1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Superpage reservation management module 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_vm.h" 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/queue.h> 50 #include <sys/rwlock.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <vm/vm.h> 56 #include <vm/vm_param.h> 57 #include <vm/vm_object.h> 58 #include <vm/vm_page.h> 59 #include <vm/vm_phys.h> 60 #include <vm/vm_radix.h> 61 #include <vm/vm_reserv.h> 62 63 /* 64 * The reservation system supports the speculative allocation of large physical 65 * pages ("superpages"). Speculative allocation enables the fully-automatic 66 * utilization of superpages by the virtual memory system. In other words, no 67 * programmatic directives are required to use superpages. 68 */ 69 70 #if VM_NRESERVLEVEL > 0 71 72 /* 73 * The number of small pages that are contained in a level 0 reservation 74 */ 75 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 76 77 /* 78 * The number of bits by which a physical address is shifted to obtain the 79 * reservation number 80 */ 81 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 82 83 /* 84 * The size of a level 0 reservation in bytes 85 */ 86 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 87 88 /* 89 * Computes the index of the small page underlying the given (object, pindex) 90 * within the reservation's array of small pages. 91 */ 92 #define VM_RESERV_INDEX(object, pindex) \ 93 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 94 95 /* 96 * The size of a population map entry 97 */ 98 typedef u_long popmap_t; 99 100 /* 101 * The number of bits in a population map entry 102 */ 103 #define NBPOPMAP (NBBY * sizeof(popmap_t)) 104 105 /* 106 * The number of population map entries in a reservation 107 */ 108 #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP) 109 110 /* 111 * Clear a bit in the population map. 112 */ 113 static __inline void 114 popmap_clear(popmap_t popmap[], int i) 115 { 116 117 popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP)); 118 } 119 120 /* 121 * Set a bit in the population map. 122 */ 123 static __inline void 124 popmap_set(popmap_t popmap[], int i) 125 { 126 127 popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP); 128 } 129 130 /* 131 * Is a bit in the population map clear? 132 */ 133 static __inline boolean_t 134 popmap_is_clear(popmap_t popmap[], int i) 135 { 136 137 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0); 138 } 139 140 /* 141 * Is a bit in the population map set? 142 */ 143 static __inline boolean_t 144 popmap_is_set(popmap_t popmap[], int i) 145 { 146 147 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0); 148 } 149 150 /* 151 * The reservation structure 152 * 153 * A reservation structure is constructed whenever a large physical page is 154 * speculatively allocated to an object. The reservation provides the small 155 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 156 * within that object. The reservation's "popcnt" tracks the number of these 157 * small physical pages that are in use at any given time. When and if the 158 * reservation is not fully utilized, it appears in the queue of partially- 159 * populated reservations. The reservation always appears on the containing 160 * object's list of reservations. 161 * 162 * A partially-populated reservation can be broken and reclaimed at any time. 163 */ 164 struct vm_reserv { 165 TAILQ_ENTRY(vm_reserv) partpopq; 166 LIST_ENTRY(vm_reserv) objq; 167 vm_object_t object; /* containing object */ 168 vm_pindex_t pindex; /* offset within object */ 169 vm_page_t pages; /* first page of a superpage */ 170 int popcnt; /* # of pages in use */ 171 char inpartpopq; 172 popmap_t popmap[NPOPMAP]; /* bit vector of used pages */ 173 }; 174 175 /* 176 * The reservation array 177 * 178 * This array is analoguous in function to vm_page_array. It differs in the 179 * respect that it may contain a greater number of useful reservation 180 * structures than there are (physical) superpages. These "invalid" 181 * reservation structures exist to trade-off space for time in the 182 * implementation of vm_reserv_from_page(). Invalid reservation structures are 183 * distinguishable from "valid" reservation structures by inspecting the 184 * reservation's "pages" field. Invalid reservation structures have a NULL 185 * "pages" field. 