xref: /freebsd/sys/vm/vm_reserv.c (revision 780fb4a2fa9a9aee5ac48a60b790f567c0dc13e9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_vm.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_phys.h>
67 #include <vm/vm_pagequeue.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70 
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77 
78 #if VM_NRESERVLEVEL > 0
79 
80 /*
81  * The number of small pages that are contained in a level 0 reservation
82  */
83 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
84 
85 /*
86  * The number of bits by which a physical address is shifted to obtain the
87  * reservation number
88  */
89 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
90 
91 /*
92  * The size of a level 0 reservation in bytes
93  */
94 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
95 
96 /*
97  * Computes the index of the small page underlying the given (object, pindex)
98  * within the reservation's array of small pages.
99  */
100 #define	VM_RESERV_INDEX(object, pindex)	\
101     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
102 
103 /*
104  * The size of a population map entry
105  */
106 typedef	u_long		popmap_t;
107 
108 /*
109  * The number of bits in a population map entry
110  */
111 #define	NBPOPMAP	(NBBY * sizeof(popmap_t))
112 
113 /*
114  * The number of population map entries in a reservation
115  */
116 #define	NPOPMAP		howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
117 
118 /*
119  * Number of elapsed ticks before we update the LRU queue position.  Used
120  * to reduce contention and churn on the list.
121  */
122 #define	PARTPOPSLOP	1
123 
124 /*
125  * Clear a bit in the population map.
126  */
127 static __inline void
128 popmap_clear(popmap_t popmap[], int i)
129 {
130 
131 	popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
132 }
133 
134 /*
135  * Set a bit in the population map.
136  */
137 static __inline void
138 popmap_set(popmap_t popmap[], int i)
139 {
140 
141 	popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
142 }
143 
144 /*
145  * Is a bit in the population map clear?
146  */
147 static __inline boolean_t
148 popmap_is_clear(popmap_t popmap[], int i)
149 {
150 
151 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
152 }
153 
154 /*
155  * Is a bit in the population map set?
156  */
157 static __inline boolean_t
158 popmap_is_set(popmap_t popmap[], int i)
159 {
160 
161 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
162 }
163 
164 /*
165  * The reservation structure
166  *
167  * A reservation structure is constructed whenever a large physical page is
168  * speculatively allocated to an object.  The reservation provides the small
169  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
170  * within that object.  The reservation's "popcnt" tracks the number of these
171  * small physical pages that are in use at any given time.  When and if the
172  * reservation is not fully utilized, it appears in the queue of partially
173  * populated reservations.  The reservation always appears on the containing
174  * object's list of reservations.
175  *
176  * A partially populated reservation can be broken and reclaimed at any time.
177  *
178  * r - vm_reserv_lock
179  * d - vm_reserv_domain_lock
180  * o - vm_reserv_object_lock
181  * c - constant after boot
182  */
183 struct vm_reserv {
184 	struct mtx	lock;			/* reservation lock. */
185 	TAILQ_ENTRY(vm_reserv) partpopq;	/* (d) per-domain queue. */
186 	LIST_ENTRY(vm_reserv) objq;		/* (o, r) object queue */
187 	vm_object_t	object;			/* (o, r) containing object */
188 	vm_pindex_t	pindex;			/* (o, r) offset in object */
189 	vm_page_t	pages;			/* (c) first page  */
190 	uint16_t	domain;			/* (c) NUMA domain. */
191 	uint16_t	popcnt;			/* (r) # of pages in use */
192 	int		lasttick;		/* (r) last pop update tick. */
193 	char		inpartpopq;		/* (d) */
194 	popmap_t	popmap[NPOPMAP];	/* (r) bit vector, used pages */
195 };
196 
197 #define	vm_reserv_lockptr(rv)		(&(rv)->lock)
198 #define	vm_reserv_assert_locked(rv)					\
199 	    mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
200 #define	vm_reserv_lock(rv)		mtx_lock(vm_reserv_lockptr(rv))
201 #define	vm_reserv_trylock(rv)		mtx_trylock(vm_reserv_lockptr(rv))
202 #define	vm_reserv_unlock(rv)		mtx_unlock(vm_reserv_lockptr(rv))
203 
204 static struct mtx_padalign vm_reserv_domain_locks[MAXMEMDOM];
205 
206 #define	vm_reserv_domain_lockptr(d)	&vm_reserv_domain_locks[(d)]
207 #define	vm_reserv_domain_lock(d)	mtx_lock(vm_reserv_domain_lockptr(d))
208 #define	vm_reserv_domain_unlock(d)	mtx_unlock(vm_reserv_domain_lockptr(d))
209 
210 /*
211  * The reservation array
212  *
213  * This array is analoguous in function to vm_page_array.  It differs in the
214  * respect that it may contain a greater number of useful reservation
215  * structures than there are (physical) superpages.  These "invalid"
216  * reservation structures exist to trade-off space for time in the
217  * implementation of vm_reserv_from_page().  Invalid reservation structures are
218  * distinguishable from "valid" reservation structures by inspecting the
219  * reservation's "pages" field.  Invalid reservation structures have a NULL
220  * "pages" field.
221  *
222  * vm_reserv_from_page() maps a small (physical) page to an element of this
223  * array by computing a physical reservation number from the page's physical
224  * address.  The physical reservation number is used as the array index.
225  *
226  * An "active" reservation is a valid reservation structure that has a non-NULL
227  * "object" field and a non-zero "popcnt" field.  In other words, every active
228  * reservation belongs to a particular object.  Moreover, every active
229  * reservation has an entry in the containing object's list of reservations.
230  */
231 static vm_reserv_t vm_reserv_array;
232 
233 /*
234  * The partially populated reservation queue
235  *
236  * This queue enables the fast recovery of an unused free small page from a
237  * partially populated reservation.  The reservation at the head of this queue
238  * is the least recently changed, partially populated reservation.
239  *
240  * Access to this queue is synchronized by the free page queue lock.
