1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Superpage reservation management module 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_vm.h" 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/queue.h> 50 #include <sys/rwlock.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <vm/vm.h> 56 #include <vm/vm_param.h> 57 #include <vm/vm_object.h> 58 #include <vm/vm_page.h> 59 #include <vm/vm_phys.h> 60 #include <vm/vm_radix.h> 61 #include <vm/vm_reserv.h> 62 63 /* 64 * The reservation system supports the speculative allocation of large physical 65 * pages ("superpages"). Speculative allocation enables the fully-automatic 66 * utilization of superpages by the virtual memory system. In other words, no 67 * programmatic directives are required to use superpages. 68 */ 69 70 #if VM_NRESERVLEVEL > 0 71 72 /* 73 * The number of small pages that are contained in a level 0 reservation 74 */ 75 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 76 77 /* 78 * The number of bits by which a physical address is shifted to obtain the 79 * reservation number 80 */ 81 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 82 83 /* 84 * The size of a level 0 reservation in bytes 85 */ 86 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 87 88 /* 89 * Computes the index of the small page underlying the given (object, pindex) 90 * within the reservation's array of small pages. 91 */ 92 #define VM_RESERV_INDEX(object, pindex) \ 93 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 94 95 /* 96 * The size of a population map entry 97 */ 98 typedef u_long popmap_t; 99 100 /* 101 * The number of bits in a population map entry 102 */ 103 #define NBPOPMAP (NBBY * sizeof(popmap_t)) 104 105 /* 106 * The number of population map entries in a reservation 107 */ 108 #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP) 109 110 /* 111 * The reservation structure 112 * 113 * A reservation structure is constructed whenever a large physical page is 114 * speculatively allocated to an object. The reservation provides the small 115 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 116 * within that object. The reservation's "popcnt" tracks the number of these 117 * small physical pages that are in use at any given time. When and if the 118 * reservation is not fully utilized, it appears in the queue of partially- 119 * populated reservations. The reservation always appears on the containing 120 * object's list of reservations. 121 * 122 * A partially-populated reservation can be broken and reclaimed at any time. 123 */ 124 struct vm_reserv { 125 TAILQ_ENTRY(vm_reserv) partpopq; 126 LIST_ENTRY(vm_reserv) objq; 127 vm_object_t object; /* containing object */ 128 vm_pindex_t pindex; /* offset within object */ 129 vm_page_t pages; /* first page of a superpage */ 130 int popcnt; /* # of pages in use */ 131 char inpartpopq; 132 popmap_t popmap[NPOPMAP]; /* bit vector of used pages */ 133 }; 134 135 /* 136 * The reservation array 137 * 138 * This array is analoguous in function to vm_page_array. It differs in the 139 * respect that it may contain a greater number of useful reservation 140 * structures than there are (physical) superpages. These "invalid" 141 * reservation structures exist to trade-off space for time in the 142 * implementation of vm_reserv_from_page(). Invalid reservation structures are 143 * distinguishable from "valid" reservation structures by inspecting the 144 * reservation's "pages" field. Invalid reservation structures have a NULL 145 * "pages" field. 146 * 147 * vm_reserv_from_page() maps a small (physical) page to an element of this 148 * array by computing a physical reservation number from the page's physical 149 * address. The physical reservation number is used as the array index. 