1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2006 Rice University 5 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Alan L. Cox, 9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Superpage reservation management module 36 * 37 * Any external functions defined by this module are only to be used by the 38 * virtual memory system. 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_vm.h" 45 46 #include <sys/param.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mutex.h> 51 #include <sys/queue.h> 52 #include <sys/rwlock.h> 53 #include <sys/sbuf.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 #include <sys/vmmeter.h> 57 58 #include <vm/vm.h> 59 #include <vm/vm_param.h> 60 #include <vm/vm_object.h> 61 #include <vm/vm_page.h> 62 #include <vm/vm_pageout.h> 63 #include <vm/vm_phys.h> 64 #include <vm/vm_pagequeue.h> 65 #include <vm/vm_radix.h> 66 #include <vm/vm_reserv.h> 67 68 /* 69 * The reservation system supports the speculative allocation of large physical 70 * pages ("superpages"). Speculative allocation enables the fully automatic 71 * utilization of superpages by the virtual memory system. In other words, no 72 * programmatic directives are required to use superpages. 73 */ 74 75 #if VM_NRESERVLEVEL > 0 76 77 /* 78 * The number of small pages that are contained in a level 0 reservation 79 */ 80 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 81 82 /* 83 * The number of bits by which a physical address is shifted to obtain the 84 * reservation number 85 */ 86 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 87 88 /* 89 * The size of a level 0 reservation in bytes 90 */ 91 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 92 93 /* 94 * Computes the index of the small page underlying the given (object, pindex) 95 * within the reservation's array of small pages. 96 */ 97 #define VM_RESERV_INDEX(object, pindex) \ 98 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 99 100 /* 101 * The size of a population map entry 102 */ 103 typedef u_long popmap_t; 104 105 /* 106 * The number of bits in a population map entry 107 */ 108 #define NBPOPMAP (NBBY * sizeof(popmap_t)) 109 110 /* 111 * The number of population map entries in a reservation 112 */ 113 #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP) 114 115 /* 116 * Clear a bit in the population map. 117 */ 118 static __inline void 119 popmap_clear(popmap_t popmap[], int i) 120 { 121 122 popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP)); 123 } 124 125 /* 126 * Set a bit in the population map. 127 */ 128 static __inline void 129 popmap_set(popmap_t popmap[], int i) 130 { 131 132 popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP); 133 } 134 135 /* 136 * Is a bit in the population map clear? 137 */ 138 static __inline boolean_t 139 popmap_is_clear(popmap_t popmap[], int i) 140 { 141 142 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0); 143 } 144 145 /* 146 * Is a bit in the population map set? 147 */ 148 static __inline boolean_t 149 popmap_is_set(popmap_t popmap[], int i) 150 { 151 152 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0); 153 } 154 155 /* 156 * The reservation structure 157 * 158 * A reservation structure is constructed whenever a large physical page is 159 * speculatively allocated to an object. The reservation provides the small 160 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 161 * within that object. The reservation's "popcnt" tracks the number of these 162 * small physical pages that are in use at any given time. When and if the 163 * reservation is not fully utilized, it appears in the queue of partially 164 * populated reservations. The reservation always appears on the containing 165 * object's list of reservations. 166 * 167 * A partially populated reservation can be broken and reclaimed at any time. 168 * 169 * f - vm_domain_free_lock 170 * o - vm_reserv_object_lock 171 * c - constant after boot 172 */ 173 struct vm_reserv { 174 TAILQ_ENTRY(vm_reserv) partpopq; /* (f) per-domain queue. */ 175 LIST_ENTRY(vm_reserv) objq; /* (o, f) object queue */ 176 vm_object_t object; /* (o, f) containing object */ 177 vm_pindex_t pindex; /* (o, f) offset in object */ 178 vm_page_t pages; /* (c) first page */ 179 int domain; /* (c) NUMA domain. */ 180 int popcnt; /* (f) # of pages in use */ 181 char inpartpopq; /* (f) */ 182 popmap_t popmap[NPOPMAP]; /* (f) bit vector, used pages */ 183 }; 184 185 /* 186 * The reservation array 187 * 188 * This array is analoguous in function to vm_page_array. It differs in the 189 * respect that it may contain a greater number of useful reservation 190 * structures than there are (physical) superpages. These "invalid" 191 * reservation structures exist to trade-off space for time in the 192 * implementation of vm_reserv_from_page(). Invalid reservation structures are 193 * distinguishable from "valid" reservation structures by inspecting the 194 * reservation's "pages" field. Invalid reservation structures have a NULL 195 * "pages" field. 196 * 197 * vm_reserv_from_page() maps a small (physical) page to an element of this 198 * array by computing a physical reservation number from the page's physical 199 * address. The physical reservation number is used as the array index. 