted",
476 			    rv));
477 		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
478 		for (i = 0; i < n; i++)
479 			vm_reserv_populate(rv, index + i);
480 		npages -= n;
481 		if (m_ret == NULL) {
482 			m_ret = &rv->pages[index];
483 			index = 0;
484 		}
485 		m += VM_LEVEL_0_NPAGES;
486 		first += VM_LEVEL_0_NPAGES;
487 		allocpages -= VM_LEVEL_0_NPAGES;
488 	} while (allocpages > 0);
489 	return (m_ret);
490 
491 	/*
492 	 * Found a matching reservation.
493 	 */
494 found:
495 	index = VM_RESERV_INDEX(object, pindex);
496 	/* Does the allocation fit within the reservation? */
497 	if (index + npages > VM_LEVEL_0_NPAGES)
498 		return (NULL);
499 	m = &rv->pages[index];
500 	pa = VM_PAGE_TO_PHYS(m);
501 	if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
502 	    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
503 		return (NULL);
504 	/* Handle vm_page_rename(m, new_object, ...). */
505 	for (i = 0; i < npages; i++)
506 		if (isset(rv->popmap, index + i))
507 			return (NULL);
508 	for (i = 0; i < npages; i++)
509 		vm_reserv_populate(rv, index + i);
510 	return (m);
511 }
512 
513 /*
514  * Allocates a page from an existing or newly-created reservation.
515  *
516  * The page "mpred" must immediately precede the offset "pindex" within the
517  * specified object.
518  *
519  * The object and free page queue must be locked.
520  */
521 vm_page_t
522 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred)
523 {
524 	vm_page_t m, msucc;
525 	vm_pindex_t first, leftcap, rightcap;
526 	vm_reserv_t rv;
527 	int i, index;
528 
529 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
530 	VM_OBJECT_ASSERT_WLOCKED(object);
531 
532 	/*
533 	 * Is a reservation fundamentally impossible?
534 	 */
535 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
536 	    pindex >= object->size)
537 		return (NULL);
538 
539 	/*
540 	 * Look for an existing reservation.
541 	 */
542 	if (mpred != NULL) {
543 		KASSERT(mpred->object == object,
544 		    ("vm_reserv_alloc_page: object doesn't contain mpred"));
545 		KASSERT(mpred->pindex < pindex,
546 		    ("vm_reserv_alloc_page: mpred doesn't precede pindex"));
547 		rv = vm_reserv_from_page(mpred);
548 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
549 			goto found;
550 		msucc = TAILQ_NEXT(mpred, listq);
551 	} else
552 		msucc = TAILQ_FIRST(&object->memq);
553 	if (msucc != NULL) {
554 		KASSERT(msucc->pindex > pindex,
555 		    ("vm_reserv_alloc_page: msucc doesn't succeed pindex"));
556 		rv = vm_reserv_from_page(msucc);
557 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
558 			goto found;
559 	}
560 
561 	/*
562 	 * Could a reservation fit between the first index to the left that
563 	 * can be used and the first index to the right that cannot be used?
564 	 */
565 	first = pindex - VM_RESERV_INDEX(object, pindex);
566 	if (mpred != NULL) {
567 		if ((rv = vm_reserv_from_page(mpred))->object != object)
568 			leftcap = mpred->pindex + 1;
569 		else
570 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
571 		if (leftcap > first)
572 			return (NULL);
573 	}
574 	if (msucc != NULL) {
575 		if ((rv = vm_reserv_from_page(msucc))->object != object)
576 			rightcap = msucc->pindex;
577 		else
578 			rightcap = rv->pindex;
579 		if (first + VM_LEVEL_0_NPAGES > rightcap)
580 			return (NULL);
581 	}
582 
583 	/*
584 	 * Would a new reservation extend past the end of the object?
585 	 */
586 	if (first + VM_LEVEL_0_NPAGES > object->size) {
587 		/*
588 		 * Don't allocate a new reservation if the object is a vnode or
589 		 * backed by another object that is a vnode.
590 		 */
591 		if (object->type == OBJT_VNODE ||
592 		    (object->backing_object != NULL &&
593 		    object->backing_object->type == OBJT_VNODE))
594 			return (NULL);
595 		/* Speculate that the object may grow. */
596 	}
597 
598 	/*
599 	 * Allocate and populate the new reservation.