186 * 187 * vm_reserv_from_page() maps a small (physical) page to an element of this 188 * array by computing a physical reservation number from the page's physical 189 * address. The physical reservation number is used as the array index. 190 * 191 * An "active" reservation is a valid reservation structure that has a non-NULL 192 * "object" field and a non-zero "popcnt" field. In other words, every active 193 * reservation belongs to a particular object. Moreover, every active 194 * reservation has an entry in the containing object's list of reservations. 195 */ 196 static vm_reserv_t vm_reserv_array; 197 198 /* 199 * The partially-populated reservation queue 200 * 201 * This queue enables the fast recovery of an unused cached or free small page 202 * from a partially-populated reservation. The reservation at the head of 203 * this queue is the least-recently-changed, partially-populated reservation. 204 * 205 * Access to this queue is synchronized by the free page queue lock. 206 */ 207 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop = 208 TAILQ_HEAD_INITIALIZER(vm_rvq_partpop); 209 210 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); 211 212 static long vm_reserv_broken; 213 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 214 &vm_reserv_broken, 0, "Cumulative number of broken reservations"); 215 216 static long vm_reserv_freed; 217 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 218 &vm_reserv_freed, 0, "Cumulative number of freed reservations"); 219 220 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); 221 222 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 223 sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); 224 225 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 226 227 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 228 sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues"); 229 230 static long vm_reserv_reclaimed; 231 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 232 &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations"); 233 234 static void vm_reserv_break(vm_reserv_t rv, vm_page_t m); 235 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 236 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 237 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 238 vm_pindex_t pindex); 239 static void vm_reserv_populate(vm_reserv_t rv, int index); 240 static void vm_reserv_reclaim(vm_reserv_t rv); 241 242 /* 243 * Returns the current number of full reservations. 244 * 245 * Since the number of full reservations is computed without acquiring the 246 * free page queue lock, the returned value may be inexact. 247 */ 248 static int 249 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) 250 { 251 vm_paddr_t paddr; 252 struct vm_phys_seg *seg; 253 vm_reserv_t rv; 254 int fullpop, segind; 255 256 fullpop = 0; 257 for (segind = 0; segind < vm_phys_nsegs; segind++) { 258 seg = &vm_phys_segs[segind]; 259 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 260 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 261 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; 262 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; 263 paddr += VM_LEVEL_0_SIZE; 264 } 265 } 266 return (sysctl_handle_int(oidp, &fullpop, 0, req)); 267 } 268 269 /* 270 * Describes the current state of the partially-populated reservation queue. 271 */ 272 static int 273 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 274 { 275 struct sbuf sbuf; 276 vm_reserv_t rv; 277 int counter, error, level, unused_pages; 278 279 error = sysctl_wire_old_buffer(req, 0); 280 if (error != 0) 281 return (error); 282 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 283 sbuf_printf(&sbuf, "\nLEVEL SIZE NUMBER\n\n"); 284 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 285 counter = 0; 286 unused_pages = 0; 287 mtx_lock(&vm_page_queue_free_mtx); 288 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) { 289 counter++; 290 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 291 } 292 mtx_unlock(&vm_page_queue_free_mtx); 293 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level, 294 unused_pages * ((int)PAGE_SIZE / 1024), counter); 295 } 296 error = sbuf_finish(&sbuf); 297 sbuf_delete(&sbuf); 298 return (error); 299 } 300 301 /* 302 * Reduces the given reservation's population count. If the population count 303 * becomes zero, the reservation is destroyed. Additionally, moves the 304 * reservation to the tail of the partially-populated reservation queue if the 305 * population count is non-zero. 306 * 307 * The free page queue lock must be held. 308 */ 309 static void 310 vm_reserv_depopulate(vm_reserv_t rv, int index) 311 { 312 313 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 314 KASSERT(rv->object != NULL, 315 ("vm_reserv_depopulate: reserv %p is free", rv)); 316 KASSERT(popmap_is_set(rv->popmap, index), 317 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 318 index)); 319 KASSERT(rv->popcnt > 0, 320 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 321 if (rv->inpartpopq) { 322 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 323 rv->inpartpopq = FALSE; 324 } else { 325 KASSERT(rv->pages->psind == 1, 326 ("vm_reserv_depopulate: reserv %p is already demoted", 327 rv)); 328 rv->pages->psind = 0; 329 } 330 popmap_clear(rv->popmap, index); 331 rv->popcnt--; 332 if (rv->popcnt == 0) { 333 LIST_REMOVE(rv, objq); 334 rv->object = NULL; 335 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 336 vm_reserv_freed++; 337 } else { 338 rv->inpartpopq = TRUE; 339 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 340 } 341 } 342 343 /* 344 * Returns the reservation to which the given page might belong. 345 */ 346 static __inline vm_reserv_t 347 vm_reserv_from_page(vm_page_t m) 348 { 349 350 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 351 } 352 353 /* 354 * Returns TRUE if the given reservation contains the given page index and 355 * FALSE otherwise. 356 */ 357 static __inline boolean_t 358 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 359 { 360 361 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 362 } 363 364 /* 365 * Increases the given reservation's population count. Moves the reservation 366 * to the tail of the partially-populated reservation queue. 367 * 368 * The free page queue must be locked. 369 */ 370 static void 371 vm_reserv_populate(vm_reserv_t rv, int index) 372 { 373 374 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 375 KASSERT(rv->object != NULL, 376 ("vm_reserv_populate: reserv %p is free", rv)); 377 KASSERT(popmap_is_clear(rv->popmap, index), 378 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 379 index)); 380 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 381 ("vm_reserv_populate: reserv %p is already full", rv)); 382 KASSERT(rv->pages->psind == 0, 383 ("vm_reserv_populate: reserv %p is already promoted", rv)); 384 if (rv->inpartpopq) { 385 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 386 rv->inpartpopq = FALSE; 387 } 388 popmap_set(rv->popmap, index); 389 rv->popcnt++; 390 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 391 rv->inpartpopq = TRUE; 392 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 393 } else 394 rv->pages->psind = 1; 395 } 396 397 /* 398 * Allocates a contiguous set of physical pages of the given size "npages" 399 * from existing or newly created reservations. All of the physical pages 400 * must be at or above the given physical address "low" and below the given 401 * physical address "high". The given value "alignment" determines the 402 * alignment of the first physical page in the set. If the given value 403 * "boundary" is non-zero, then the set of physical pages cannot cross any 404 * physical address boundary that is a multiple of that value. Both 405 * "alignment" and "boundary" must be a power of two. 406 * 407 * The object and free page queue must be locked. 408 */ 409 vm_page_t 410 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages, 411 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 412 { 413 vm_paddr_t pa, size; 414 vm_page_t m, m_ret, mpred, msucc; 415 vm_pindex_t first, leftcap, rightcap; 416 vm_reserv_t rv; 417 u_long allocpages, maxpages, minpages; 418 int i, index, n; 419 420 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 421 VM_OBJECT_ASSERT_WLOCKED(object); 422 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 423 424 /* 425 * Is a reservation fundamentally impossible? 