200 * 201 * An "active" reservation is a valid reservation structure that has a non-NULL 202 * "object" field and a non-zero "popcnt" field. In other words, every active 203 * reservation belongs to a particular object. Moreover, every active 204 * reservation has an entry in the containing object's list of reservations. 205 */ 206 static vm_reserv_t vm_reserv_array; 207 208 /* 209 * The partially populated reservation queue 210 * 211 * This queue enables the fast recovery of an unused free small page from a 212 * partially populated reservation. The reservation at the head of this queue 213 * is the least recently changed, partially populated reservation. 214 * 215 * Access to this queue is synchronized by the free page queue lock. 216 */ 217 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop[MAXMEMDOM]; 218 219 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); 220 221 static long vm_reserv_broken; 222 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 223 &vm_reserv_broken, 0, "Cumulative number of broken reservations"); 224 225 static long vm_reserv_freed; 226 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 227 &vm_reserv_freed, 0, "Cumulative number of freed reservations"); 228 229 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); 230 231 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 232 sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); 233 234 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 235 236 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 237 sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues"); 238 239 static long vm_reserv_reclaimed; 240 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 241 &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations"); 242 243 /* 244 * The object lock pool is used to synchronize the rvq. We can not use a 245 * pool mutex because it is required before malloc works. 246 * 247 * The "hash" function could be made faster without divide and modulo. 248 */ 249 #define VM_RESERV_OBJ_LOCK_COUNT MAXCPU 250 251 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT]; 252 253 #define vm_reserv_object_lock_idx(object) \ 254 (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT) 255 #define vm_reserv_object_lock_ptr(object) \ 256 &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))] 257 #define vm_reserv_object_lock(object) \ 258 mtx_lock(vm_reserv_object_lock_ptr((object))) 259 #define vm_reserv_object_unlock(object) \ 260 mtx_unlock(vm_reserv_object_lock_ptr((object))) 261 262 static void vm_reserv_break(vm_reserv_t rv); 263 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 264 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 265 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 266 vm_pindex_t pindex); 267 static void vm_reserv_populate(vm_reserv_t rv, int index); 268 static void vm_reserv_reclaim(vm_reserv_t rv); 269 270 /* 271 * Returns the current number of full reservations. 272 * 273 * Since the number of full reservations is computed without acquiring the 274 * free page queue lock, the returned value may be inexact. 275 */ 276 static int 277 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) 278 { 279 vm_paddr_t paddr; 280 struct vm_phys_seg *seg; 281 vm_reserv_t rv; 282 int fullpop, segind; 283 284 fullpop = 0; 285 for (segind = 0; segind < vm_phys_nsegs; segind++) { 286 seg = &vm_phys_segs[segind]; 287 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 288 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 289 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; 290 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; 291 paddr += VM_LEVEL_0_SIZE; 292 } 293 } 294 return (sysctl_handle_int(oidp, &fullpop, 0, req)); 295 } 296 297 /* 298 * Describes the current state of the partially populated reservation queue. 299 */ 300 static int 301 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 302 { 303 struct sbuf sbuf; 304 vm_reserv_t rv; 305 int counter, error, domain, level, unused_pages; 306 307 error = sysctl_wire_old_buffer(req, 0); 308 if (error != 0) 309 return (error); 310 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 311 sbuf_printf(&sbuf, "\nDOMAIN LEVEL SIZE NUMBER\n\n"); 312 for (domain = 0; domain < vm_ndomains; domain++) { 313 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 314 counter = 0; 315 unused_pages = 0; 316 vm_domain_free_lock(VM_DOMAIN(domain)); 317 TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) { 318 counter++; 319 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 320 } 321 vm_domain_free_unlock(VM_DOMAIN(domain)); 322 sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n", 323 domain, level, 324 unused_pages * ((int)PAGE_SIZE / 1024), counter); 325 } 326 } 327 error = sbuf_finish(&sbuf); 328 sbuf_delete(&sbuf); 329 return (error); 330 } 331 332 /* 333 * Remove a reservation from the object's objq. 334 */ 335 static void 336 vm_reserv_remove(vm_reserv_t rv) 337 { 338 vm_object_t object; 339 340 KASSERT(rv->object != NULL, 341 ("vm_reserv_remove: reserv %p is free", rv)); 342 KASSERT(!rv->inpartpopq, 343 ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv)); 344 object = rv->object; 345 vm_reserv_object_lock(object); 