150 * 151 * An "active" reservation is a valid reservation structure that has a non-NULL 152 * "object" field and a non-zero "popcnt" field. In other words, every active 153 * reservation belongs to a particular object. Moreover, every active 154 * reservation has an entry in the containing object's list of reservations. 155 */ 156 static vm_reserv_t vm_reserv_array; 157 158 /* 159 * The partially-populated reservation queue 160 * 161 * This queue enables the fast recovery of an unused cached or free small page 162 * from a partially-populated reservation. The reservation at the head of 163 * this queue is the least-recently-changed, partially-populated reservation. 164 * 165 * Access to this queue is synchronized by the free page queue lock. 166 */ 167 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop = 168 TAILQ_HEAD_INITIALIZER(vm_rvq_partpop); 169 170 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); 171 172 static long vm_reserv_broken; 173 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 174 &vm_reserv_broken, 0, "Cumulative number of broken reservations"); 175 176 static long vm_reserv_freed; 177 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 178 &vm_reserv_freed, 0, "Cumulative number of freed reservations"); 179 180 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 181 182 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 183 sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues"); 184 185 static long vm_reserv_reclaimed; 186 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 187 &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations"); 188 189 static void vm_reserv_break(vm_reserv_t rv, vm_page_t m); 190 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 191 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 192 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 193 vm_pindex_t pindex); 194 static void vm_reserv_populate(vm_reserv_t rv, int index); 195 static void vm_reserv_reclaim(vm_reserv_t rv); 196 197 /* 198 * Describes the current state of the partially-populated reservation queue. 199 */ 200 static int 201 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 202 { 203 struct sbuf sbuf; 204 vm_reserv_t rv; 205 int counter, error, level, unused_pages; 206 207 error = sysctl_wire_old_buffer(req, 0); 208 if (error != 0) 209 return (error); 210 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 211 sbuf_printf(&sbuf, "\nLEVEL SIZE NUMBER\n\n"); 212 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 213 counter = 0; 214 unused_pages = 0; 215 mtx_lock(&vm_page_queue_free_mtx); 216 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) { 217 counter++; 218 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 219 } 220 mtx_unlock(&vm_page_queue_free_mtx); 221 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level, 222 unused_pages * ((int)PAGE_SIZE / 1024), counter); 223 } 224 error = sbuf_finish(&sbuf); 225 sbuf_delete(&sbuf); 226 return (error); 227 } 228 229 /* 230 * Reduces the given reservation's population count. If the population count 231 * becomes zero, the reservation is destroyed. Additionally, moves the 232 * reservation to the tail of the partially-populated reservation queue if the 233 * population count is non-zero. 234 * 235 * The free page queue lock must be held. 236 */ 237 static void 238 vm_reserv_depopulate(vm_reserv_t rv, int index) 239 { 240 241 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 242 KASSERT(rv->object != NULL, 243 ("vm_reserv_depopulate: reserv %p is free", rv)); 244 KASSERT(isset(rv->popmap, index), 245 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 246 index)); 247 KASSERT(rv->popcnt > 0, 248 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 249 if (rv->inpartpopq) { 250 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 251 rv->inpartpopq = FALSE; 252 } else { 253 KASSERT(rv->pages->psind == 1, 254 ("vm_reserv_depopulate: reserv %p is already demoted", 255 rv)); 256 rv->pages->psind = 0; 257 } 258 clrbit(rv->popmap, index); 259 rv->popcnt--; 260 if (rv->popcnt == 0) { 261 LIST_REMOVE(rv, objq); 262 rv->object = NULL; 263 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 264 vm_reserv_freed++; 265 } else { 266 rv->inpartpopq = TRUE; 267 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 268 } 269 } 270 271 /* 272 * Returns the reservation to which the given page might belong. 