426 */ 427 if (pindex < VM_RESERV_INDEX(object, pindex) || 428 pindex + npages > object->size) 429 return (NULL); 430 431 /* 432 * All reservations of a particular size have the same alignment. 433 * Assuming that the first page is allocated from a reservation, the 434 * least significant bits of its physical address can be determined 435 * from its offset from the beginning of the reservation and the size 436 * of the reservation. 437 * 438 * Could the specified index within a reservation of the smallest 439 * possible size satisfy the alignment and boundary requirements? 440 */ 441 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 442 if ((pa & (alignment - 1)) != 0) 443 return (NULL); 444 size = npages << PAGE_SHIFT; 445 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 446 return (NULL); 447 448 /* 449 * Look for an existing reservation. 450 */ 451 mpred = vm_radix_lookup_le(&object->rtree, pindex); 452 if (mpred != NULL) { 453 KASSERT(mpred->pindex < pindex, 454 ("vm_reserv_alloc_contig: pindex already allocated")); 455 rv = vm_reserv_from_page(mpred); 456 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 457 goto found; 458 msucc = TAILQ_NEXT(mpred, listq); 459 } else 460 msucc = TAILQ_FIRST(&object->memq); 461 if (msucc != NULL) { 462 KASSERT(msucc->pindex > pindex, 463 ("vm_reserv_alloc_contig: pindex already allocated")); 464 rv = vm_reserv_from_page(msucc); 465 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 466 goto found; 467 } 468 469 /* 470 * Could at least one reservation fit between the first index to the 471 * left that can be used ("leftcap") and the first index to the right 472 * that cannot be used ("rightcap")? 473 */ 474 first = pindex - VM_RESERV_INDEX(object, pindex); 475 if (mpred != NULL) { 476 if ((rv = vm_reserv_from_page(mpred))->object != object) 477 leftcap = mpred->pindex + 1; 478 else 479 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 480 if (leftcap > first) 481 return (NULL); 482 } 483 minpages = VM_RESERV_INDEX(object, pindex) + npages; 484 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 485 allocpages = maxpages; 486 if (msucc != NULL) { 487 if ((rv = vm_reserv_from_page(msucc))->object != object) 488 rightcap = msucc->pindex; 489 else 490 rightcap = rv->pindex; 491 if (first + maxpages > rightcap) { 492 if (maxpages == VM_LEVEL_0_NPAGES) 493 return (NULL); 494 495 /* 496 * At least one reservation will fit between "leftcap" 497 * and "rightcap". However, a reservation for the 498 * last of the requested pages will not fit. Reduce 499 * the size of the upcoming allocation accordingly. 500 */ 501 allocpages = minpages; 502 } 503 } 504 505 /* 506 * Would the last new reservation extend past the end of the object? 507 */ 508 if (first + maxpages > object->size) { 509 /* 510 * Don't allocate the last new reservation if the object is a 511 * vnode or backed by another object that is a vnode. 512 */ 513 if (object->type == OBJT_VNODE || 514 (object->backing_object != NULL && 515 object->backing_object->type == OBJT_VNODE)) { 516 if (maxpages == VM_LEVEL_0_NPAGES) 517 return (NULL); 518 allocpages = minpages; 519 } 520 /* Speculate that the object may grow. */ 521 } 522 523 /* 524 * Allocate the physical pages. The alignment and boundary specified 525 * for this allocation may be different from the alignment and 526 * boundary specified for the requested pages. For instance, the 527 * specified index may not be the first page within the first new 528 * reservation. 529 */ 530 m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment, 531 VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0); 532 if (m == NULL) 533 return (NULL); 534 535 /* 536 * The allocated physical pages always begin at a reservation 537 * boundary, but they do not always end at a reservation boundary. 538 * Initialize every reservation that is completely covered by the 539 * allocated physical pages. 