346 LIST_REMOVE(rv, objq); 347 rv->object = NULL; 348 vm_reserv_object_unlock(object); 349 } 350 351 /* 352 * Insert a new reservation into the object's objq. 353 */ 354 static void 355 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex) 356 { 357 int i; 358 359 KASSERT(rv->object == NULL, 360 ("vm_reserv_insert: reserv %p isn't free", rv)); 361 KASSERT(rv->popcnt == 0, 362 ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv)); 363 KASSERT(!rv->inpartpopq, 364 ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv)); 365 for (i = 0; i < NPOPMAP; i++) 366 KASSERT(rv->popmap[i] == 0, 367 ("vm_reserv_insert: reserv %p's popmap is corrupted", rv)); 368 vm_reserv_object_lock(object); 369 rv->pindex = pindex; 370 rv->object = object; 371 LIST_INSERT_HEAD(&object->rvq, rv, objq); 372 vm_reserv_object_unlock(object); 373 } 374 375 /* 376 * Reduces the given reservation's population count. If the population count 377 * becomes zero, the reservation is destroyed. Additionally, moves the 378 * reservation to the tail of the partially populated reservation queue if the 379 * population count is non-zero. 380 * 381 * The free page queue lock must be held. 382 */ 383 static void 384 vm_reserv_depopulate(vm_reserv_t rv, int index) 385 { 386 387 vm_domain_free_assert_locked(VM_DOMAIN(rv->domain)); 388 KASSERT(rv->object != NULL, 389 ("vm_reserv_depopulate: reserv %p is free", rv)); 390 KASSERT(popmap_is_set(rv->popmap, index), 391 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 392 index)); 393 KASSERT(rv->popcnt > 0, 394 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 395 KASSERT(rv->domain >= 0 && rv->domain < vm_ndomains, 396 ("vm_reserv_depopulate: reserv %p's domain is corrupted %d", 397 rv, rv->domain)); 398 if (rv->inpartpopq) { 399 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); 400 rv->inpartpopq = FALSE; 401 } else { 402 KASSERT(rv->pages->psind == 1, 403 ("vm_reserv_depopulate: reserv %p is already demoted", 404 rv)); 405 rv->pages->psind = 0; 406 } 407 popmap_clear(rv->popmap, index); 408 rv->popcnt--; 409 if (rv->popcnt == 0) { 410 vm_reserv_remove(rv); 411 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 412 vm_reserv_freed++; 413 } else { 414 rv->inpartpopq = TRUE; 415 TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq); 416 } 417 } 418 419 /* 420 * Returns the reservation to which the given page might belong. 421 */ 422 static __inline vm_reserv_t 423 vm_reserv_from_page(vm_page_t m) 424 { 425 426 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 427 } 428 429 /* 430 * Returns an existing reservation or NULL and initialized successor pointer. 431 */ 432 static vm_reserv_t 433 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex, 434 vm_page_t mpred, vm_page_t *msuccp) 435 { 436 vm_reserv_t rv; 437 vm_page_t msucc; 438 439 msucc = NULL; 440 if (mpred != NULL) { 441 KASSERT(mpred->object == object, 442 ("vm_reserv_from_object: object doesn't contain mpred")); 443 KASSERT(mpred->pindex < pindex, 444 ("vm_reserv_from_object: mpred doesn't precede pindex")); 445 rv = vm_reserv_from_page(mpred); 446 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 447 goto found; 448 msucc = TAILQ_NEXT(mpred, listq); 449 } else 450 msucc = TAILQ_FIRST(&object->memq); 451 if (msucc != NULL) { 452 KASSERT(msucc->pindex > pindex, 453 ("vm_reserv_from_object: msucc doesn't succeed pindex")); 454 rv = vm_reserv_from_page(msucc); 455 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 456 goto found; 457 } 458 rv = NULL; 459 460 found: 461 *msuccp = msucc; 462 463 return (rv); 464 } 465 466 /* 467 * Returns TRUE if the given reservation contains the given page index and 468 * FALSE otherwise. 469 */ 470 static __inline boolean_t 471 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 472 { 473 474 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 475 } 476 477 /* 478 * Increases the given reservation's population count. Moves the reservation 479 * to the tail of the partially populated reservation queue. 480 * 481 * The free page queue must be locked. 482 */ 483 static void 484 vm_reserv_populate(vm_reserv_t rv, int index) 485 { 486 487 vm_domain_free_assert_locked(VM_DOMAIN(rv->domain)); 488 KASSERT(rv->object != NULL, 489 ("vm_reserv_populate: reserv %p is free", rv)); 490 KASSERT(popmap_is_clear(rv->popmap, index), 491 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 492 index)); 493 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 494 ("vm_reserv_populate: reserv %p is already full", rv)); 495 KASSERT(rv->pages->psind == 0, 496 ("vm_reserv_populate: reserv %p is already promoted", rv)); 497 KASSERT(rv->domain >= 0 && rv->domain < vm_ndomains, 498 ("vm_reserv_populate: reserv %p's domain is corrupted %d", 499 rv, rv->domain)); 500 if (rv->inpartpopq) { 501 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); 502 rv->inpartpopq = FALSE; 503 } 504 popmap_set(rv->popmap, index); 505 rv->popcnt++; 506 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 507 rv->inpartpopq = TRUE; 508 TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq); 509 } else 510 rv->pages->psind = 1; 511 } 512 513 /* 514 * Attempts to allocate a contiguous set of physical pages from existing 515 * reservations. See vm_reserv_alloc_contig() for a description of the 516 * function's parameters. 