600 	 */
601 	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
602 	if (m == NULL)
603 		return (NULL);
604 	rv = vm_reserv_from_page(m);
605 	KASSERT(rv->pages == m,
606 	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
607 	KASSERT(rv->object == NULL,
608 	    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
609 	LIST_INSERT_HEAD(&object->rvq, rv, objq);
610 	rv->object = object;
611 	rv->pindex = first;
612 	KASSERT(rv->popcnt == 0,
613 	    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv));
614 	KASSERT(!rv->inpartpopq,
615 	    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv));
616 	for (i = 0; i < NPOPMAP; i++)
617 		KASSERT(rv->popmap[i] == 0,
618 		    ("vm_reserv_alloc_page: reserv %p's popmap is corrupted",
619 		    rv));
620 	index = VM_RESERV_INDEX(object, pindex);
621 	vm_reserv_populate(rv, index);
622 	return (&rv->pages[index]);
623 
624 	/*
625 	 * Found a matching reservation.
626 	 */
627 found:
628 	index = VM_RESERV_INDEX(object, pindex);
629 	m = &rv->pages[index];
630 	/* Handle vm_page_rename(m, new_object, ...). */
631 	if (isset(rv->popmap, index))
632 		return (NULL);
633 	vm_reserv_populate(rv, index);
634 	return (m);
635 }
636 
637 /*
638  * Breaks the given reservation.  Except for the specified cached or free
639  * page, all cached and free pages in the reservation are returned to the
640  * physical memory allocator.  The reservation's population count and map are
641  * reset to their initial state.
642  *
643  * The given reservation must not be in the partially-populated reservation
644  * queue.  The free page queue lock must be held.
645  */
646 static void
647 vm_reserv_break(vm_reserv_t rv, vm_page_t m)
648 {
649 	int begin_zeroes, hi, i, lo;
650 
651 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
652 	KASSERT(rv->object != NULL,
653 	    ("vm_reserv_break: reserv %p is free", rv));
654 	KASSERT(!rv->inpartpopq,
655 	    ("vm_reserv_break: reserv %p's inpartpopq is TRUE", rv));
656 	LIST_REMOVE(rv, objq);
657 	rv->object = NULL;
658 	if (m != NULL) {
659 		/*
660 		 * Since the reservation is being broken, there is no harm in
661 		 * abusing the population map to stop "m" from being returned
662 		 * to the physical memory allocator.
663 		 */
664 		i = m - rv->pages;
665 		KASSERT(isclr(rv->popmap, i),
666 		    ("vm_reserv_break: reserv %p's popmap is corrupted", rv));
667 		setbit(rv->popmap, i);
668 		rv->popcnt++;
669 	}
670 	i = hi = 0;
671 	do {
672 		/* Find the next 0 bit.  Any previous 0 bits are < "hi". */
673 		lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
674 		if (lo == 0) {
675 			/* Redundantly clears bits < "hi". */
676 			rv->popmap[i] = 0;
677 			rv->popcnt -= NBPOPMAP - hi;
678 			while (++i < NPOPMAP) {
679 				lo = ffsl(~rv->popmap[i]);
680 				if (lo == 0) {
681 					rv->popmap[i] = 0;
682 					rv->popcnt -= NBPOPMAP;
683 				} else
684 					break;
685 			}
686 			if (i == NPOPMAP)
687 				break;
688 			hi = 0;
689 		}
690 		KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo));
691 		/* Convert from ffsl() to ordinary bit numbering. */
692 		lo--;
693 		if (lo > 0) {
694 			/* Redundantly clears bits < "hi". */
695 			rv->popmap[i] &= ~((1UL << lo) - 1);
696 			rv->popcnt -= lo - hi;
697 		}
698 		begin_zeroes = NBPOPMAP * i + lo;
699 		/* Find the next 1 bit. */
700 		do
701 			hi = ffsl(rv->popmap[i]);
702 		while (hi == 0 && ++i < NPOPMAP);
703 		if (i != NPOPMAP)
704 			/* Convert from ffsl() to ordinary bit numbering. */
705 			hi--;
706 		vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i +
707 		    hi - begin_zeroes);
708 	} while (i < NPOPMAP);
709 	KASSERT(rv->popcnt == 0,
710 	    ("vm_reserv_break: reserv %p's popcnt is corrupted", rv));
711 	vm_reserv_broken++;
712 }
713 
714 /*
715  * Breaks all reservations belonging to the given object.
716  */
717 void
718 vm_reserv_break_all(vm_object_t object)
719 {
720 	vm_reserv_t rv;
721 
722 	mtx_lock(&vm_page_queue_free_mtx);
723 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
724 		KASSERT(rv->object == object,
725 		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
726 		if (rv->inpartpopq) {
727 			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
728 			rv->inpartpopq = FALSE;
729 		}
730 		vm_reserv_break(rv, NULL);
731 	}
732 	mtx_unlock(&vm_page_queue_free_mtx);
733 }
734 
735 /*
736  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
737  * page is freed and FALSE otherwise.