273 */ 274 static __inline vm_reserv_t 275 vm_reserv_from_page(vm_page_t m) 276 { 277 278 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 279 } 280 281 /* 282 * Returns TRUE if the given reservation contains the given page index and 283 * FALSE otherwise. 284 */ 285 static __inline boolean_t 286 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 287 { 288 289 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 290 } 291 292 /* 293 * Increases the given reservation's population count. Moves the reservation 294 * to the tail of the partially-populated reservation queue. 295 * 296 * The free page queue must be locked. 297 */ 298 static void 299 vm_reserv_populate(vm_reserv_t rv, int index) 300 { 301 302 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 303 KASSERT(rv->object != NULL, 304 ("vm_reserv_populate: reserv %p is free", rv)); 305 KASSERT(isclr(rv->popmap, index), 306 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 307 index)); 308 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 309 ("vm_reserv_populate: reserv %p is already full", rv)); 310 KASSERT(rv->pages->psind == 0, 311 ("vm_reserv_populate: reserv %p is already promoted", rv)); 312 if (rv->inpartpopq) { 313 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 314 rv->inpartpopq = FALSE; 315 } 316 setbit(rv->popmap, index); 317 rv->popcnt++; 318 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 319 rv->inpartpopq = TRUE; 320 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 321 } else 322 rv->pages->psind = 1; 323 } 324 325 /* 326 * Allocates a contiguous set of physical pages of the given size "npages" 327 * from an existing or newly-created reservation. All of the physical pages 328 * must be at or above the given physical address "low" and below the given 329 * physical address "high". The given value "alignment" determines the 330 * alignment of the first physical page in the set. If the given value 331 * "boundary" is non-zero, then the set of physical pages cannot cross any 332 * physical address boundary that is a multiple of that value. Both 333 * "alignment" and "boundary" must be a power of two. 334 * 335 * The object and free page queue must be locked. 336 */ 337 vm_page_t 338 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages, 339 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 340 { 341 vm_paddr_t pa, size; 342 vm_page_t m, m_ret, mpred, msucc; 343 vm_pindex_t first, leftcap, rightcap; 344 vm_reserv_t rv; 345 u_long allocpages, maxpages, minpages; 346 int i, index, n; 347 348 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 349 VM_OBJECT_ASSERT_WLOCKED(object); 350 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 351 352 /* 353 * Is a reservation fundamentally impossible? 354 */ 355 if (pindex < VM_RESERV_INDEX(object, pindex) || 356 pindex + npages > object->size) 357 return (NULL); 358 359 /* 360 * All reservations of a particular size have the same alignment. 361 * Assuming that the first page is allocated from a reservation, the 362 * least significant bits of its physical address can be determined 363 * from its offset from the beginning of the reservation and the size 364 * of the reservation. 365 * 366 * Could the specified index within a reservation of the smallest 367 * possible size satisfy the alignment and boundary requirements? 368 */ 369 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 370 if ((pa & (alignment - 1)) != 0) 371 return (NULL); 372 size = npages << PAGE_SHIFT; 373 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 374 return (NULL); 375 376 /* 377 * Look for an existing reservation. 