241  */
242 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop[MAXMEMDOM];
243 
244 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
245 
246 static counter_u64_t vm_reserv_broken = EARLY_COUNTER;
247 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
248     &vm_reserv_broken, "Cumulative number of broken reservations");
249 
250 static counter_u64_t vm_reserv_freed = EARLY_COUNTER;
251 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
252     &vm_reserv_freed, "Cumulative number of freed reservations");
253 
254 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
255 
256 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
257     sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
258 
259 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
260 
261 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
262     sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
263 
264 static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER;
265 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
266     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
267 
268 /*
269  * The object lock pool is used to synchronize the rvq.  We can not use a
270  * pool mutex because it is required before malloc works.
271  *
272  * The "hash" function could be made faster without divide and modulo.
273  */
274 #define	VM_RESERV_OBJ_LOCK_COUNT	MAXCPU
275 
276 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
277 
278 #define	vm_reserv_object_lock_idx(object)			\
279 	    (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
280 #define	vm_reserv_object_lock_ptr(object)			\
281 	    &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
282 #define	vm_reserv_object_lock(object)				\
283 	    mtx_lock(vm_reserv_object_lock_ptr((object)))
284 #define	vm_reserv_object_unlock(object)				\
285 	    mtx_unlock(vm_reserv_object_lock_ptr((object)))
286 
287 static void		vm_reserv_break(vm_reserv_t rv);
288 static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
289 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
290 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
291 			    vm_pindex_t pindex);
292 static void		vm_reserv_populate(vm_reserv_t rv, int index);
293 static void		vm_reserv_reclaim(vm_reserv_t rv);
294 
295 /*
296  * Returns the current number of full reservations.
297  *
298  * Since the number of full reservations is computed without acquiring the
299  * free page queue lock, the returned value may be inexact.
300  */
301 static int
302 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
303 {
304 	vm_paddr_t paddr;
305 	struct vm_phys_seg *seg;
306 	vm_reserv_t rv;
307 	int fullpop, segind;
308 
309 	fullpop = 0;
310 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
311 		seg = &vm_phys_segs[segind];
312 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
313 		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
314 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
315 			fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
316 			paddr += VM_LEVEL_0_SIZE;
317 		}
318 	}
319 	return (sysctl_handle_int(oidp, &fullpop, 0, req));
320 }
321 
322 /*
323  * Describes the current state of the partially populated reservation queue.
324  */
325 static int
326 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
327 {
328 	struct sbuf sbuf;
329 	vm_reserv_t rv;
330 	int counter, error, domain, level, unused_pages;
331 
332 	error = sysctl_wire_old_buffer(req, 0);
333 	if (error != 0)
334 		return (error);
335 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
336 	sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
337 	for (domain = 0; domain < vm_ndomains; domain++) {
338 		for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
339 			counter = 0;
340 			unused_pages = 0;
341 			vm_reserv_domain_lock(domain);
342 			TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) {
343 				counter++;
344 				unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
345 			}
346 			vm_reserv_domain_unlock(domain);
347 			sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
348 			    domain, level,
349 			    unused_pages * ((int)PAGE_SIZE / 1024), counter);
350 		}
351 	}
352 	error = sbuf_finish(&sbuf);
353 	sbuf_delete(&sbuf);
354 	return (error);
355 }
356 
357 /*
358  * Remove a reservation from the object's objq.
359  */
360 static void
361 vm_reserv_remove(vm_reserv_t rv)
362 {
363 	vm_object_t object;
364 
365 	vm_reserv_assert_locked(rv);
366 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
367 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
368 	KASSERT(rv->object != NULL,
369 	    ("vm_reserv_remove: reserv %p is free", rv));
370 	KASSERT(!rv->inpartpopq,
371 	    ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
372 	object = rv->object;
373 	vm_reserv_object_lock(object);
374 	LIST_REMOVE(rv, objq);
375 	rv->object = NULL;
376 	vm_reserv_object_unlock(object);
377 }
378 
379 /*
380  * Insert a new reservation into the object's objq.
381  */
382 static void
383 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
384 {
385 	int i;
386 
387 	vm_reserv_assert_locked(rv);
388 	CTR6(KTR_VM,
389 	    "%s: rv %p(%p) object %p new %p popcnt %d",
390 	    __FUNCTION__, rv, rv->pages, rv->object, object,
391 	   rv->popcnt);
392 	KASSERT(rv->object == NULL,
393 	    ("vm_reserv_insert: reserv %p isn't free", rv));
394 	KASSERT(rv->popcnt == 0,
395 	    ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
396 	KASSERT(!rv->inpartpopq,
397 	    ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
398 	for (i = 0; i < NPOPMAP; i++)
399 		KASSERT(rv->popmap[i] == 0,
400 		    ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
401 	vm_reserv_object_lock(object);
402 	rv->pindex = pindex;
403 	rv->object = object;
404 	rv->lasttick = ticks;
405 	LIST_INSERT_HEAD(&object->rvq, rv, objq);
406 	vm_reserv_object_unlock(object);
407 }
408 
409 /*
410  * Reduces the given reservation's population count.  If the population count
411  * becomes zero, the reservation is destroyed.  Additionally, moves the
412  * reservation to the tail of the partially populated reservation queue if the
413  * population count is non-zero.
414  */
415 static void
416 vm_reserv_depopulate(vm_reserv_t rv, int index)
417 {
418 	struct vm_domain *vmd;
419 
420 	vm_reserv_assert_locked(rv);
421 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
422 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
423 	KASSERT(rv->object != NULL,
424 	    ("vm_reserv_depopulate: reserv %p is free", rv));
425 	KASSERT(popmap_is_set(rv->popmap, index),
426 	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
427 	    index));
428 	KASSERT(rv->popcnt > 0,
429 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
430 	KASSERT(rv->domain < vm_ndomains,
431 	    ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
432 	    rv, rv->domain));
433 	if (rv->popcnt == VM_LEVEL_0_NPAGES) {
434 		KASSERT(rv->pages->psind == 1,
435 		    ("vm_reserv_depopulate: reserv %p is already demoted",
436 		    rv));
437 		rv->pages->psind = 0;
438 	}
439 	popmap_clear(rv->popmap, index);
440 	rv->popcnt--;
441 	if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
442 	    rv->popcnt == 0) {
443 		vm_reserv_domain_lock(rv->domain);
444 		if (rv->inpartpopq) {
445 			TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
446 			rv->inpartpopq = FALSE;
447 		}
448 		if (rv->popcnt != 0) {
449 			rv->inpartpopq = TRUE;
450 			TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
451 		}
452 		vm_reserv_domain_unlock(rv->domain);
453 		rv->lasttick = ticks;
454 	}
455 	vmd = VM_DOMAIN(rv->domain);
456 	if (rv->popcnt == 0) {
457 		vm_reserv_remove(rv);
458 		vm_domain_free_lock(vmd);
459 		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
460 		vm_domain_free_unlock(vmd);
461 		counter_u64_add(vm_reserv_freed, 1);
462 	}
463 	vm_domain_freecnt_inc(vmd, 1);
464 }
465 
466 /*
467  * Returns the reservation to which the given page might belong.