517 * 518 * The page "mpred" must immediately precede the offset "pindex" within the 519 * specified object. 520 * 521 * The object must be locked. 522 */ 523 vm_page_t 524 vm_reserv_extend_contig(int req, vm_object_t object, vm_pindex_t pindex, 525 int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, 526 u_long alignment, vm_paddr_t boundary, vm_page_t mpred) 527 { 528 struct vm_domain *vmd; 529 vm_paddr_t pa, size; 530 vm_page_t m, msucc; 531 vm_reserv_t rv; 532 int i, index; 533 534 VM_OBJECT_ASSERT_WLOCKED(object); 535 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 536 537 /* 538 * Is a reservation fundamentally impossible? 539 */ 540 if (pindex < VM_RESERV_INDEX(object, pindex) || 541 pindex + npages > object->size || object->resident_page_count == 0) 542 return (NULL); 543 544 /* 545 * All reservations of a particular size have the same alignment. 546 * Assuming that the first page is allocated from a reservation, the 547 * least significant bits of its physical address can be determined 548 * from its offset from the beginning of the reservation and the size 549 * of the reservation. 550 * 551 * Could the specified index within a reservation of the smallest 552 * possible size satisfy the alignment and boundary requirements? 553 */ 554 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 555 if ((pa & (alignment - 1)) != 0) 556 return (NULL); 557 size = npages << PAGE_SHIFT; 558 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 559 return (NULL); 560 561 /* 562 * Look for an existing reservation. 563 */ 564 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 565 if (rv == NULL) 566 return (NULL); 567 KASSERT(object != kernel_object || rv->domain == domain, 568 ("vm_reserv_extend_contig: Domain mismatch from reservation.")); 569 index = VM_RESERV_INDEX(object, pindex); 570 /* Does the allocation fit within the reservation? */ 571 if (index + npages > VM_LEVEL_0_NPAGES) 572 return (NULL); 573 domain = rv->domain; 574 vmd = VM_DOMAIN(domain); 575 vm_domain_free_lock(vmd); 576 if (rv->object != object || !vm_domain_available(vmd, req, npages)) { 577 m = NULL; 578 goto out; 579 } 580 m = &rv->pages[index]; 581 pa = VM_PAGE_TO_PHYS(m); 582 if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 || 583 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) { 584 m = NULL; 585 goto out; 586 } 587 /* Handle vm_page_rename(m, new_object, ...). */ 588 for (i = 0; i < npages; i++) { 589 if (popmap_is_set(rv->popmap, index + i)) { 590 m = NULL; 591 goto out; 592 } 593 } 594 for (i = 0; i < npages; i++) 595 vm_reserv_populate(rv, index + i); 596 vm_domain_freecnt_dec(vmd, npages); 597 out: 598 vm_domain_free_unlock(vmd); 599 return (m); 600 } 601 602 /* 603 * Allocates a contiguous set of physical pages of the given size "npages" 604 * from newly created reservations. All of the physical pages 605 * must be at or above the given physical address "low" and below the given 606 * physical address "high". The given value "alignment" determines the 607 * alignment of the first physical page in the set. If the given value 608 * "boundary" is non-zero, then the set of physical pages cannot cross any 609 * physical address boundary that is a multiple of that value. Both 610 * "alignment" and "boundary" must be a power of two. 611 * 612 * Callers should first invoke vm_reserv_extend_contig() to attempt an 613 * allocation from existing reservations. 614 * 615 * The page "mpred" must immediately precede the offset "pindex" within the 616 * specified object. 617 * 618 * The object and free page queue must be locked. 619 */ 620 vm_page_t 621 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain, 622 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 623 vm_paddr_t boundary, vm_page_t mpred) 624 { 625 vm_paddr_t pa, size; 626 vm_page_t m, m_ret, msucc; 627 vm_pindex_t first, leftcap, rightcap; 628 vm_reserv_t rv; 629 u_long allocpages, maxpages, minpages; 630 int i, index, n; 631 632 vm_domain_free_assert_locked(VM_DOMAIN(domain)); 633 VM_OBJECT_ASSERT_WLOCKED(object); 634 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 635 636 /* 637 * Is a reservation fundamentally impossible? 638 */ 639 if (pindex < VM_RESERV_INDEX(object, pindex) || 640 pindex + npages > object->size) 641 return (NULL); 642 643 /* 644 * All reservations of a particular size have the same alignment. 645 * Assuming that the first page is allocated from a reservation, the 646 * least significant bits of its physical address can be determined 647 * from its offset from the beginning of the reservation and the size 648 * of the reservation. 649 * 650 * Could the specified index within a reservation of the smallest 651 * possible size satisfy the alignment and boundary requirements? 652 */ 653 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 654 if ((pa & (alignment - 1)) != 0) 655 return (NULL); 656 size = npages << PAGE_SHIFT; 657 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 658 return (NULL); 659 660 /* 661 * Callers should've extended an existing reservation prior to 662 * calling this function. If a reservation exists it is 663 * incompatible with the allocation. 