378 */ 379 mpred = vm_radix_lookup_le(&object->rtree, pindex); 380 if (mpred != NULL) { 381 KASSERT(mpred->pindex < pindex, 382 ("vm_reserv_alloc_contig: pindex already allocated")); 383 rv = vm_reserv_from_page(mpred); 384 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 385 goto found; 386 msucc = TAILQ_NEXT(mpred, listq); 387 } else 388 msucc = TAILQ_FIRST(&object->memq); 389 if (msucc != NULL) { 390 KASSERT(msucc->pindex > pindex, 391 ("vm_reserv_alloc_page: pindex already allocated")); 392 rv = vm_reserv_from_page(msucc); 393 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 394 goto found; 395 } 396 397 /* 398 * Could at least one reservation fit between the first index to the 399 * left that can be used and the first index to the right that cannot 400 * be used? 401 */ 402 first = pindex - VM_RESERV_INDEX(object, pindex); 403 if (mpred != NULL) { 404 if ((rv = vm_reserv_from_page(mpred))->object != object) 405 leftcap = mpred->pindex + 1; 406 else 407 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 408 if (leftcap > first) 409 return (NULL); 410 } 411 minpages = VM_RESERV_INDEX(object, pindex) + npages; 412 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 413 allocpages = maxpages; 414 if (msucc != NULL) { 415 if ((rv = vm_reserv_from_page(msucc))->object != object) 416 rightcap = msucc->pindex; 417 else 418 rightcap = rv->pindex; 419 if (first + maxpages > rightcap) { 420 if (maxpages == VM_LEVEL_0_NPAGES) 421 return (NULL); 422 allocpages = minpages; 423 } 424 } 425 426 /* 427 * Would the last new reservation extend past the end of the object? 428 */ 429 if (first + maxpages > object->size) { 430 /* 431 * Don't allocate the last new reservation if the object is a 432 * vnode or backed by another object that is a vnode. 433 */ 434 if (object->type == OBJT_VNODE || 435 (object->backing_object != NULL && 436 object->backing_object->type == OBJT_VNODE)) { 437 if (maxpages == VM_LEVEL_0_NPAGES) 438 return (NULL); 439 allocpages = minpages; 440 } 441 /* Speculate that the object may grow. */ 442 } 443 444 /* 445 * Allocate and populate the new reservations. The alignment and 446 * boundary specified for this allocation may be different from the 447 * alignment and boundary specified for the requested pages. For 448 * instance, the specified index may not be the first page within the 449 * first new reservation. 450 */ 451 m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment, 452 VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0); 453 if (m == NULL) 454 return (NULL); 455 m_ret = NULL; 456 index = VM_RESERV_INDEX(object, pindex); 457 do { 458 rv = vm_reserv_from_page(m); 459 KASSERT(rv->pages == m, 460 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 461 rv)); 462 KASSERT(rv->object == NULL, 463 ("vm_reserv_alloc_contig: reserv %p isn't free", rv)); 464 LIST_INSERT_HEAD(&object->rvq, rv, objq); 465 rv->object = object; 466 rv->pindex = first; 467 KASSERT(rv->popcnt == 0, 468 ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted", 469 rv)); 470 KASSERT(!rv->inpartpopq, 471 ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE", 472 rv)); 473 for (i = 0; i < NPOPMAP; i++) 474 KASSERT(rv->popmap[i] == 0, 475 ("vm_reserv_alloc_contig: reserv %p's popmap is corrupted", 476 rv)); 477 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 478 for (i = 0; i < n; i++) 479 vm_reserv_populate(rv, index + i); 480 npages -= n; 481 if (m_ret == NULL) { 482 m_ret = &rv->pages[index]; 483 index = 0; 484 } 485 m += VM_LEVEL_0_NPAGES; 486 first += VM_LEVEL_0_NPAGES; 487 allocpages -= VM_LEVEL_0_NPAGES; 488 } while (allocpages > 0); 489 return (m_ret); 490 491 /* 492 * Found a matching reservation. 