738  *
739  * The free page queue lock must be held.
740  */
741 boolean_t
742 vm_reserv_free_page(vm_page_t m)
743 {
744 	vm_reserv_t rv;
745 
746 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
747 	rv = vm_reserv_from_page(m);
748 	if (rv->object == NULL)
749 		return (FALSE);
750 	if ((m->flags & PG_CACHED) != 0 && m->pool != VM_FREEPOOL_CACHE)
751 		vm_phys_set_pool(VM_FREEPOOL_CACHE, rv->pages,
752 		    VM_LEVEL_0_ORDER);
753 	vm_reserv_depopulate(rv, m - rv->pages);
754 	return (TRUE);
755 }
756 
757 /*
758  * Initializes the reservation management system.  Specifically, initializes
759  * the reservation array.
760  *
761  * Requires that vm_page_array and first_page are initialized!
762  */
763 void
764 vm_reserv_init(void)
765 {
766 	vm_paddr_t paddr;
767 	int i;
768 
769 	/*
770 	 * Initialize the reservation array.  Specifically, initialize the
771 	 * "pages" field for every element that has an underlying superpage.
772 	 */
773 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
774 		paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
775 		while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
776 			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
777 			    PHYS_TO_VM_PAGE(paddr);
778 			paddr += VM_LEVEL_0_SIZE;
779 		}
780 	}
781 }
782 
783 /*
784  * Returns a reservation level if the given page belongs to a fully-populated
785  * reservation and -1 otherwise.
786  */
787 int
788 vm_reserv_level_iffullpop(vm_page_t m)
789 {
790 	vm_reserv_t rv;
791 
792 	rv = vm_reserv_from_page(m);
793 	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
794 }
795 
796 /*
797  * Prepare for the reactivation of a cached page.
798  *
799  * First, suppose that the given page "m" was allocated individually, i.e., not
800  * as part of a reservation, and cached.  Then, suppose a reservation
801  * containing "m" is allocated by the same object.  Although "m" and the
802  * reservation belong to the same object, "m"'s pindex may not match the
803  * reservation's.
804  *
805  * The free page queue must be locked.
806  */
807 boolean_t
808 vm_reserv_reactivate_page(vm_page_t m)
809 {
810 	vm_reserv_t rv;
811 	int index;
812 
813 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
814 	rv = vm_reserv_from_page(m);
815 	if (rv->object == NULL)
816 		return (FALSE);
817 	KASSERT((m->flags & PG_CACHED) != 0,
818 	    ("vm_reserv_reactivate_page: page %p is not cached", m));
819 	if (m->object == rv->object &&
820 	    m->pindex - rv->pindex == (index = VM_RESERV_INDEX(m->object,
821 	    m->pindex)))
822 		vm_reserv_populate(rv, index);
823 	else {
824 		KASSERT(rv->inpartpopq,
825 	    ("vm_reserv_reactivate_page: reserv %p's inpartpopq is FALSE",
826 		    rv));
827 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
828 		rv->inpartpopq = FALSE;
829 		/* Don't release "m" to the physical memory allocator. */
830 		vm_reserv_break(rv, m);
831 	}
832 	return (TRUE);
833 }
834 
835 /*
836  * Breaks the given partially-populated reservation, releasing its cached and
837  * free pages to the physical memory allocator.
838  *
839  * The free page queue lock must be held.
840  */
841 static void
842 vm_reserv_reclaim(vm_reserv_t rv)
843 {
844 
845 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
846 	KASSERT(rv->inpartpopq,
847 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
848 	TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
849 	rv->inpartpopq = FALSE;
850 	vm_reserv_break(rv, NULL);
851 	vm_reserv_reclaimed++;
852 }
853 
854 /*
855  * Breaks the reservation at the head of the partially-populated reservation
856  * queue, releasing its cached and free pages to the physical memory
857  * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
858  *
859  * The free page queue lock must be held.
860  */
861 boolean_t
862 vm_reserv_reclaim_inactive(void)
863 {
864 	vm_reserv_t rv;
865 
866 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
867 	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
868 		vm_reserv_reclaim(rv);
869 		return (TRUE);
870 	}
871 	return (FALSE);
872 }
873 
874 /*
875  * Searches the partially-populated reservation queue for the least recently
876  * active reservation with unused pages, i.e., cached or free, that satisfy the
877  * given request for contiguous physical memory.  If a satisfactory reservation
878  * is found, it is broken.  Returns TRUE if a reservation is broken and FALSE
879  * otherwise.