468  */
469 static __inline vm_reserv_t
470 vm_reserv_from_page(vm_page_t m)
471 {
472 
473 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
474 }
475 
476 /*
477  * Returns an existing reservation or NULL and initialized successor pointer.
478  */
479 static vm_reserv_t
480 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
481     vm_page_t mpred, vm_page_t *msuccp)
482 {
483 	vm_reserv_t rv;
484 	vm_page_t msucc;
485 
486 	msucc = NULL;
487 	if (mpred != NULL) {
488 		KASSERT(mpred->object == object,
489 		    ("vm_reserv_from_object: object doesn't contain mpred"));
490 		KASSERT(mpred->pindex < pindex,
491 		    ("vm_reserv_from_object: mpred doesn't precede pindex"));
492 		rv = vm_reserv_from_page(mpred);
493 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
494 			goto found;
495 		msucc = TAILQ_NEXT(mpred, listq);
496 	} else
497 		msucc = TAILQ_FIRST(&object->memq);
498 	if (msucc != NULL) {
499 		KASSERT(msucc->pindex > pindex,
500 		    ("vm_reserv_from_object: msucc doesn't succeed pindex"));
501 		rv = vm_reserv_from_page(msucc);
502 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
503 			goto found;
504 	}
505 	rv = NULL;
506 
507 found:
508 	*msuccp = msucc;
509 
510 	return (rv);
511 }
512 
513 /*
514  * Returns TRUE if the given reservation contains the given page index and
515  * FALSE otherwise.
516  */
517 static __inline boolean_t
518 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
519 {
520 
521 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
522 }
523 
524 /*
525  * Increases the given reservation's population count.  Moves the reservation
526  * to the tail of the partially populated reservation queue.
527  *
528  * The free page queue must be locked.
529  */
530 static void
531 vm_reserv_populate(vm_reserv_t rv, int index)
532 {
533 
534 	vm_reserv_assert_locked(rv);
535 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
536 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
537 	KASSERT(rv->object != NULL,
538 	    ("vm_reserv_populate: reserv %p is free", rv));
539 	KASSERT(popmap_is_clear(rv->popmap, index),
540 	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
541 	    index));
542 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
543 	    ("vm_reserv_populate: reserv %p is already full", rv));
544 	KASSERT(rv->pages->psind == 0,
545 	    ("vm_reserv_populate: reserv %p is already promoted", rv));
546 	KASSERT(rv->domain < vm_ndomains,
547 	    ("vm_reserv_populate: reserv %p's domain is corrupted %d",
548 	    rv, rv->domain));
549 	popmap_set(rv->popmap, index);
550 	rv->popcnt++;
551 	if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
552 	    rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
553 		return;
554 	rv->lasttick = ticks;
555 	vm_reserv_domain_lock(rv->domain);
556 	if (rv->inpartpopq) {
557 		TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
558 		rv->inpartpopq = FALSE;
559 	}
560 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
561 		rv->inpartpopq = TRUE;
562 		TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
563 	} else {
564 		KASSERT(rv->pages->psind == 0,
565 		    ("vm_reserv_populate: reserv %p is already promoted",
566 		    rv));
567 		rv->pages->psind = 1;
568 	}
569 	vm_reserv_domain_unlock(rv->domain);
570 }
571 
572 /*
573  * Attempts to allocate a contiguous set of physical pages from existing
574  * reservations.  See vm_reserv_alloc_contig() for a description of the
575  * function's parameters.
576  *
577  * The page "mpred" must immediately precede the offset "pindex" within the
578  * specified object.
579  *
580  * The object must be locked.
581  */
582 vm_page_t
583 vm_reserv_extend_contig(int req, vm_object_t object, vm_pindex_t pindex,
584     int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
585     u_long alignment, vm_paddr_t boundary, vm_page_t mpred)
586 {
587 	struct vm_domain *vmd;
588 	vm_paddr_t pa, size;
589 	vm_page_t m, msucc;
590 	vm_reserv_t rv;
591 	int i, index;
592 
593 	VM_OBJECT_ASSERT_WLOCKED(object);
594 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
595 
596 	/*
597 	 * Is a reservation fundamentally impossible?
598 	 */
599 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
600 	    pindex + npages > object->size || object->resident_page_count == 0)
601 		return (NULL);
602 
603 	/*
604 	 * All reservations of a particular size have the same alignment.
605 	 * Assuming that the first page is allocated from a reservation, the
606 	 * least significant bits of its physical address can be determined
607 	 * from its offset from the beginning of the reservation and the size
608 	 * of the reservation.
609 	 *
610 	 * Could the specified index within a reservation of the smallest
611 	 * possible size satisfy the alignment and boundary requirements?
612 	 */
613 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
614 	if ((pa & (alignment - 1)) != 0)
615 		return (NULL);
616 	size = npages << PAGE_SHIFT;
617 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
618 		return (NULL);
619 
620 	/*
621 	 * Look for an existing reservation.