664 */ 665 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 666 if (rv != NULL) 667 return (NULL); 668 669 /* 670 * Could at least one reservation fit between the first index to the 671 * left that can be used ("leftcap") and the first index to the right 672 * that cannot be used ("rightcap")? 673 * 674 * We must synchronize with the reserv object lock to protect the 675 * pindex/object of the resulting reservations against rename while 676 * we are inspecting. 677 */ 678 first = pindex - VM_RESERV_INDEX(object, pindex); 679 minpages = VM_RESERV_INDEX(object, pindex) + npages; 680 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 681 allocpages = maxpages; 682 vm_reserv_object_lock(object); 683 if (mpred != NULL) { 684 if ((rv = vm_reserv_from_page(mpred))->object != object) 685 leftcap = mpred->pindex + 1; 686 else 687 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 688 if (leftcap > first) { 689 vm_reserv_object_unlock(object); 690 return (NULL); 691 } 692 } 693 if (msucc != NULL) { 694 if ((rv = vm_reserv_from_page(msucc))->object != object) 695 rightcap = msucc->pindex; 696 else 697 rightcap = rv->pindex; 698 if (first + maxpages > rightcap) { 699 if (maxpages == VM_LEVEL_0_NPAGES) { 700 vm_reserv_object_unlock(object); 701 return (NULL); 702 } 703 704 /* 705 * At least one reservation will fit between "leftcap" 706 * and "rightcap". However, a reservation for the 707 * last of the requested pages will not fit. Reduce 708 * the size of the upcoming allocation accordingly. 709 */ 710 allocpages = minpages; 711 } 712 } 713 vm_reserv_object_unlock(object); 714 715 /* 716 * Would the last new reservation extend past the end of the object? 717 */ 718 if (first + maxpages > object->size) { 719 /* 720 * Don't allocate the last new reservation if the object is a 721 * vnode or backed by another object that is a vnode. 722 */ 723 if (object->type == OBJT_VNODE || 724 (object->backing_object != NULL && 725 object->backing_object->type == OBJT_VNODE)) { 726 if (maxpages == VM_LEVEL_0_NPAGES) 727 return (NULL); 728 allocpages = minpages; 729 } 730 /* Speculate that the object may grow. */ 731 } 732 733 /* 734 * Allocate the physical pages. The alignment and boundary specified 735 * for this allocation may be different from the alignment and 736 * boundary specified for the requested pages. For instance, the 737 * specified index may not be the first page within the first new 738 * reservation. 739 */ 740 m = vm_phys_alloc_contig(domain, allocpages, low, high, ulmax(alignment, 741 VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0); 742 if (m == NULL) 743 return (NULL); 744 KASSERT(vm_phys_domain(m) == domain, 745 ("vm_reserv_alloc_contig: Page domain does not match requested.")); 746 747 /* 748 * The allocated physical pages always begin at a reservation 749 * boundary, but they do not always end at a reservation boundary. 750 * Initialize every reservation that is completely covered by the 751 * allocated physical pages. 752 */ 753 m_ret = NULL; 754 index = VM_RESERV_INDEX(object, pindex); 755 do { 756 rv = vm_reserv_from_page(m); 757 KASSERT(rv->pages == m, 758 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 759 rv)); 760 vm_reserv_insert(rv, object, first); 761 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 762 for (i = 0; i < n; i++) 763 vm_reserv_populate(rv, index + i); 764 npages -= n; 765 if (m_ret == NULL) { 766 m_ret = &rv->pages[index]; 767 index = 0; 768 } 769 m += VM_LEVEL_0_NPAGES; 770 first += VM_LEVEL_0_NPAGES; 771 allocpages -= VM_LEVEL_0_NPAGES; 772 } while (allocpages >= VM_LEVEL_0_NPAGES); 773 return (m_ret); 774 } 775 776 /* 777 * Attempts to extend an existing reservation and allocate the page to the 778 * object. 779 * 780 * The page "mpred" must immediately precede the offset "pindex" within the 781 * specified object. 782 * 783 * The object must be locked. 784 */ 785 vm_page_t 786 vm_reserv_extend(int req, vm_object_t object, vm_pindex_t pindex, int domain, 787 vm_page_t mpred) 788 { 789 struct vm_domain *vmd; 790 vm_page_t m, msucc; 791 vm_reserv_t rv; 792 int index; 793 794 VM_OBJECT_ASSERT_WLOCKED(object); 795 796 /* 797 * Could a reservation currently exist? 798 */ 799 if (pindex < VM_RESERV_INDEX(object, pindex) || 800 pindex >= object->size || object->resident_page_count == 0) 801 return (NULL); 802 803 /* 804 * Look for an existing reservation. 805 */ 806 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 807 if (rv == NULL) 808 return (NULL); 809 810 KASSERT(object != kernel_object || rv->domain == domain, 811 ("vm_reserv_extend: Domain mismatch from reservation.")); 812 domain = rv->domain; 813 vmd = VM_DOMAIN(domain); 814 index = VM_RESERV_INDEX(object, pindex); 815 m = &rv->pages[index]; 816 vm_domain_free_lock(vmd); 817 if (vm_domain_available(vmd, req, 1) == 0 || 818 /* Handle reclaim race. */ 819 rv->object != object || 820 /* Handle vm_page_rename(m, new_object, ...). */ 821 popmap_is_set(rv->popmap, index)) 822 m = NULL; 823 if (m != NULL) { 824 vm_reserv_populate(rv, index); 825 vm_domain_freecnt_dec(vmd, 1); 826 } 827 vm_domain_free_unlock(vmd); 828 829 return (m); 830 } 831 832 /* 833 * Attempts to allocate a new reservation for the object, and allocates a 834 * page from that reservation. Callers should first invoke vm_reserv_extend() 835 * to attempt an allocation from an existing reservation. 