540 */ 541 m_ret = NULL; 542 index = VM_RESERV_INDEX(object, pindex); 543 do { 544 rv = vm_reserv_from_page(m); 545 KASSERT(rv->pages == m, 546 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 547 rv)); 548 KASSERT(rv->object == NULL, 549 ("vm_reserv_alloc_contig: reserv %p isn't free", rv)); 550 LIST_INSERT_HEAD(&object->rvq, rv, objq); 551 rv->object = object; 552 rv->pindex = first; 553 KASSERT(rv->popcnt == 0, 554 ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted", 555 rv)); 556 KASSERT(!rv->inpartpopq, 557 ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE", 558 rv)); 559 for (i = 0; i < NPOPMAP; i++) 560 KASSERT(rv->popmap[i] == 0, 561 ("vm_reserv_alloc_contig: reserv %p's popmap is corrupted", 562 rv)); 563 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 564 for (i = 0; i < n; i++) 565 vm_reserv_populate(rv, index + i); 566 npages -= n; 567 if (m_ret == NULL) { 568 m_ret = &rv->pages[index]; 569 index = 0; 570 } 571 m += VM_LEVEL_0_NPAGES; 572 first += VM_LEVEL_0_NPAGES; 573 allocpages -= VM_LEVEL_0_NPAGES; 574 } while (allocpages >= VM_LEVEL_0_NPAGES); 575 return (m_ret); 576 577 /* 578 * Found a matching reservation. 579 */ 580 found: 581 index = VM_RESERV_INDEX(object, pindex); 582 /* Does the allocation fit within the reservation? */ 583 if (index + npages > VM_LEVEL_0_NPAGES) 584 return (NULL); 585 m = &rv->pages[index]; 586 pa = VM_PAGE_TO_PHYS(m); 587 if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 || 588 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 589 return (NULL); 590 /* Handle vm_page_rename(m, new_object, ...). */ 591 for (i = 0; i < npages; i++) 592 if (popmap_is_set(rv->popmap, index + i)) 593 return (NULL); 594 for (i = 0; i < npages; i++) 595 vm_reserv_populate(rv, index + i); 596 return (m); 597 } 598 599 /* 600 * Allocates a page from an existing or newly-created reservation. 601 * 602 * The page "mpred" must immediately precede the offset "pindex" within the 603 * specified object. 604 * 605 * The object and free page queue must be locked. 606 */ 607 vm_page_t 608 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred) 609 { 610 vm_page_t m, msucc; 611 vm_pindex_t first, leftcap, rightcap; 612 vm_reserv_t rv; 613 int i, index; 614 615 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 616 VM_OBJECT_ASSERT_WLOCKED(object); 617 618 /* 619 * Is a reservation fundamentally impossible? 620 */ 621 if (pindex < VM_RESERV_INDEX(object, pindex) || 622 pindex >= object->size) 623 return (NULL); 624 625 /* 626 * Look for an existing reservation. 627 */ 628 if (mpred != NULL) { 629 KASSERT(mpred->object == object, 630 ("vm_reserv_alloc_page: object doesn't contain mpred")); 631 KASSERT(mpred->pindex < pindex, 632 ("vm_reserv_alloc_page: mpred doesn't precede pindex")); 633 rv = vm_reserv_from_page(mpred); 634 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 635 goto found; 636 msucc = TAILQ_NEXT(mpred, listq); 637 } else 638 msucc = TAILQ_FIRST(&object->memq); 639 if (msucc != NULL) { 640 KASSERT(msucc->pindex > pindex, 641 ("vm_reserv_alloc_page: msucc doesn't succeed pindex")); 642 rv = vm_reserv_from_page(msucc); 643 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 644 goto found; 645 } 646 647 /* 648 * Could a reservation fit between the first index to the left that 649 * can be used and the first index to the right that cannot be used? 650 */ 651 first = pindex - VM_RESERV_INDEX(object, pindex); 652 if (mpred != NULL) { 653 if ((rv = vm_reserv_from_page(mpred))->object != object) 654 leftcap = mpred->pindex + 1; 655 else 656 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 657 if (leftcap > first) 658 return (NULL); 659 } 660 if (msucc != NULL) { 661 if ((rv = vm_reserv_from_page(msucc))->object != object) 662 rightcap = msucc->pindex; 663 else 664 rightcap = rv->pindex; 665 if (first + VM_LEVEL_0_NPAGES > rightcap) 666 return (NULL); 667 } 668 669 /* 670 * Would a new reservation extend past the end of the object? 671 */ 672 if (first + VM_LEVEL_0_NPAGES > object->size) { 673 /* 674 * Don't allocate a new reservation if the object is a vnode or 675 * backed by another object that is a vnode. 676 */ 677 if (object->type == OBJT_VNODE || 678 (object->backing_object != NULL && 679 object->backing_object->type == OBJT_VNODE)) 680 return (NULL); 681 /* Speculate that the object may grow. */ 682 } 683 684 /* 685 * Allocate and populate the new reservation. 