622 	 */
623 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
624 	if (rv == NULL)
625 		return (NULL);
626 	KASSERT(object != kernel_object || rv->domain == domain,
627 	    ("vm_reserv_extend_contig: Domain mismatch from reservation."));
628 	index = VM_RESERV_INDEX(object, pindex);
629 	/* Does the allocation fit within the reservation? */
630 	if (index + npages > VM_LEVEL_0_NPAGES)
631 		return (NULL);
632 	domain = rv->domain;
633 	vmd = VM_DOMAIN(domain);
634 	vm_reserv_lock(rv);
635 	if (rv->object != object)
636 		goto out;
637 	m = &rv->pages[index];
638 	pa = VM_PAGE_TO_PHYS(m);
639 	if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
640 	    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
641 		goto out;
642 	/* Handle vm_page_rename(m, new_object, ...). */
643 	for (i = 0; i < npages; i++) {
644 		if (popmap_is_set(rv->popmap, index + i))
645 			goto out;
646 	}
647 	if (!vm_domain_allocate(vmd, req, npages))
648 		goto out;
649 	for (i = 0; i < npages; i++)
650 		vm_reserv_populate(rv, index + i);
651 	vm_reserv_unlock(rv);
652 	return (m);
653 
654 out:
655 	vm_reserv_unlock(rv);
656 	return (NULL);
657 }
658 
659 /*
660  * Allocates a contiguous set of physical pages of the given size "npages"
661  * from newly created reservations.  All of the physical pages
662  * must be at or above the given physical address "low" and below the given
663  * physical address "high".  The given value "alignment" determines the
664  * alignment of the first physical page in the set.  If the given value
665  * "boundary" is non-zero, then the set of physical pages cannot cross any
666  * physical address boundary that is a multiple of that value.  Both
667  * "alignment" and "boundary" must be a power of two.
668  *
669  * Callers should first invoke vm_reserv_extend_contig() to attempt an
670  * allocation from existing reservations.
671  *
672  * The page "mpred" must immediately precede the offset "pindex" within the
673  * specified object.
674  *
675  * The object and free page queue must be locked.
676  */
677 vm_page_t
678 vm_reserv_alloc_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain,
679     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
680     vm_paddr_t boundary, vm_page_t mpred)
681 {
682 	struct vm_domain *vmd;
683 	vm_paddr_t pa, size;
684 	vm_page_t m, m_ret, msucc;
685 	vm_pindex_t first, leftcap, rightcap;
686 	vm_reserv_t rv;
687 	u_long allocpages, maxpages, minpages;
688 	int i, index, n;
689 
690 	VM_OBJECT_ASSERT_WLOCKED(object);
691 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
692 
693 	/*
694 	 * Is a reservation fundamentally impossible?
695 	 */
696 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
697 	    pindex + npages > object->size)
698 		return (NULL);
699 
700 	/*
701 	 * All reservations of a particular size have the same alignment.
702 	 * Assuming that the first page is allocated from a reservation, the
703 	 * least significant bits of its physical address can be determined
704 	 * from its offset from the beginning of the reservation and the size
705 	 * of the reservation.
706 	 *
707 	 * Could the specified index within a reservation of the smallest
708 	 * possible size satisfy the alignment and boundary requirements?
709 	 */
710 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
711 	if ((pa & (alignment - 1)) != 0)
712 		return (NULL);
713 	size = npages << PAGE_SHIFT;
714 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
715 		return (NULL);
716 
717 	/*
718 	 * Callers should've extended an existing reservation prior to
719 	 * calling this function.  If a reservation exists it is
720 	 * incompatible with the allocation.
721 	 */
722 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
723 	if (rv != NULL)
724 		return (NULL);
725 
726 	/*
727 	 * Could at least one reservation fit between the first index to the
728 	 * left that can be used ("leftcap") and the first index to the right
729 	 * that cannot be used ("rightcap")?
730 	 *
731 	 * We must synchronize with the reserv object lock to protect the
732 	 * pindex/object of the resulting reservations against rename while
733 	 * we are inspecting.
734 	 */
735 	first = pindex - VM_RESERV_INDEX(object, pindex);
736 	minpages = VM_RESERV_INDEX(object, pindex) + npages;
737 	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
738 	allocpages = maxpages;
739 	vm_reserv_object_lock(object);
740 	if (mpred != NULL) {
741 		if ((rv = vm_reserv_from_page(mpred))->object != object)
742 			leftcap = mpred->pindex + 1;
743 		else
744 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
745 		if (leftcap > first) {
746 			vm_reserv_object_unlock(object);
747 			return (NULL);
748 		}
749 	}
750 	if (msucc != NULL) {
751 		if ((rv = vm_reserv_from_page(msucc))->object != object)
752 			rightcap = msucc->pindex;
753 		else
754 			rightcap = rv->pindex;
755 		if (first + maxpages > rightcap) {
756 			if (maxpages == VM_LEVEL_0_NPAGES) {
757 				vm_reserv_object_unlock(object);
758 				return (NULL);
759 			}
760 
761 			/*
762 			 * At least one reservation will fit between "leftcap"
763 			 * and "rightcap".  However, a reservation for the
764 			 * last of the requested pages will not fit.  Reduce
765 			 * the size of the upcoming allocation accordingly.
766 			 */
767 			allocpages = minpages;
768 		}
769 	}
770 	vm_reserv_object_unlock(object);
771 
772 	/*
773 	 * Would the last new reservation extend past the end of the object?
774 	 */
775 	if (first + maxpages > object->size) {
776 		/*
777 		 * Don't allocate the last new reservation if the object is a
778 		 * vnode or backed by another object that is a vnode.
779 		 */
780 		if (object->type == OBJT_VNODE ||
781 		    (object->backing_object != NULL &&
782 		    object->backing_object->type == OBJT_VNODE)) {
783 			if (maxpages == VM_LEVEL_0_NPAGES)
784 				return (NULL);
785 			allocpages = minpages;
786 		}
787 		/* Speculate that the object may grow. */
788 	}
789 
790 	/*
791 	 * Allocate the physical pages.  The alignment and boundary specified
792 	 * for this allocation may be different from the alignment and
793 	 * boundary specified for the requested pages.  For instance, the
794 	 * specified index may not be the first page within the first new
795 	 * reservation.