493 */ 494 found: 495 index = VM_RESERV_INDEX(object, pindex); 496 /* Does the allocation fit within the reservation? */ 497 if (index + npages > VM_LEVEL_0_NPAGES) 498 return (NULL); 499 m = &rv->pages[index]; 500 pa = VM_PAGE_TO_PHYS(m); 501 if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 || 502 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 503 return (NULL); 504 /* Handle vm_page_rename(m, new_object, ...). */ 505 for (i = 0; i < npages; i++) 506 if (isset(rv->popmap, index + i)) 507 return (NULL); 508 for (i = 0; i < npages; i++) 509 vm_reserv_populate(rv, index + i); 510 return (m); 511 } 512 513 /* 514 * Allocates a page from an existing or newly-created reservation. 515 * 516 * The page "mpred" must immediately precede the offset "pindex" within the 517 * specified object. 518 * 519 * The object and free page queue must be locked. 520 */ 521 vm_page_t 522 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred) 523 { 524 vm_page_t m, msucc; 525 vm_pindex_t first, leftcap, rightcap; 526 vm_reserv_t rv; 527 int i, index; 528 529 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 530 VM_OBJECT_ASSERT_WLOCKED(object); 531 532 /* 533 * Is a reservation fundamentally impossible? 534 */ 535 if (pindex < VM_RESERV_INDEX(object, pindex) || 536 pindex >= object->size) 537 return (NULL); 538 539 /* 540 * Look for an existing reservation. 541 */ 542 if (mpred != NULL) { 543 KASSERT(mpred->object == object, 544 ("vm_reserv_alloc_page: object doesn't contain mpred")); 545 KASSERT(mpred->pindex < pindex, 546 ("vm_reserv_alloc_page: mpred doesn't precede pindex")); 547 rv = vm_reserv_from_page(mpred); 548 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 549 goto found; 550 msucc = TAILQ_NEXT(mpred, listq); 551 } else 552 msucc = TAILQ_FIRST(&object->memq); 553 if (msucc != NULL) { 554 KASSERT(msucc->pindex > pindex, 555 ("vm_reserv_alloc_page: msucc doesn't succeed pindex")); 556 rv = vm_reserv_from_page(msucc); 557 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 558 goto found; 559 } 560 561 /* 562 * Could a reservation fit between the first index to the left that 563 * can be used and the first index to the right that cannot be used? 564 */ 565 first = pindex - VM_RESERV_INDEX(object, pindex); 566 if (mpred != NULL) { 567 if ((rv = vm_reserv_from_page(mpred))->object != object) 568 leftcap = mpred->pindex + 1; 569 else 570 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 571 if (leftcap > first) 572 return (NULL); 573 } 574 if (msucc != NULL) { 575 if ((rv = vm_reserv_from_page(msucc))->object != object) 576 rightcap = msucc->pindex; 577 else 578 rightcap = rv->pindex; 579 if (first + VM_LEVEL_0_NPAGES > rightcap) 580 return (NULL); 581 } 582 583 /* 584 * Would a new reservation extend past the end of the object? 585 */ 586 if (first + VM_LEVEL_0_NPAGES > object->size) { 587 /* 588 * Don't allocate a new reservation if the object is a vnode or 589 * backed by another object that is a vnode. 590 */ 591 if (object->type == OBJT_VNODE || 592 (object->backing_object != NULL && 593 object->backing_object->type == OBJT_VNODE)) 594 return (NULL); 595 /* Speculate that the object may grow. */ 596 } 597 598 /* 599 * Allocate and populate the new reservation. 600 */ 601 m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); 602 if (m == NULL) 603 return (NULL); 604 rv = vm_reserv_from_page(m); 605 KASSERT(rv->pages == m, 606 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 607 KASSERT(rv->object == NULL, 608 ("vm_reserv_alloc_page: reserv %p isn't free", rv)); 609 LIST_INSERT_HEAD(&object->rvq, rv, objq); 610 rv->object = object; 611 rv->pindex = first; 612 KASSERT(rv->popcnt == 0, 613 ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv)); 614 KASSERT(!rv->inpartpopq, 615 ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv)); 616 for (i = 0; i < NPOPMAP; i++) 617 KASSERT(rv->popmap[i] == 0, 618 ("vm_reserv_alloc_page: reserv %p's popmap is corrupted", 619 rv)); 620 index = VM_RESERV_INDEX(object, pindex); 621 vm_reserv_populate(rv, index); 622 return (&rv->pages[index]); 623 624 /* 625 * Found a matching reservation. 