686 */ 687 m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); 688 if (m == NULL) 689 return (NULL); 690 rv = vm_reserv_from_page(m); 691 KASSERT(rv->pages == m, 692 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 693 KASSERT(rv->object == NULL, 694 ("vm_reserv_alloc_page: reserv %p isn't free", rv)); 695 LIST_INSERT_HEAD(&object->rvq, rv, objq); 696 rv->object = object; 697 rv->pindex = first; 698 KASSERT(rv->popcnt == 0, 699 ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv)); 700 KASSERT(!rv->inpartpopq, 701 ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv)); 702 for (i = 0; i < NPOPMAP; i++) 703 KASSERT(rv->popmap[i] == 0, 704 ("vm_reserv_alloc_page: reserv %p's popmap is corrupted", 705 rv)); 706 index = VM_RESERV_INDEX(object, pindex); 707 vm_reserv_populate(rv, index); 708 return (&rv->pages[index]); 709 710 /* 711 * Found a matching reservation. 712 */ 713 found: 714 index = VM_RESERV_INDEX(object, pindex); 715 m = &rv->pages[index]; 716 /* Handle vm_page_rename(m, new_object, ...). */ 717 if (popmap_is_set(rv->popmap, index)) 718 return (NULL); 719 vm_reserv_populate(rv, index); 720 return (m); 721 } 722 723 /* 724 * Breaks the given reservation. Except for the specified cached or free 725 * page, all cached and free pages in the reservation are returned to the 726 * physical memory allocator. The reservation's population count and map are 727 * reset to their initial state. 728 * 729 * The given reservation must not be in the partially-populated reservation 730 * queue. The free page queue lock must be held. 731 */ 732 static void 733 vm_reserv_break(vm_reserv_t rv, vm_page_t m) 734 { 735 int begin_zeroes, hi, i, lo; 736 737 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 738 KASSERT(rv->object != NULL, 739 ("vm_reserv_break: reserv %p is free", rv)); 740 KASSERT(!rv->inpartpopq, 741 ("vm_reserv_break: reserv %p's inpartpopq is TRUE", rv)); 742 LIST_REMOVE(rv, objq); 743 rv->object = NULL; 744 if (m != NULL) { 745 /* 746 * Since the reservation is being broken, there is no harm in 747 * abusing the population map to stop "m" from being returned 748 * to the physical memory allocator. 749 */ 750 i = m - rv->pages; 751 KASSERT(popmap_is_clear(rv->popmap, i), 752 ("vm_reserv_break: reserv %p's popmap is corrupted", rv)); 753 popmap_set(rv->popmap, i); 754 rv->popcnt++; 755 } 756 i = hi = 0; 757 do { 758 /* Find the next 0 bit. Any previous 0 bits are < "hi". */ 759 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 760 if (lo == 0) { 761 /* Redundantly clears bits < "hi". */ 762 rv->popmap[i] = 0; 763 rv->popcnt -= NBPOPMAP - hi; 764 while (++i < NPOPMAP) { 765 lo = ffsl(~rv->popmap[i]); 766 if (lo == 0) { 767 rv->popmap[i] = 0; 768 rv->popcnt -= NBPOPMAP; 769 } else 770 break; 771 } 772 if (i == NPOPMAP) 773 break; 774 hi = 0; 775 } 776 KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo)); 777 /* Convert from ffsl() to ordinary bit numbering. */ 778 lo--; 779 if (lo > 0) { 780 /* Redundantly clears bits < "hi". */ 781 rv->popmap[i] &= ~((1UL << lo) - 1); 782 rv->popcnt -= lo - hi; 783 } 784 begin_zeroes = NBPOPMAP * i + lo; 785 /* Find the next 1 bit. */ 786 do 787 hi = ffsl(rv->popmap[i]); 788 while (hi == 0 && ++i < NPOPMAP); 789 if (i != NPOPMAP) 790 /* Convert from ffsl() to ordinary bit numbering. */ 791 hi--; 792 vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i + 793 hi - begin_zeroes); 794 } while (i < NPOPMAP); 795 KASSERT(rv->popcnt == 0, 796 ("vm_reserv_break: reserv %p's popcnt is corrupted", rv)); 797 vm_reserv_broken++; 798 } 799 800 /* 801 * Breaks all reservations belonging to the given object. 802 */ 803 void 804 vm_reserv_break_all(vm_object_t object) 805 { 806 vm_reserv_t rv; 807 808 mtx_lock(&vm_page_queue_free_mtx); 809 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 810 KASSERT(rv->object == object, 811 ("vm_reserv_break_all: reserv %p is corrupted", rv)); 812 if (rv->inpartpopq) { 813 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 814 rv->inpartpopq = FALSE; 815 } 816 vm_reserv_break(rv, NULL); 817 } 818 mtx_unlock(&vm_page_queue_free_mtx); 819 } 820 821 /* 822 * Frees the given page if it belongs to a reservation. Returns TRUE if the 823 * page is freed and FALSE otherwise. 