1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Superpage reservation management module 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_vm.h" 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/queue.h> 50 #include <sys/rwlock.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <vm/vm.h> 56 #include <vm/vm_param.h> 57 #include <vm/vm_object.h> 58 #include <vm/vm_page.h> 59 #include <vm/vm_phys.h> 60 #include <vm/vm_radix.h> 61 #include <vm/vm_reserv.h> 62 63 /* 64 * The reservation system supports the speculative allocation of large physical 65 * pages ("superpages"). Speculative allocation enables the fully automatic 66 * utilization of superpages by the virtual memory system. In other words, no 67 * programmatic directives are required to use superpages. 68 */ 69 70 #if VM_NRESERVLEVEL > 0 71 72 /* 73 * The number of small pages that are contained in a level 0 reservation 74 */ 75 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 76 77 /* 78 * The number of bits by which a physical address is shifted to obtain the 79 * reservation number 80 */ 81 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 82 83 /* 84 * The size of a level 0 reservation in bytes 85 */ 86 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 87 88 /* 89 * Computes the index of the small page underlying the given (object, pindex) 90 * within the reservation's array of small pages. 91 */ 92 #define VM_RESERV_INDEX(object, pindex) \ 93 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 94 95 /* 96 * The size of a population map entry 97 */ 98 typedef u_long popmap_t; 99 100 /* 101 * The number of bits in a population map entry 102 */ 103 #define NBPOPMAP (NBBY * sizeof(popmap_t)) 104 105 /* 106 * The number of population map entries in a reservation 107 */ 108 #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP) 109 110 /* 111 * Clear a bit in the population map. 112 */ 113 static __inline void 114 popmap_clear(popmap_t popmap[], int i) 115 { 116 117 popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP)); 118 } 119 120 /* 121 * Set a bit in the population map. 122 */ 123 static __inline void 124 popmap_set(popmap_t popmap[], int i) 125 { 126 127 popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP); 128 } 129 130 /* 131 * Is a bit in the population map clear? 132 */ 133 static __inline boolean_t 134 popmap_is_clear(popmap_t popmap[], int i) 135 { 136 137 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0); 138 } 139 140 /* 141 * Is a bit in the population map set? 142 */ 143 static __inline boolean_t 144 popmap_is_set(popmap_t popmap[], int i) 145 { 146 147 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0); 148 } 149 150 /* 151 * The reservation structure 152 * 153 * A reservation structure is constructed whenever a large physical page is 154 * speculatively allocated to an object. The reservation provides the small 155 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 156 * within that object. The reservation's "popcnt" tracks the number of these 157 * small physical pages that are in use at any given time. When and if the 158 * reservation is not fully utilized, it appears in the queue of partially 159 * populated reservations. The reservation always appears on the containing 160 * object's list of reservations. 161 * 162 * A partially populated reservation can be broken and reclaimed at any time. 163 */ 164 struct vm_reserv { 165 TAILQ_ENTRY(vm_reserv) partpopq; 166 LIST_ENTRY(vm_reserv) objq; 167 vm_object_t object; /* containing object */ 168 vm_pindex_t pindex; /* offset within object */ 169 vm_page_t pages; /* first page of a superpage */ 170 int popcnt; /* # of pages in use */ 171 char inpartpopq; 172 popmap_t popmap[NPOPMAP]; /* bit vector of used pages */ 173 }; 174 175 /* 176 * The reservation array 177 * 178 * This array is analoguous in function to vm_page_array. It differs in the 179 * respect that it may contain a greater number of useful reservation 180 * structures than there are (physical) superpages. These "invalid" 181 * reservation structures exist to trade-off space for time in the 182 * implementation of vm_reserv_from_page(). Invalid reservation structures are 183 * distinguishable from "valid" reservation structures by inspecting the 184 * reservation's "pages" field. Invalid reservation structures have a NULL 185 * "pages" field. 186 * 187 * vm_reserv_from_page() maps a small (physical) page to an element of this 188 * array by computing a physical reservation number from the page's physical 189 * address. The physical reservation number is used as the array index. 190 * 191 * An "active" reservation is a valid reservation structure that has a non-NULL 192 * "object" field and a non-zero "popcnt" field. In other words, every active 193 * reservation belongs to a particular object. Moreover, every active 194 * reservation has an entry in the containing object's list of reservations. 195 */ 196 static vm_reserv_t vm_reserv_array; 197 198 /* 199 * The partially populated reservation queue 200 * 201 * This queue enables the fast recovery of an unused free small page from a 202 * partially populated reservation. The reservation at the head of this queue 203 * is the least recently changed, partially populated reservation. 204 * 205 * Access to this queue is synchronized by the free page queue lock. 206 */ 207 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop = 208 TAILQ_HEAD_INITIALIZER(vm_rvq_partpop); 209 210 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); 211 212 static long vm_reserv_broken; 213 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 214 &vm_reserv_broken, 0, "Cumulative number of broken reservations"); 215 216 static long vm_reserv_freed; 217 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 218 &vm_reserv_freed, 0, "Cumulative number of freed reservations"); 219 220 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); 221 222 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 223 sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); 224 225 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 226 227 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 228 sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues"); 229 230 static long vm_reserv_reclaimed; 231 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 232 &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations"); 233 234 static void vm_reserv_break(vm_reserv_t rv, vm_page_t m); 235 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 236 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 237 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 238 vm_pindex_t pindex); 239 static void vm_reserv_populate(vm_reserv_t rv, int index); 240 static void vm_reserv_reclaim(vm_reserv_t rv); 241 242 /* 243 * Returns the current number of full reservations. 