836 * 837 * The page "mpred" must immediately precede the offset "pindex" within the 838 * specified object. 839 * 840 * The object and free page queue must be locked. 841 */ 842 vm_page_t 843 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain, 844 vm_page_t mpred) 845 { 846 vm_page_t m, msucc; 847 vm_pindex_t first, leftcap, rightcap; 848 vm_reserv_t rv; 849 int index; 850 851 vm_domain_free_assert_locked(VM_DOMAIN(domain)); 852 VM_OBJECT_ASSERT_WLOCKED(object); 853 854 /* 855 * Is a reservation fundamentally impossible? 856 */ 857 if (pindex < VM_RESERV_INDEX(object, pindex) || 858 pindex >= object->size) 859 return (NULL); 860 861 /* 862 * Callers should've extended an existing reservation prior to 863 * calling this function. If a reservation exists it is 864 * incompatible with the allocation. 865 */ 866 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 867 if (rv != NULL) 868 return (NULL); 869 870 /* 871 * Could a reservation fit between the first index to the left that 872 * can be used and the first index to the right that cannot be used? 873 * 874 * We must synchronize with the reserv object lock to protect the 875 * pindex/object of the resulting reservations against rename while 876 * we are inspecting. 877 */ 878 first = pindex - VM_RESERV_INDEX(object, pindex); 879 vm_reserv_object_lock(object); 880 if (mpred != NULL) { 881 if ((rv = vm_reserv_from_page(mpred))->object != object) 882 leftcap = mpred->pindex + 1; 883 else 884 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 885 if (leftcap > first) { 886 vm_reserv_object_unlock(object); 887 return (NULL); 888 } 889 } 890 if (msucc != NULL) { 891 if ((rv = vm_reserv_from_page(msucc))->object != object) 892 rightcap = msucc->pindex; 893 else 894 rightcap = rv->pindex; 895 if (first + VM_LEVEL_0_NPAGES > rightcap) { 896 vm_reserv_object_unlock(object); 897 return (NULL); 898 } 899 } 900 vm_reserv_object_unlock(object); 901 902 /* 903 * Would a new reservation extend past the end of the object? 904 */ 905 if (first + VM_LEVEL_0_NPAGES > object->size) { 906 /* 907 * Don't allocate a new reservation if the object is a vnode or 908 * backed by another object that is a vnode. 909 */ 910 if (object->type == OBJT_VNODE || 911 (object->backing_object != NULL && 912 object->backing_object->type == OBJT_VNODE)) 913 return (NULL); 914 /* Speculate that the object may grow. */ 915 } 916 917 /* 918 * Allocate and populate the new reservation. 919 */ 920 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); 921 if (m == NULL) 922 return (NULL); 923 rv = vm_reserv_from_page(m); 924 KASSERT(rv->pages == m, 925 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 926 vm_reserv_insert(rv, object, first); 927 index = VM_RESERV_INDEX(object, pindex); 928 vm_reserv_populate(rv, index); 929 return (&rv->pages[index]); 930 } 931 932 /* 933 * Breaks the given reservation. All free pages in the reservation 934 * are returned to the physical memory allocator. The reservation's 935 * population count and map are reset to their initial state. 936 * 937 * The given reservation must not be in the partially populated reservation 938 * queue. The free page queue lock must be held. 939 */ 940 static void 941 vm_reserv_break(vm_reserv_t rv) 942 { 943 int begin_zeroes, hi, i, lo; 944 945 vm_domain_free_assert_locked(VM_DOMAIN(rv->domain)); 946 vm_reserv_remove(rv); 947 rv->pages->psind = 0; 948 i = hi = 0; 949 do { 950 /* Find the next 0 bit. Any previous 0 bits are < "hi". */ 951 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 952 if (lo == 0) { 953 /* Redundantly clears bits < "hi". */ 954 rv->popmap[i] = 0; 955 rv->popcnt -= NBPOPMAP - hi; 956 while (++i < NPOPMAP) { 957 lo = ffsl(~rv->popmap[i]); 958 if (lo == 0) { 959 rv->popmap[i] = 0; 960 rv->popcnt -= NBPOPMAP; 961 } else 962 break; 963 } 964 if (i == NPOPMAP) 965 break; 966 hi = 0; 967 } 968 KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo)); 969 /* Convert from ffsl() to ordinary bit numbering. */ 970 lo--; 971 if (lo > 0) { 972 /* Redundantly clears bits < "hi". */ 973 rv->popmap[i] &= ~((1UL << lo) - 1); 974 rv->popcnt -= lo - hi; 975 } 976 begin_zeroes = NBPOPMAP * i + lo; 977 /* Find the next 1 bit. */ 978 do 979 hi = ffsl(rv->popmap[i]); 980 while (hi == 0 && ++i < NPOPMAP); 981 if (i != NPOPMAP) 982 /* Convert from ffsl() to ordinary bit numbering. */ 983 hi--; 984 vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i + 985 hi - begin_zeroes); 986 } while (i < NPOPMAP); 987 KASSERT(rv->popcnt == 0, 988 ("vm_reserv_break: reserv %p's popcnt is corrupted", rv)); 989 vm_reserv_broken++; 990 } 991 992 /* 993 * Breaks all reservations belonging to the given object. 994 */ 995 void 996 vm_reserv_break_all(vm_object_t object) 997 { 998 vm_reserv_t rv; 999 struct vm_domain *vmd; 1000 1001 /* 1002 * This access of object->rvq is unsynchronized so that the 1003 * object rvq lock can nest after the domain_free lock. We 1004 * must check for races in the results. However, the object 1005 * lock prevents new additions, so we are guaranteed that when 1006 * it returns NULL the object is properly empty. 