824 * 825 * The free page queue lock must be held. 826 */ 827 boolean_t 828 vm_reserv_free_page(vm_page_t m) 829 { 830 vm_reserv_t rv; 831 832 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 833 rv = vm_reserv_from_page(m); 834 if (rv->object == NULL) 835 return (FALSE); 836 vm_reserv_depopulate(rv, m - rv->pages); 837 return (TRUE); 838 } 839 840 /* 841 * Initializes the reservation management system. Specifically, initializes 842 * the reservation array. 843 * 844 * Requires that vm_page_array and first_page are initialized! 845 */ 846 void 847 vm_reserv_init(void) 848 { 849 vm_paddr_t paddr; 850 struct vm_phys_seg *seg; 851 int segind; 852 853 /* 854 * Initialize the reservation array. Specifically, initialize the 855 * "pages" field for every element that has an underlying superpage. 856 */ 857 for (segind = 0; segind < vm_phys_nsegs; segind++) { 858 seg = &vm_phys_segs[segind]; 859 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 860 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 861 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages = 862 PHYS_TO_VM_PAGE(paddr); 863 paddr += VM_LEVEL_0_SIZE; 864 } 865 } 866 } 867 868 /* 869 * Returns a reservation level if the given page belongs to a fully-populated 870 * reservation and -1 otherwise. 871 */ 872 int 873 vm_reserv_level_iffullpop(vm_page_t m) 874 { 875 vm_reserv_t rv; 876 877 rv = vm_reserv_from_page(m); 878 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 879 } 880 881 /* 882 * Prepare for the reactivation of a cached page. 883 * 884 * First, suppose that the given page "m" was allocated individually, i.e., not 885 * as part of a reservation, and cached. Then, suppose a reservation 886 * containing "m" is allocated by the same object. Although "m" and the 887 * reservation belong to the same object, "m"'s pindex may not match the 888 * reservation's. 889 * 890 * The free page queue must be locked. 891 */ 892 boolean_t 893 vm_reserv_reactivate_page(vm_page_t m) 894 { 895 vm_reserv_t rv; 896 int index; 897 898 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 899 rv = vm_reserv_from_page(m); 900 if (rv->object == NULL) 901 return (FALSE); 902 KASSERT((m->flags & PG_CACHED) != 0, 903 ("vm_reserv_reactivate_page: page %p is not cached", m)); 904 if (m->object == rv->object && 905 m->pindex - rv->pindex == (index = VM_RESERV_INDEX(m->object, 906 m->pindex))) 907 vm_reserv_populate(rv, index); 908 else { 909 KASSERT(rv->inpartpopq, 910 ("vm_reserv_reactivate_page: reserv %p's inpartpopq is FALSE", 911 rv)); 912 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 913 rv->inpartpopq = FALSE; 914 /* Don't release "m" to the physical memory allocator. */ 915 vm_reserv_break(rv, m); 916 } 917 return (TRUE); 918 } 919 920 /* 921 * Breaks the given partially-populated reservation, releasing its cached and 922 * free pages to the physical memory allocator. 923 * 924 * The free page queue lock must be held. 925 */ 926 static void 927 vm_reserv_reclaim(vm_reserv_t rv) 928 { 929 930 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 931 KASSERT(rv->inpartpopq, 932 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 933 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 934 rv->inpartpopq = FALSE; 935 vm_reserv_break(rv, NULL); 936 vm_reserv_reclaimed++; 937 } 938 939 /* 940 * Breaks the reservation at the head of the partially-populated reservation 941 * queue, releasing its cached and free pages to the physical memory 942 * allocator. Returns TRUE if a reservation is broken and FALSE otherwise. 943 * 944 * The free page queue lock must be held. 945 */ 946 boolean_t 947 vm_reserv_reclaim_inactive(void) 948 { 949 vm_reserv_t rv; 950 951 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 952 if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) { 953 vm_reserv_reclaim(rv); 954 return (TRUE); 955 } 956 return (FALSE); 957 } 958 959 /* 960 * Searches the partially-populated reservation queue for the least recently 961 * active reservation with unused pages, i.e., cached or free, that satisfy the 962 * given request for contiguous physical memory. If a satisfactory reservation 963 * is found, it is broken. Returns TRUE if a reservation is broken and FALSE 964 * otherwise. 