796 	 */
797 	m = NULL;
798 	vmd = VM_DOMAIN(domain);
799 	if (vm_domain_allocate(vmd, req, npages)) {
800 		vm_domain_free_lock(vmd);
801 		m = vm_phys_alloc_contig(domain, allocpages, low, high,
802 		    ulmax(alignment, VM_LEVEL_0_SIZE),
803 		    boundary > VM_LEVEL_0_SIZE ? boundary : 0);
804 		vm_domain_free_unlock(vmd);
805 		if (m == NULL) {
806 			vm_domain_freecnt_inc(vmd, npages);
807 			return (NULL);
808 		}
809 	} else
810 		return (NULL);
811 	KASSERT(vm_phys_domain(m) == domain,
812 	    ("vm_reserv_alloc_contig: Page domain does not match requested."));
813 
814 	/*
815 	 * The allocated physical pages always begin at a reservation
816 	 * boundary, but they do not always end at a reservation boundary.
817 	 * Initialize every reservation that is completely covered by the
818 	 * allocated physical pages.
819 	 */
820 	m_ret = NULL;
821 	index = VM_RESERV_INDEX(object, pindex);
822 	do {
823 		rv = vm_reserv_from_page(m);
824 		KASSERT(rv->pages == m,
825 		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
826 		    rv));
827 		vm_reserv_lock(rv);
828 		vm_reserv_insert(rv, object, first);
829 		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
830 		for (i = 0; i < n; i++)
831 			vm_reserv_populate(rv, index + i);
832 		npages -= n;
833 		if (m_ret == NULL) {
834 			m_ret = &rv->pages[index];
835 			index = 0;
836 		}
837 		vm_reserv_unlock(rv);
838 		m += VM_LEVEL_0_NPAGES;
839 		first += VM_LEVEL_0_NPAGES;
840 		allocpages -= VM_LEVEL_0_NPAGES;
841 	} while (allocpages >= VM_LEVEL_0_NPAGES);
842 	return (m_ret);
843 }
844 
845 /*
846  * Attempts to extend an existing reservation and allocate the page to the
847  * object.
848  *
849  * The page "mpred" must immediately precede the offset "pindex" within the
850  * specified object.
851  *
852  * The object must be locked.
853  */
854 vm_page_t
855 vm_reserv_extend(int req, vm_object_t object, vm_pindex_t pindex, int domain,
856     vm_page_t mpred)
857 {
858 	struct vm_domain *vmd;
859 	vm_page_t m, msucc;
860 	vm_reserv_t rv;
861 	int index;
862 
863 	VM_OBJECT_ASSERT_WLOCKED(object);
864 
865 	/*
866 	 * Could a reservation currently exist?
867 	 */
868 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
869 	    pindex >= object->size || object->resident_page_count == 0)
870 		return (NULL);
871 
872 	/*
873 	 * Look for an existing reservation.
874 	 */
875 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
876 	if (rv == NULL)
877 		return (NULL);
878 
879 	KASSERT(object != kernel_object || rv->domain == domain,
880 	    ("vm_reserv_extend: Domain mismatch from reservation."));
881 	domain = rv->domain;
882 	vmd = VM_DOMAIN(domain);
883 	index = VM_RESERV_INDEX(object, pindex);
884 	m = &rv->pages[index];
885 	vm_reserv_lock(rv);
886 	/* Handle reclaim race. */
887 	if (rv->object != object ||
888 	    /* Handle vm_page_rename(m, new_object, ...). */
889 	    popmap_is_set(rv->popmap, index)) {
890 		m = NULL;
891 		goto out;
892 	}
893 	if (vm_domain_allocate(vmd, req, 1) == 0)
894 		m = NULL;
895 	else
896 		vm_reserv_populate(rv, index);
897 out:
898 	vm_reserv_unlock(rv);
899 
900 	return (m);
901 }
902 
903 /*
904  * Attempts to allocate a new reservation for the object, and allocates a
905  * page from that reservation.  Callers should first invoke vm_reserv_extend()
906  * to attempt an allocation from an existing reservation.
907  *
908  * The page "mpred" must immediately precede the offset "pindex" within the
909  * specified object.
910  *
911  * The object and free page queue must be locked.
912  */
913 vm_page_t
914 vm_reserv_alloc_page(int req, vm_object_t object, vm_pindex_t pindex, int domain,
915     vm_page_t mpred)
916 {
917 	struct vm_domain *vmd;
918 	vm_page_t m, msucc;
919 	vm_pindex_t first, leftcap, rightcap;
920 	vm_reserv_t rv;
921 	int index;
922 
923 	VM_OBJECT_ASSERT_WLOCKED(object);
924 
925 	/*
926 	 * Is a reservation fundamentally impossible?
927 	 */
928 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
929 	    pindex >= object->size)
930 		return (NULL);
931 
932 	/*
933 	 * Callers should've extended an existing reservation prior to
934 	 * calling this function.  If a reservation exists it is
935 	 * incompatible with the allocation.
936 	 */
937 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
938 	if (rv != NULL)
939 		return (NULL);
940 
941 	/*
942 	 * Could a reservation fit between the first index to the left that
943 	 * can be used and the first index to the right that cannot be used?
944 	 *
945 	 * We must synchronize with the reserv object lock to protect the
946 	 * pindex/object of the resulting reservations against rename while
947 	 * we are inspecting.
948 	 */
949 	first = pindex - VM_RESERV_INDEX(object, pindex);
950 	vm_reserv_object_lock(object);
951 	if (mpred != NULL) {
952 		if ((rv = vm_reserv_from_page(mpred))->object != object)
953 			leftcap = mpred->pindex + 1;
954 		else
955 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
956 		if (leftcap > first) {
957 			vm_reserv_object_unlock(object);
958 			return (NULL);
959 		}
960 	}
961 	if (msucc != NULL) {
962 		if ((rv = vm_reserv_from_page(msucc))->object != object)
963 			rightcap = msucc->pindex;
964 		else
965 			rightcap = rv->pindex;
966 		if (first + VM_LEVEL_0_NPAGES > rightcap) {
967 			vm_reserv_object_unlock(object);
968 			return (NULL);
969 		}
970 	}
971 	vm_reserv_object_unlock(object);
972 
973 	/*
974 	 * Would a new reservation extend past the end of the object?