880  *
881  * The free page queue lock must be held.
882  */
883 boolean_t
884 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
885     u_long alignment, vm_paddr_t boundary)
886 {
887 	vm_paddr_t pa, size;
888 	vm_reserv_t rv;
889 	int hi, i, lo, next_free;
890 
891 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
892 	if (npages > VM_LEVEL_0_NPAGES - 1)
893 		return (FALSE);
894 	size = npages << PAGE_SHIFT;
895 	TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
896 		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
897 		if (pa + PAGE_SIZE - size < low) {
898 			/* This entire reservation is too low; go to next. */
899 			continue;
900 		}
901 		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
902 		if (pa + size > high) {
903 			/* This entire reservation is too high; go to next. */
904 			continue;
905 		}
906 		if (pa < low) {
907 			/* Start the search for free pages at "low". */
908 			i = (low - pa) / NBPOPMAP;
909 			hi = (low - pa) % NBPOPMAP;
910 		} else
911 			i = hi = 0;
912 		do {
913 			/* Find the next free page. */
914 			lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
915 			while (lo == 0 && ++i < NPOPMAP)
916 				lo = ffsl(~rv->popmap[i]);
917 			if (i == NPOPMAP)
918 				break;
919 			/* Convert from ffsl() to ordinary bit numbering. */
920 			lo--;
921 			next_free = NBPOPMAP * i + lo;
922 			pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
923 			KASSERT(pa >= low,
924 			    ("vm_reserv_reclaim_contig: pa is too low"));
925 			if (pa + size > high) {
926 				/* The rest of this reservation is too high. */
927 				break;
928 			} else if ((pa & (alignment - 1)) != 0 ||
929 			    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
930 				/* Continue with this reservation. */
931 				hi = lo;
932 				continue;
933 			}
934 			/* Find the next used page. */
935 			hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
936 			while (hi == 0 && ++i < NPOPMAP) {
937 				if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
938 				    size) {
939 					vm_reserv_reclaim(rv);
940 					return (TRUE);
941 				}
942 				hi = ffsl(rv->popmap[i]);
943 			}
944 			/* Convert from ffsl() to ordinary bit numbering. */
945 			if (i != NPOPMAP)
946 				hi--;
947 			if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
948 			    size) {
949 				vm_reserv_reclaim(rv);
950 				return (TRUE);
951 			}
952 		} while (i < NPOPMAP);
953 	}
954 	return (FALSE);
955 }
956 
957 /*
958  * Transfers the reservation underlying the given page to a new object.
959  *
960  * The object must be locked.
961  */
962 void
963 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
964     vm_pindex_t old_object_offset)
965 {
966 	vm_reserv_t rv;
967 
968 	VM_OBJECT_ASSERT_WLOCKED(new_object);
969 	rv = vm_reserv_from_page(m);
970 	if (rv->object == old_object) {
971 		mtx_lock(&vm_page_queue_free_mtx);
972 		if (rv->object == old_object) {
973 			LIST_REMOVE(rv, objq);
974 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
975 			rv->object = new_object;
976 			rv->pindex -= old_object_offset;
977 		}
978 		mtx_unlock(&vm_page_queue_free_mtx);
979 	}
980 }
981 
982 /*
983  * Allocates the virtual and physical memory required by the reservation
984  * management system's data structures, in particular, the reservation array.
985  */
986 vm_paddr_t
987 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
988 {
989 	vm_paddr_t new_end;
990 	size_t size;
991 
992 	/*
993 	 * Calculate the size (in bytes) of the reservation array.  Round up
994 	 * from "high_water" because every small page is mapped to an element
995 	 * in the reservation array based on its physical address.  Thus, the
996 	 * number of elements in the reservation array can be greater than the
997 	 * number of superpages.
998 	 */
999 	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1000 
1001 	/*
1002 	 * Allocate and map the physical memory for the reservation array.  The
1003 	 * next available virtual address is returned by reference.
1004 	 */
1005 	new_end = end - round_page(size);
1006 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1007 	    VM_PROT_READ | VM_PROT_WRITE);
1008 	bzero(vm_reserv_array, size);
1009 
1010 	/*
1011 	 * Return the next available physical address.
1012 	 */
1013 	return (new_end);
1014 }
1015 
1016 #endif	/* VM_NRESERVLEVEL > 0 */
1017