1007 */ 1008 vmd = NULL; 1009 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 1010 if (vmd != VM_DOMAIN(rv->domain)) { 1011 if (vmd != NULL) 1012 vm_domain_free_unlock(vmd); 1013 vmd = VM_DOMAIN(rv->domain); 1014 vm_domain_free_lock(vmd); 1015 } 1016 /* Reclaim race. */ 1017 if (rv->object != object) 1018 continue; 1019 KASSERT(rv->object == object, 1020 ("vm_reserv_break_all: reserv %p is corrupted", rv)); 1021 if (rv->inpartpopq) { 1022 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); 1023 rv->inpartpopq = FALSE; 1024 } 1025 vm_reserv_break(rv); 1026 } 1027 if (vmd != NULL) 1028 vm_domain_free_unlock(vmd); 1029 } 1030 1031 /* 1032 * Frees the given page if it belongs to a reservation. Returns TRUE if the 1033 * page is freed and FALSE otherwise. 1034 * 1035 * The free page queue lock must be held. 1036 */ 1037 boolean_t 1038 vm_reserv_free_page(vm_page_t m) 1039 { 1040 vm_reserv_t rv; 1041 1042 rv = vm_reserv_from_page(m); 1043 if (rv->object == NULL) 1044 return (FALSE); 1045 vm_domain_free_assert_locked(VM_DOMAIN(rv->domain)); 1046 vm_reserv_depopulate(rv, m - rv->pages); 1047 return (TRUE); 1048 } 1049 1050 /* 1051 * Initializes the reservation management system. Specifically, initializes 1052 * the reservation array. 1053 * 1054 * Requires that vm_page_array and first_page are initialized! 1055 */ 1056 void 1057 vm_reserv_init(void) 1058 { 1059 vm_paddr_t paddr; 1060 struct vm_phys_seg *seg; 1061 int i, segind; 1062 1063 /* 1064 * Initialize the reservation array. Specifically, initialize the 1065 * "pages" field for every element that has an underlying superpage. 1066 */ 1067 for (segind = 0; segind < vm_phys_nsegs; segind++) { 1068 seg = &vm_phys_segs[segind]; 1069 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 1070 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 1071 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages = 1072 PHYS_TO_VM_PAGE(paddr); 1073 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].domain = 1074 seg->domain; 1075 paddr += VM_LEVEL_0_SIZE; 1076 } 1077 } 1078 for (i = 0; i < MAXMEMDOM; i++) 1079 TAILQ_INIT(&vm_rvq_partpop[i]); 1080 } 1081 1082 /* 1083 * Returns true if the given page belongs to a reservation and that page is 1084 * free. Otherwise, returns false. 1085 */ 1086 bool 1087 vm_reserv_is_page_free(vm_page_t m) 1088 { 1089 vm_reserv_t rv; 1090 1091 rv = vm_reserv_from_page(m); 1092 if (rv->object == NULL) 1093 return (false); 1094 vm_domain_free_assert_locked(VM_DOMAIN(rv->domain)); 1095 return (popmap_is_clear(rv->popmap, m - rv->pages)); 1096 } 1097 1098 /* 1099 * If the given page belongs to a reservation, returns the level of that 1100 * reservation. Otherwise, returns -1. 1101 */ 1102 int 1103 vm_reserv_level(vm_page_t m) 1104 { 1105 vm_reserv_t rv; 1106 1107 rv = vm_reserv_from_page(m); 1108 return (rv->object != NULL ? 0 : -1); 1109 } 1110 1111 /* 1112 * Returns a reservation level if the given page belongs to a fully populated 1113 * reservation and -1 otherwise. 1114 */ 1115 int 1116 vm_reserv_level_iffullpop(vm_page_t m) 1117 { 1118 vm_reserv_t rv; 1119 1120 rv = vm_reserv_from_page(m); 1121 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 1122 } 1123 1124 /* 1125 * Breaks the given partially populated reservation, releasing its free pages 1126 * to the physical memory allocator. 1127 * 1128 * The free page queue lock must be held. 1129 */ 1130 static void 1131 vm_reserv_reclaim(vm_reserv_t rv) 1132 { 1133 1134 vm_domain_free_assert_locked(VM_DOMAIN(rv->domain)); 1135 KASSERT(rv->inpartpopq, 1136 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 1137 KASSERT(rv->domain >= 0 && rv->domain < vm_ndomains, 1138 ("vm_reserv_reclaim: reserv %p's domain is corrupted %d", 1139 rv, rv->domain)); 1140 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); 1141 rv->inpartpopq = FALSE; 1142 vm_reserv_break(rv); 1143 vm_reserv_reclaimed++; 1144 } 1145 1146 /* 1147 * Breaks the reservation at the head of the partially populated reservation 1148 * queue, releasing its free pages to the physical memory allocator. Returns 1149 * TRUE if a reservation is broken and FALSE otherwise. 1150 * 1151 * The free page queue lock must be held. 1152 */ 1153 boolean_t 1154 vm_reserv_reclaim_inactive(int domain) 1155 { 1156 vm_reserv_t rv; 1157 1158 vm_domain_free_assert_locked(VM_DOMAIN(domain)); 1159 if ((rv = TAILQ_FIRST(&vm_rvq_partpop[domain])) != NULL) { 1160 vm_reserv_reclaim(rv); 1161 return (TRUE); 1162 } 1163 return (FALSE); 1164 } 1165 1166 /* 1167 * Searches the partially populated reservation queue for the least recently 1168 * changed reservation with free pages that satisfy the given request for 1169 * contiguous physical memory. If a satisfactory reservation is found, it is 1170 * broken. Returns TRUE if a reservation is broken and FALSE otherwise. 