975 	 */
976 	if (first + VM_LEVEL_0_NPAGES > object->size) {
977 		/*
978 		 * Don't allocate a new reservation if the object is a vnode or
979 		 * backed by another object that is a vnode.
980 		 */
981 		if (object->type == OBJT_VNODE ||
982 		    (object->backing_object != NULL &&
983 		    object->backing_object->type == OBJT_VNODE))
984 			return (NULL);
985 		/* Speculate that the object may grow. */
986 	}
987 
988 	/*
989 	 * Allocate and populate the new reservation.
990 	 */
991 	m = NULL;
992 	vmd = VM_DOMAIN(domain);
993 	if (vm_domain_allocate(vmd, req, 1)) {
994 		vm_domain_free_lock(vmd);
995 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
996 		    VM_LEVEL_0_ORDER);
997 		vm_domain_free_unlock(vmd);
998 		if (m == NULL) {
999 			vm_domain_freecnt_inc(vmd, 1);
1000 			return (NULL);
1001 		}
1002 	} else
1003 		return (NULL);
1004 	rv = vm_reserv_from_page(m);
1005 	vm_reserv_lock(rv);
1006 	KASSERT(rv->pages == m,
1007 	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
1008 	vm_reserv_insert(rv, object, first);
1009 	index = VM_RESERV_INDEX(object, pindex);
1010 	vm_reserv_populate(rv, index);
1011 	vm_reserv_unlock(rv);
1012 
1013 	return (&rv->pages[index]);
1014 }
1015 
1016 /*
1017  * Breaks the given reservation.  All free pages in the reservation
1018  * are returned to the physical memory allocator.  The reservation's
1019  * population count and map are reset to their initial state.
1020  *
1021  * The given reservation must not be in the partially populated reservation
1022  * queue.  The free page queue lock must be held.
1023  */
1024 static void
1025 vm_reserv_break(vm_reserv_t rv)
1026 {
1027 	int begin_zeroes, hi, i, lo;
1028 
1029 	vm_reserv_assert_locked(rv);
1030 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1031 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1032 	vm_reserv_remove(rv);
1033 	rv->pages->psind = 0;
1034 	i = hi = 0;
1035 	do {
1036 		/* Find the next 0 bit.  Any previous 0 bits are < "hi". */
1037 		lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1038 		if (lo == 0) {
1039 			/* Redundantly clears bits < "hi". */
1040 			rv->popmap[i] = 0;
1041 			rv->popcnt -= NBPOPMAP - hi;
1042 			while (++i < NPOPMAP) {
1043 				lo = ffsl(~rv->popmap[i]);
1044 				if (lo == 0) {
1045 					rv->popmap[i] = 0;
1046 					rv->popcnt -= NBPOPMAP;
1047 				} else
1048 					break;
1049 			}
1050 			if (i == NPOPMAP)
1051 				break;
1052 			hi = 0;
1053 		}
1054 		KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo));
1055 		/* Convert from ffsl() to ordinary bit numbering. */
1056 		lo--;
1057 		if (lo > 0) {
1058 			/* Redundantly clears bits < "hi". */
1059 			rv->popmap[i] &= ~((1UL << lo) - 1);
1060 			rv->popcnt -= lo - hi;
1061 		}
1062 		begin_zeroes = NBPOPMAP * i + lo;
1063 		/* Find the next 1 bit. */
1064 		do
1065 			hi = ffsl(rv->popmap[i]);
1066 		while (hi == 0 && ++i < NPOPMAP);
1067 		if (i != NPOPMAP)
1068 			/* Convert from ffsl() to ordinary bit numbering. */
1069 			hi--;
1070 		vm_domain_free_lock(VM_DOMAIN(rv->domain));
1071 		vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i +
1072 		    hi - begin_zeroes);
1073 		vm_domain_free_unlock(VM_DOMAIN(rv->domain));
1074 	} while (i < NPOPMAP);
1075 	KASSERT(rv->popcnt == 0,
1076 	    ("vm_reserv_break: reserv %p's popcnt is corrupted", rv));
1077 	counter_u64_add(vm_reserv_broken, 1);
1078 }
1079 
1080 /*
1081  * Breaks all reservations belonging to the given object.
1082  */
1083 void
1084 vm_reserv_break_all(vm_object_t object)
1085 {
1086 	vm_reserv_t rv;
1087 
1088 	/*
1089 	 * This access of object->rvq is unsynchronized so that the
1090 	 * object rvq lock can nest after the domain_free lock.  We
1091 	 * must check for races in the results.  However, the object
1092 	 * lock prevents new additions, so we are guaranteed that when
1093 	 * it returns NULL the object is properly empty.
1094 	 */
1095 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
1096 		vm_reserv_lock(rv);
1097 		/* Reclaim race. */
1098 		if (rv->object != object) {
1099 			vm_reserv_unlock(rv);
1100 			continue;
1101 		}
1102 		vm_reserv_domain_lock(rv->domain);
1103 		if (rv->inpartpopq) {
1104 			TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1105 			rv->inpartpopq = FALSE;
1106 		}
1107 		vm_reserv_domain_unlock(rv->domain);
1108 		vm_reserv_break(rv);
1109 		vm_reserv_unlock(rv);
1110 	}
1111 }
1112 
1113 /*
1114  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1115  * page is freed and FALSE otherwise.
1116  *
1117  * The free page queue lock must be held.
1118  */
1119 boolean_t
1120 vm_reserv_free_page(vm_page_t m)
1121 {
1122 	vm_reserv_t rv;
1123 	boolean_t ret;
1124 
1125 	rv = vm_reserv_from_page(m);
1126 	if (rv->object == NULL)
1127 		return (FALSE);
1128 	vm_reserv_lock(rv);
1129 	/* Re-validate after lock. */
1130 	if (rv->object != NULL) {
1131 		vm_reserv_depopulate(rv, m - rv->pages);
1132 		ret = TRUE;
1133 	} else
1134 		ret = FALSE;
1135 	vm_reserv_unlock(rv);
1136 
1137 	return (ret);
1138 }
1139 
1140 /*
1141  * Initializes the reservation management system.  Specifically, initializes
1142  * the reservation array.