626 */ 627 found: 628 index = VM_RESERV_INDEX(object, pindex); 629 m = &rv->pages[index]; 630 /* Handle vm_page_rename(m, new_object, ...). */ 631 if (isset(rv->popmap, index)) 632 return (NULL); 633 vm_reserv_populate(rv, index); 634 return (m); 635 } 636 637 /* 638 * Breaks the given reservation. Except for the specified cached or free 639 * page, all cached and free pages in the reservation are returned to the 640 * physical memory allocator. The reservation's population count and map are 641 * reset to their initial state. 642 * 643 * The given reservation must not be in the partially-populated reservation 644 * queue. The free page queue lock must be held. 645 */ 646 static void 647 vm_reserv_break(vm_reserv_t rv, vm_page_t m) 648 { 649 int begin_zeroes, hi, i, lo; 650 651 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 652 KASSERT(rv->object != NULL, 653 ("vm_reserv_break: reserv %p is free", rv)); 654 KASSERT(!rv->inpartpopq, 655 ("vm_reserv_break: reserv %p's inpartpopq is TRUE", rv)); 656 LIST_REMOVE(rv, objq); 657 rv->object = NULL; 658 if (m != NULL) { 659 /* 660 * Since the reservation is being broken, there is no harm in 661 * abusing the population map to stop "m" from being returned 662 * to the physical memory allocator. 663 */ 664 i = m - rv->pages; 665 KASSERT(isclr(rv->popmap, i), 666 ("vm_reserv_break: reserv %p's popmap is corrupted", rv)); 667 setbit(rv->popmap, i); 668 rv->popcnt++; 669 } 670 i = hi = 0; 671 do { 672 /* Find the next 0 bit. Any previous 0 bits are < "hi". */ 673 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 674 if (lo == 0) { 675 /* Redundantly clears bits < "hi". */ 676 rv->popmap[i] = 0; 677 rv->popcnt -= NBPOPMAP - hi; 678 while (++i < NPOPMAP) { 679 lo = ffsl(~rv->popmap[i]); 680 if (lo == 0) { 681 rv->popmap[i] = 0; 682 rv->popcnt -= NBPOPMAP; 683 } else 684 break; 685 } 686 if (i == NPOPMAP) 687 break; 688 hi = 0; 689 } 690 KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo)); 691 /* Convert from ffsl() to ordinary bit numbering. */ 692 lo--; 693 if (lo > 0) { 694 /* Redundantly clears bits < "hi". */ 695 rv->popmap[i] &= ~((1UL << lo) - 1); 696 rv->popcnt -= lo - hi; 697 } 698 begin_zeroes = NBPOPMAP * i + lo; 699 /* Find the next 1 bit. */ 700 do 701 hi = ffsl(rv->popmap[i]); 702 while (hi == 0 && ++i < NPOPMAP); 703 if (i != NPOPMAP) 704 /* Convert from ffsl() to ordinary bit numbering. */ 705 hi--; 706 vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i + 707 hi - begin_zeroes); 708 } while (i < NPOPMAP); 709 KASSERT(rv->popcnt == 0, 710 ("vm_reserv_break: reserv %p's popcnt is corrupted", rv)); 711 vm_reserv_broken++; 712 } 713 714 /* 715 * Breaks all reservations belonging to the given object. 716 */ 717 void 718 vm_reserv_break_all(vm_object_t object) 719 { 720 vm_reserv_t rv; 721 722 mtx_lock(&vm_page_queue_free_mtx); 723 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 724 KASSERT(rv->object == object, 725 ("vm_reserv_break_all: reserv %p is corrupted", rv)); 726 if (rv->inpartpopq) { 727 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 728 rv->inpartpopq = FALSE; 729 } 730 vm_reserv_break(rv, NULL); 731 } 732 mtx_unlock(&vm_page_queue_free_mtx); 733 } 734 735 /* 736 * Frees the given page if it belongs to a reservation. Returns TRUE if the 737 * page is freed and FALSE otherwise. 738 * 739 * The free page queue lock must be held. 740 */ 741 boolean_t 742 vm_reserv_free_page(vm_page_t m) 743 { 744 vm_reserv_t rv; 745 746 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 747 rv = vm_reserv_from_page(m); 748 if (rv->object == NULL) 749 return (FALSE); 750 if ((m->flags & PG_CACHED) != 0 && m->pool != VM_FREEPOOL_CACHE) 751 vm_phys_set_pool(VM_FREEPOOL_CACHE, rv->pages, 752 VM_LEVEL_0_ORDER); 753 vm_reserv_depopulate(rv, m - rv->pages); 754 return (TRUE); 755 } 756 757 /* 758 * Initializes the reservation management system. Specifically, initializes 759 * the reservation array. 