965 * 966 * The free page queue lock must be held. 967 */ 968 boolean_t 969 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 970 u_long alignment, vm_paddr_t boundary) 971 { 972 vm_paddr_t pa, size; 973 vm_reserv_t rv; 974 int hi, i, lo, next_free; 975 976 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 977 if (npages > VM_LEVEL_0_NPAGES - 1) 978 return (FALSE); 979 size = npages << PAGE_SHIFT; 980 TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) { 981 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); 982 if (pa + PAGE_SIZE - size < low) { 983 /* This entire reservation is too low; go to next. */ 984 continue; 985 } 986 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 987 if (pa + size > high) { 988 /* This entire reservation is too high; go to next. */ 989 continue; 990 } 991 if (pa < low) { 992 /* Start the search for free pages at "low". */ 993 i = (low - pa) / NBPOPMAP; 994 hi = (low - pa) % NBPOPMAP; 995 } else 996 i = hi = 0; 997 do { 998 /* Find the next free page. */ 999 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 1000 while (lo == 0 && ++i < NPOPMAP) 1001 lo = ffsl(~rv->popmap[i]); 1002 if (i == NPOPMAP) 1003 break; 1004 /* Convert from ffsl() to ordinary bit numbering. */ 1005 lo--; 1006 next_free = NBPOPMAP * i + lo; 1007 pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]); 1008 KASSERT(pa >= low, 1009 ("vm_reserv_reclaim_contig: pa is too low")); 1010 if (pa + size > high) { 1011 /* The rest of this reservation is too high. */ 1012 break; 1013 } else if ((pa & (alignment - 1)) != 0 || 1014 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) { 1015 /* 1016 * The current page doesn't meet the alignment 1017 * and/or boundary requirements. Continue 1018 * searching this reservation until the rest 1019 * of its free pages are either excluded or 1020 * exhausted. 1021 */ 1022 hi = lo + 1; 1023 if (hi >= NBPOPMAP) { 1024 hi = 0; 1025 i++; 1026 } 1027 continue; 1028 } 1029 /* Find the next used page. */ 1030 hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1)); 1031 while (hi == 0 && ++i < NPOPMAP) { 1032 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >= 1033 size) { 1034 vm_reserv_reclaim(rv); 1035 return (TRUE); 1036 } 1037 hi = ffsl(rv->popmap[i]); 1038 } 1039 /* Convert from ffsl() to ordinary bit numbering. */ 1040 if (i != NPOPMAP) 1041 hi--; 1042 if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >= 1043 size) { 1044 vm_reserv_reclaim(rv); 1045 return (TRUE); 1046 } 1047 } while (i < NPOPMAP); 1048 } 1049 return (FALSE); 1050 } 1051 1052 /* 1053 * Transfers the reservation underlying the given page to a new object. 1054 * 1055 * The object must be locked. 1056 */ 1057 void 1058 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 1059 vm_pindex_t old_object_offset) 1060 { 1061 vm_reserv_t rv; 1062 1063 VM_OBJECT_ASSERT_WLOCKED(new_object); 1064 rv = vm_reserv_from_page(m); 1065 if (rv->object == old_object) { 1066 mtx_lock(&vm_page_queue_free_mtx); 1067 if (rv->object == old_object) { 1068 LIST_REMOVE(rv, objq); 1069 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 1070 rv->object = new_object; 1071 rv->pindex -= old_object_offset; 1072 } 1073 mtx_unlock(&vm_page_queue_free_mtx); 1074 } 1075 } 1076 1077 /* 1078 * Allocates the virtual and physical memory required by the reservation 1079 * management system's data structures, in particular, the reservation array. 1080 */ 1081 vm_paddr_t 1082 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) 1083 { 1084 vm_paddr_t new_end; 1085 size_t size; 1086 1087 /* 1088 * Calculate the size (in bytes) of the reservation array. Round up 1089 * from "high_water" because every small page is mapped to an element 1090 * in the reservation array based on its physical address. Thus, the 1091 * number of elements in the reservation array can be greater than the 1092 * number of superpages. 1093 */ 1094 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); 1095 1096 /* 1097 * Allocate and map the physical memory for the reservation array. The 1098 * next available virtual address is returned by reference. 1099 */ 1100 new_end = end - round_page(size); 1101 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 1102 VM_PROT_READ | VM_PROT_WRITE); 1103 bzero(vm_reserv_array, size); 1104 1105 /* 1106 * Return the next available physical address. 1107 */ 1108 return (new_end); 1109 } 1110 1111 #endif /* VM_NRESERVLEVEL > 0 */ 1112