1143  *
1144  * Requires that vm_page_array and first_page are initialized!
1145  */
1146 void
1147 vm_reserv_init(void)
1148 {
1149 	vm_paddr_t paddr;
1150 	struct vm_phys_seg *seg;
1151 	struct vm_reserv *rv;
1152 	int i, segind;
1153 
1154 	/*
1155 	 * Initialize the reservation array.  Specifically, initialize the
1156 	 * "pages" field for every element that has an underlying superpage.
1157 	 */
1158 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1159 		seg = &vm_phys_segs[segind];
1160 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1161 		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
1162 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
1163 			rv->pages = PHYS_TO_VM_PAGE(paddr);
1164 			rv->domain = seg->domain;
1165 			mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1166 			paddr += VM_LEVEL_0_SIZE;
1167 		}
1168 	}
1169 	for (i = 0; i < MAXMEMDOM; i++) {
1170 		mtx_init(&vm_reserv_domain_locks[i], "VM reserv domain", NULL,
1171 		    MTX_DEF);
1172 		TAILQ_INIT(&vm_rvq_partpop[i]);
1173 	}
1174 
1175 	for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1176 		mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1177 		    MTX_DEF);
1178 }
1179 
1180 /*
1181  * Returns true if the given page belongs to a reservation and that page is
1182  * free.  Otherwise, returns false.
1183  */
1184 bool
1185 vm_reserv_is_page_free(vm_page_t m)
1186 {
1187 	vm_reserv_t rv;
1188 
1189 	rv = vm_reserv_from_page(m);
1190 	if (rv->object == NULL)
1191 		return (false);
1192 	return (popmap_is_clear(rv->popmap, m - rv->pages));
1193 }
1194 
1195 /*
1196  * If the given page belongs to a reservation, returns the level of that
1197  * reservation.  Otherwise, returns -1.
1198  */
1199 int
1200 vm_reserv_level(vm_page_t m)
1201 {
1202 	vm_reserv_t rv;
1203 
1204 	rv = vm_reserv_from_page(m);
1205 	return (rv->object != NULL ? 0 : -1);
1206 }
1207 
1208 /*
1209  * Returns a reservation level if the given page belongs to a fully populated
1210  * reservation and -1 otherwise.
1211  */
1212 int
1213 vm_reserv_level_iffullpop(vm_page_t m)
1214 {
1215 	vm_reserv_t rv;
1216 
1217 	rv = vm_reserv_from_page(m);
1218 	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1219 }
1220 
1221 /*
1222  * Breaks the given partially populated reservation, releasing its free pages
1223  * to the physical memory allocator.
1224  *
1225  * The free page queue lock must be held.
1226  */
1227 static void
1228 vm_reserv_reclaim(vm_reserv_t rv)
1229 {
1230 
1231 	vm_reserv_assert_locked(rv);
1232 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1233 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1234 	vm_reserv_domain_lock(rv->domain);
1235 	KASSERT(rv->inpartpopq,
1236 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1237 	KASSERT(rv->domain < vm_ndomains,
1238 	    ("vm_reserv_reclaim: reserv %p's domain is corrupted %d",
1239 	    rv, rv->domain));
1240 	TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1241 	rv->inpartpopq = FALSE;
1242 	vm_reserv_domain_unlock(rv->domain);
1243 	vm_reserv_break(rv);
1244 	counter_u64_add(vm_reserv_reclaimed, 1);
1245 }
1246 
1247 /*
1248  * Breaks the reservation at the head of the partially populated reservation
1249  * queue, releasing its free pages to the physical memory allocator.  Returns
1250  * TRUE if a reservation is broken and FALSE otherwise.
1251  *
1252  * The free page queue lock must be held.
1253  */
1254 boolean_t
1255 vm_reserv_reclaim_inactive(int domain)
1256 {
1257 	vm_reserv_t rv;
1258 
1259 	while ((rv = TAILQ_FIRST(&vm_rvq_partpop[domain])) != NULL) {
1260 		vm_reserv_lock(rv);
1261 		if (rv != TAILQ_FIRST(&vm_rvq_partpop[domain])) {
1262 			vm_reserv_unlock(rv);
1263 			continue;
1264 		}
1265 		vm_reserv_reclaim(rv);
1266 		vm_reserv_unlock(rv);
1267 		return (TRUE);
1268 	}
1269 	return (FALSE);
1270 }
1271 
1272 /*
1273  * Searches the partially populated reservation queue for the least recently
1274  * changed reservation with free pages that satisfy the given request for
1275  * contiguous physical memory.  If a satisfactory reservation is found, it is
1276  * broken.  Returns TRUE if a reservation is broken and FALSE otherwise.
1277  *
1278  * The free page queue lock must be held.
1279  */
1280 boolean_t
1281 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1282     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1283 {
1284 	vm_paddr_t pa, size;
1285 	vm_reserv_t rv, rvn;
1286 	int hi, i, lo, low_index, next_free;
1287 
1288 	if (npages > VM_LEVEL_0_NPAGES - 1)
1289 		return (FALSE);
1290 	size = npages << PAGE_SHIFT;
1291 	vm_reserv_domain_lock(domain);
1292 again:
1293 	for (rv = TAILQ_FIRST(&vm_rvq_partpop[domain]); rv != NULL; rv = rvn) {
1294 		rvn = TAILQ_NEXT(rv, partpopq);
1295 		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
1296 		if (pa + PAGE_SIZE - size < low) {
1297 			/* This entire reservation is too low; go to next. */
1298 			continue;
1299 		}
1300 		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1301 		if (pa + size > high) {
1302 			/* This entire reservation is too high; go to next. */
1303 			continue;
1304 		}
1305 		if (vm_reserv_trylock(rv) == 0) {
1306 			vm_reserv_domain_unlock(domain);
1307 			vm_reserv_lock(rv);
1308 			if (!rv->inpartpopq) {
1309 				vm_reserv_domain_lock(domain);
1310 				if (!rvn->inpartpopq)
1311 					goto again;
1312 				continue;
1313 			}
1314 		} else
1315 			vm_reserv_domain_unlock(domain);
1316 		if (pa < low) {
1317 			/* Start the search for free pages at "low". */
1318 			low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT;
1319 			i = low_index / NBPOPMAP;
1320 			hi = low_index % NBPOPMAP;
1321 		} else
1322 			i = hi = 0;
1323 		do {
1324 			/* Find the next free page. */
1325 			lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1326 			while (lo == 0 && ++i < NPOPMAP)
1327 				lo = ffsl(~rv->popmap[i]);
1328 			if (i == NPOPMAP)
1329 				break;
1330 			/* Convert from ffsl() to ordinary bit numbering. */
1331 			lo--;
1332 			next_free = NBPOPMAP * i + lo;
1333 			pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
1334 			KASSERT(pa >= low,
1335 			    ("vm_reserv_reclaim_contig: pa is too low"));
1336 			if (pa + size > high) {
1337 				/* The rest of this reservation is too high. */
1338 				break;
1339 			} else if ((pa & (alignment - 1)) != 0 ||
1340 			    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1341 				/*
1342 				 * The current page doesn't meet the alignment
1343 				 * and/or boundary requirements.  Continue
1344 				 * searching this reservation until the rest
1345 				 * of its free pages are either excluded or
1346 				 * exhausted.