760 * 761 * Requires that vm_page_array and first_page are initialized! 762 */ 763 void 764 vm_reserv_init(void) 765 { 766 vm_paddr_t paddr; 767 int i; 768 769 /* 770 * Initialize the reservation array. Specifically, initialize the 771 * "pages" field for every element that has an underlying superpage. 772 */ 773 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 774 paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE); 775 while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) { 776 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages = 777 PHYS_TO_VM_PAGE(paddr); 778 paddr += VM_LEVEL_0_SIZE; 779 } 780 } 781 } 782 783 /* 784 * Returns a reservation level if the given page belongs to a fully-populated 785 * reservation and -1 otherwise. 786 */ 787 int 788 vm_reserv_level_iffullpop(vm_page_t m) 789 { 790 vm_reserv_t rv; 791 792 rv = vm_reserv_from_page(m); 793 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 794 } 795 796 /* 797 * Prepare for the reactivation of a cached page. 798 * 799 * First, suppose that the given page "m" was allocated individually, i.e., not 800 * as part of a reservation, and cached. Then, suppose a reservation 801 * containing "m" is allocated by the same object. Although "m" and the 802 * reservation belong to the same object, "m"'s pindex may not match the 803 * reservation's. 804 * 805 * The free page queue must be locked. 806 */ 807 boolean_t 808 vm_reserv_reactivate_page(vm_page_t m) 809 { 810 vm_reserv_t rv; 811 int index; 812 813 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 814 rv = vm_reserv_from_page(m); 815 if (rv->object == NULL) 816 return (FALSE); 817 KASSERT((m->flags & PG_CACHED) != 0, 818 ("vm_reserv_reactivate_page: page %p is not cached", m)); 819 if (m->object == rv->object && 820 m->pindex - rv->pindex == (index = VM_RESERV_INDEX(m->object, 821 m->pindex))) 822 vm_reserv_populate(rv, index); 823 else { 824 KASSERT(rv->inpartpopq, 825 ("vm_reserv_reactivate_page: reserv %p's inpartpopq is FALSE", 826 rv)); 827 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 828 rv->inpartpopq = FALSE; 829 /* Don't release "m" to the physical memory allocator. */ 830 vm_reserv_break(rv, m); 831 } 832 return (TRUE); 833 } 834 835 /* 836 * Breaks the given partially-populated reservation, releasing its cached and 837 * free pages to the physical memory allocator. 838 * 839 * The free page queue lock must be held. 840 */ 841 static void 842 vm_reserv_reclaim(vm_reserv_t rv) 843 { 844 845 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 846 KASSERT(rv->inpartpopq, 847 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 848 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 849 rv->inpartpopq = FALSE; 850 vm_reserv_break(rv, NULL); 851 vm_reserv_reclaimed++; 852 } 853 854 /* 855 * Breaks the reservation at the head of the partially-populated reservation 856 * queue, releasing its cached and free pages to the physical memory 857 * allocator. Returns TRUE if a reservation is broken and FALSE otherwise. 858 * 859 * The free page queue lock must be held. 860 */ 861 boolean_t 862 vm_reserv_reclaim_inactive(void) 863 { 864 vm_reserv_t rv; 865 866 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 867 if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) { 868 vm_reserv_reclaim(rv); 869 return (TRUE); 870 } 871 return (FALSE); 872 } 873 874 /* 875 * Searches the partially-populated reservation queue for the least recently 876 * active reservation with unused pages, i.e., cached or free, that satisfy the 877 * given request for contiguous physical memory. If a satisfactory reservation 878 * is found, it is broken. Returns TRUE if a reservation is broken and FALSE 879 * otherwise. 