1171 * 1172 * The free page queue lock must be held. 1173 */ 1174 boolean_t 1175 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low, 1176 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 1177 { 1178 vm_paddr_t pa, size; 1179 vm_reserv_t rv; 1180 int hi, i, lo, low_index, next_free; 1181 1182 vm_domain_free_assert_locked(VM_DOMAIN(domain)); 1183 if (npages > VM_LEVEL_0_NPAGES - 1) 1184 return (FALSE); 1185 size = npages << PAGE_SHIFT; 1186 TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) { 1187 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); 1188 if (pa + PAGE_SIZE - size < low) { 1189 /* This entire reservation is too low; go to next. */ 1190 continue; 1191 } 1192 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 1193 if (pa + size > high) { 1194 /* This entire reservation is too high; go to next. */ 1195 continue; 1196 } 1197 if (pa < low) { 1198 /* Start the search for free pages at "low". */ 1199 low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT; 1200 i = low_index / NBPOPMAP; 1201 hi = low_index % NBPOPMAP; 1202 } else 1203 i = hi = 0; 1204 do { 1205 /* Find the next free page. */ 1206 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 1207 while (lo == 0 && ++i < NPOPMAP) 1208 lo = ffsl(~rv->popmap[i]); 1209 if (i == NPOPMAP) 1210 break; 1211 /* Convert from ffsl() to ordinary bit numbering. */ 1212 lo--; 1213 next_free = NBPOPMAP * i + lo; 1214 pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]); 1215 KASSERT(pa >= low, 1216 ("vm_reserv_reclaim_contig: pa is too low")); 1217 if (pa + size > high) { 1218 /* The rest of this reservation is too high. */ 1219 break; 1220 } else if ((pa & (alignment - 1)) != 0 || 1221 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) { 1222 /* 1223 * The current page doesn't meet the alignment 1224 * and/or boundary requirements. Continue 1225 * searching this reservation until the rest 1226 * of its free pages are either excluded or 1227 * exhausted. 1228 */ 1229 hi = lo + 1; 1230 if (hi >= NBPOPMAP) { 1231 hi = 0; 1232 i++; 1233 } 1234 continue; 1235 } 1236 /* Find the next used page. */ 1237 hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1)); 1238 while (hi == 0 && ++i < NPOPMAP) { 1239 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >= 1240 size) { 1241 vm_reserv_reclaim(rv); 1242 return (TRUE); 1243 } 1244 hi = ffsl(rv->popmap[i]); 1245 } 1246 /* Convert from ffsl() to ordinary bit numbering. */ 1247 if (i != NPOPMAP) 1248 hi--; 1249 if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >= 1250 size) { 1251 vm_reserv_reclaim(rv); 1252 return (TRUE); 1253 } 1254 } while (i < NPOPMAP); 1255 } 1256 return (FALSE); 1257 } 1258 1259 /* 1260 * Transfers the reservation underlying the given page to a new object. 1261 * 1262 * The object must be locked. 1263 */ 1264 void 1265 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 1266 vm_pindex_t old_object_offset) 1267 { 1268 vm_reserv_t rv; 1269 1270 VM_OBJECT_ASSERT_WLOCKED(new_object); 1271 rv = vm_reserv_from_page(m); 1272 if (rv->object == old_object) { 1273 vm_domain_free_lock(VM_DOMAIN(rv->domain)); 1274 if (rv->object == old_object) { 1275 vm_reserv_object_lock(old_object); 1276 rv->object = NULL; 1277 LIST_REMOVE(rv, objq); 1278 vm_reserv_object_unlock(old_object); 1279 vm_reserv_object_lock(new_object); 1280 rv->object = new_object; 1281 rv->pindex -= old_object_offset; 1282 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 1283 vm_reserv_object_unlock(new_object); 1284 } 1285 vm_domain_free_unlock(VM_DOMAIN(rv->domain)); 1286 } 1287 } 1288 1289 /* 1290 * Returns the size (in bytes) of a reservation of the specified level. 1291 */ 1292 int 1293 vm_reserv_size(int level) 1294 { 1295 1296 switch (level) { 1297 case 0: 1298 return (VM_LEVEL_0_SIZE); 1299 case -1: 1300 return (PAGE_SIZE); 1301 default: 1302 return (0); 1303 } 1304 } 1305 1306 /* 1307 * Allocates the virtual and physical memory required by the reservation 1308 * management system's data structures, in particular, the reservation array. 1309 */ 1310 vm_paddr_t 1311 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) 1312 { 1313 vm_paddr_t new_end; 1314 size_t size; 1315 int i; 1316 1317 /* 1318 * Calculate the size (in bytes) of the reservation array. Round up 1319 * from "high_water" because every small page is mapped to an element 1320 * in the reservation array based on its physical address. Thus, the 1321 * number of elements in the reservation array can be greater than the 1322 * number of superpages. 1323 */ 1324 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); 1325 1326 /* 1327 * Allocate and map the physical memory for the reservation array. The 1328 * next available virtual address is returned by reference. 1329 */ 1330 new_end = end - round_page(size); 1331 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 1332 VM_PROT_READ | VM_PROT_WRITE); 1333 bzero(vm_reserv_array, size); 1334 1335 for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++) 1336 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL, 1337 MTX_DEF); 1338 1339 /* 1340 * Return the next available physical address. 1341 */ 1342 return (new_end); 1343 } 1344 1345 /* 1346 * Returns the superpage containing the given page. 1347 */ 1348 vm_page_t 1349 vm_reserv_to_superpage(vm_page_t m) 1350 { 1351 vm_reserv_t rv; 1352 1353 VM_OBJECT_ASSERT_LOCKED(m->object); 1354 rv = vm_reserv_from_page(m); 1355 return (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES ? 1356 rv->pages : NULL); 1357 } 1358 1359 #endif /* VM_NRESERVLEVEL > 0 */ 1360