1347 				 */
1348 				hi = lo + 1;
1349 				if (hi >= NBPOPMAP) {
1350 					hi = 0;
1351 					i++;
1352 				}
1353 				continue;
1354 			}
1355 			/* Find the next used page. */
1356 			hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
1357 			while (hi == 0 && ++i < NPOPMAP) {
1358 				if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
1359 				    size) {
1360 					vm_reserv_reclaim(rv);
1361 					vm_reserv_unlock(rv);
1362 					return (TRUE);
1363 				}
1364 				hi = ffsl(rv->popmap[i]);
1365 			}
1366 			/* Convert from ffsl() to ordinary bit numbering. */
1367 			if (i != NPOPMAP)
1368 				hi--;
1369 			if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
1370 			    size) {
1371 				vm_reserv_reclaim(rv);
1372 				vm_reserv_unlock(rv);
1373 				return (TRUE);
1374 			}
1375 		} while (i < NPOPMAP);
1376 		vm_reserv_unlock(rv);
1377 		vm_reserv_domain_lock(domain);
1378 		if (rvn != NULL && !rvn->inpartpopq)
1379 			goto again;
1380 	}
1381 	vm_reserv_domain_unlock(domain);
1382 	return (FALSE);
1383 }
1384 
1385 /*
1386  * Transfers the reservation underlying the given page to a new object.
1387  *
1388  * The object must be locked.
1389  */
1390 void
1391 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1392     vm_pindex_t old_object_offset)
1393 {
1394 	vm_reserv_t rv;
1395 
1396 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1397 	rv = vm_reserv_from_page(m);
1398 	if (rv->object == old_object) {
1399 		vm_reserv_lock(rv);
1400 		CTR6(KTR_VM,
1401 		    "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1402 		    __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1403 		    rv->inpartpopq);
1404 		if (rv->object == old_object) {
1405 			vm_reserv_object_lock(old_object);
1406 			rv->object = NULL;
1407 			LIST_REMOVE(rv, objq);
1408 			vm_reserv_object_unlock(old_object);
1409 			vm_reserv_object_lock(new_object);
1410 			rv->object = new_object;
1411 			rv->pindex -= old_object_offset;
1412 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1413 			vm_reserv_object_unlock(new_object);
1414 		}
1415 		vm_reserv_unlock(rv);
1416 	}
1417 }
1418 
1419 /*
1420  * Returns the size (in bytes) of a reservation of the specified level.
1421  */
1422 int
1423 vm_reserv_size(int level)
1424 {
1425 
1426 	switch (level) {
1427 	case 0:
1428 		return (VM_LEVEL_0_SIZE);
1429 	case -1:
1430 		return (PAGE_SIZE);
1431 	default:
1432 		return (0);
1433 	}
1434 }
1435 
1436 /*
1437  * Allocates the virtual and physical memory required by the reservation
1438  * management system's data structures, in particular, the reservation array.
1439  */
1440 vm_paddr_t
1441 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
1442 {
1443 	vm_paddr_t new_end;
1444 	size_t size;
1445 
1446 	/*
1447 	 * Calculate the size (in bytes) of the reservation array.  Round up
1448 	 * from "high_water" because every small page is mapped to an element
1449 	 * in the reservation array based on its physical address.  Thus, the
1450 	 * number of elements in the reservation array can be greater than the
1451 	 * number of superpages.
1452 	 */
1453 	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1454 
1455 	/*
1456 	 * Allocate and map the physical memory for the reservation array.  The
1457 	 * next available virtual address is returned by reference.
1458 	 */
1459 	new_end = end - round_page(size);
1460 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1461 	    VM_PROT_READ | VM_PROT_WRITE);
1462 	bzero(vm_reserv_array, size);
1463 
1464 	/*
1465 	 * Return the next available physical address.
1466 	 */
1467 	return (new_end);
1468 }
1469 
1470 /*
1471  * Initializes the reservation management system.  Specifically, initializes
1472  * the reservation counters.
1473  */
1474 static void
1475 vm_reserv_counter_init(void *unused)
1476 {
1477 
1478 	vm_reserv_freed = counter_u64_alloc(M_WAITOK);
1479 	vm_reserv_broken = counter_u64_alloc(M_WAITOK);
1480 	vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK);
1481 }
1482 SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY,
1483     vm_reserv_counter_init, NULL);
1484 
1485 /*
1486  * Returns the superpage containing the given page.
1487  */
1488 vm_page_t
1489 vm_reserv_to_superpage(vm_page_t m)
1490 {
1491 	vm_reserv_t rv;
1492 
1493 	VM_OBJECT_ASSERT_LOCKED(m->object);
1494 	rv = vm_reserv_from_page(m);
1495 	if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1496 		m = rv->pages;
1497 	else
1498 		m = NULL;
1499 
1500 	return (m);
1501 }
1502 
1503 #endif	/* VM_NRESERVLEVEL > 0 */
1504