880 * 881 * The free page queue lock must be held. 882 */ 883 boolean_t 884 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 885 u_long alignment, vm_paddr_t boundary) 886 { 887 vm_paddr_t pa, size; 888 vm_reserv_t rv; 889 int hi, i, lo, next_free; 890 891 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 892 if (npages > VM_LEVEL_0_NPAGES - 1) 893 return (FALSE); 894 size = npages << PAGE_SHIFT; 895 TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) { 896 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); 897 if (pa + PAGE_SIZE - size < low) { 898 /* This entire reservation is too low; go to next. */ 899 continue; 900 } 901 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 902 if (pa + size > high) { 903 /* This entire reservation is too high; go to next. */ 904 continue; 905 } 906 if (pa < low) { 907 /* Start the search for free pages at "low". */ 908 i = (low - pa) / NBPOPMAP; 909 hi = (low - pa) % NBPOPMAP; 910 } else 911 i = hi = 0; 912 do { 913 /* Find the next free page. */ 914 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 915 while (lo == 0 && ++i < NPOPMAP) 916 lo = ffsl(~rv->popmap[i]); 917 if (i == NPOPMAP) 918 break; 919 /* Convert from ffsl() to ordinary bit numbering. */ 920 lo--; 921 next_free = NBPOPMAP * i + lo; 922 pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]); 923 KASSERT(pa >= low, 924 ("vm_reserv_reclaim_contig: pa is too low")); 925 if (pa + size > high) { 926 /* The rest of this reservation is too high. */ 927 break; 928 } else if ((pa & (alignment - 1)) != 0 || 929 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) { 930 /* Continue with this reservation. */ 931 hi = lo; 932 continue; 933 } 934 /* Find the next used page. */ 935 hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1)); 936 while (hi == 0 && ++i < NPOPMAP) { 937 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >= 938 size) { 939 vm_reserv_reclaim(rv); 940 return (TRUE); 941 } 942 hi = ffsl(rv->popmap[i]); 943 } 944 /* Convert from ffsl() to ordinary bit numbering. */ 945 if (i != NPOPMAP) 946 hi--; 947 if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >= 948 size) { 949 vm_reserv_reclaim(rv); 950 return (TRUE); 951 } 952 } while (i < NPOPMAP); 953 } 954 return (FALSE); 955 } 956 957 /* 958 * Transfers the reservation underlying the given page to a new object. 959 * 960 * The object must be locked. 961 */ 962 void 963 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 964 vm_pindex_t old_object_offset) 965 { 966 vm_reserv_t rv; 967 968 VM_OBJECT_ASSERT_WLOCKED(new_object); 969 rv = vm_reserv_from_page(m); 970 if (rv->object == old_object) { 971 mtx_lock(&vm_page_queue_free_mtx); 972 if (rv->object == old_object) { 973 LIST_REMOVE(rv, objq); 974 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 975 rv->object = new_object; 976 rv->pindex -= old_object_offset; 977 } 978 mtx_unlock(&vm_page_queue_free_mtx); 979 } 980 } 981 982 /* 983 * Allocates the virtual and physical memory required by the reservation 984 * management system's data structures, in particular, the reservation array. 985 */ 986 vm_paddr_t 987 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) 988 { 989 vm_paddr_t new_end; 990 size_t size; 991 992 /* 993 * Calculate the size (in bytes) of the reservation array. Round up 994 * from "high_water" because every small page is mapped to an element 995 * in the reservation array based on its physical address. Thus, the 996 * number of elements in the reservation array can be greater than the 997 * number of superpages. 998 */ 999 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); 1000 1001 /* 1002 * Allocate and map the physical memory for the reservation array. The 1003 * next available virtual address is returned by reference. 1004 */ 1005 new_end = end - round_page(size); 1006 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 1007 VM_PROT_READ | VM_PROT_WRITE); 1008 bzero(vm_reserv_array, size); 1009 1010 /* 1011 * Return the next available physical address. 1012 */ 1013 return (new_end); 1014 } 1015 1016 #endif /* VM_NRESERVLEVEL > 0 */ 1017