244 * 245 * Since the number of full reservations is computed without acquiring the 246 * free page queue lock, the returned value may be inexact. 247 */ 248 static int 249 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) 250 { 251 vm_paddr_t paddr; 252 struct vm_phys_seg *seg; 253 vm_reserv_t rv; 254 int fullpop, segind; 255 256 fullpop = 0; 257 for (segind = 0; segind < vm_phys_nsegs; segind++) { 258 seg = &vm_phys_segs[segind]; 259 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 260 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 261 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; 262 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; 263 paddr += VM_LEVEL_0_SIZE; 264 } 265 } 266 return (sysctl_handle_int(oidp, &fullpop, 0, req)); 267 } 268 269 /* 270 * Describes the current state of the partially populated reservation queue. 271 */ 272 static int 273 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 274 { 275 struct sbuf sbuf; 276 vm_reserv_t rv; 277 int counter, error, level, unused_pages; 278 279 error = sysctl_wire_old_buffer(req, 0); 280 if (error != 0) 281 return (error); 282 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 283 sbuf_printf(&sbuf, "\nLEVEL SIZE NUMBER\n\n"); 284 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 285 counter = 0; 286 unused_pages = 0; 287 mtx_lock(&vm_page_queue_free_mtx); 288 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) { 289 counter++; 290 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 291 } 292 mtx_unlock(&vm_page_queue_free_mtx); 293 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level, 294 unused_pages * ((int)PAGE_SIZE / 1024), counter); 295 } 296 error = sbuf_finish(&sbuf); 297 sbuf_delete(&sbuf); 298 return (error); 299 } 300 301 /* 302 * Reduces the given reservation's population count. If the population count 303 * becomes zero, the reservation is destroyed. Additionally, moves the 304 * reservation to the tail of the partially populated reservation queue if the 305 * population count is non-zero. 306 * 307 * The free page queue lock must be held. 308 */ 309 static void 310 vm_reserv_depopulate(vm_reserv_t rv, int index) 311 { 312 313 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 314 KASSERT(rv->object != NULL, 315 ("vm_reserv_depopulate: reserv %p is free", rv)); 316 KASSERT(popmap_is_set(rv->popmap, index), 317 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 318 index)); 319 KASSERT(rv->popcnt > 0, 320 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 321 if (rv->inpartpopq) { 322 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 323 rv->inpartpopq = FALSE; 324 } else { 325 KASSERT(rv->pages->psind == 1, 326 ("vm_reserv_depopulate: reserv %p is already demoted", 327 rv)); 328 rv->pages->psind = 0; 329 } 330 popmap_clear(rv->popmap, index); 331 rv->popcnt--; 332 if (rv->popcnt == 0) { 333 LIST_REMOVE(rv, objq); 334 rv->object = NULL; 335 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 336 vm_reserv_freed++; 337 } else { 338 rv->inpartpopq = TRUE; 339 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 340 } 341 } 342 343 /* 344 * Returns the reservation to which the given page might belong. 345 */ 346 static __inline vm_reserv_t 347 vm_reserv_from_page(vm_page_t m) 348 { 349 350 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 351 } 352 353 /* 354 * Returns TRUE if the given reservation contains the given page index and 355 * FALSE otherwise. 356 */ 357 static __inline boolean_t 358 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 359 { 360 361 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 362 } 363 364 /* 365 * Increases the given reservation's population count. Moves the reservation 366 * to the tail of the partially populated reservation queue. 367 * 368 * The free page queue must be locked. 369 */ 370 static void 371 vm_reserv_populate(vm_reserv_t rv, int index) 372 { 373 374 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 375 KASSERT(rv->object != NULL, 376 ("vm_reserv_populate: reserv %p is free", rv)); 377 KASSERT(popmap_is_clear(rv->popmap, index), 378 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 379 index)); 380 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 381 ("vm_reserv_populate: reserv %p is already full", rv)); 382 KASSERT(rv->pages->psind == 0, 383 ("vm_reserv_populate: reserv %p is already promoted", rv)); 384 if (rv->inpartpopq) { 385 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 386 rv->inpartpopq = FALSE; 387 } 388 popmap_set(rv->popmap, index); 389 rv->popcnt++; 390 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 391 rv->inpartpopq = TRUE; 392 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 393 } else 394 rv->pages->psind = 1; 395 } 396 397 /* 398 * Allocates a contiguous set of physical pages of the given size "npages" 399 * from existing or newly created reservations. All of the physical pages 400 * must be at or above the given physical address "low" and below the given 401 * physical address "high". The given value "alignment" determines the 402 * alignment of the first physical page in the set. If the given value 403 * "boundary" is non-zero, then the set of physical pages cannot cross any 404 * physical address boundary that is a multiple of that value. Both 405 * "alignment" and "boundary" must be a power of two. 406 * 407 * The page "mpred" must immediately precede the offset "pindex" within the 408 * specified object. 409 * 410 * The object and free page queue must be locked. 411 */ 412 vm_page_t 413 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages, 414 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 415 vm_page_t mpred) 416 { 417 vm_paddr_t pa, size; 418 vm_page_t m, m_ret, msucc; 419 vm_pindex_t first, leftcap, rightcap; 420 vm_reserv_t rv; 421 u_long allocpages, maxpages, minpages; 422 int i, index, n; 423 424 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 425 VM_OBJECT_ASSERT_WLOCKED(object); 426 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 427 428 /* 429 * Is a reservation fundamentally impossible? 430 */ 431 if (pindex < VM_RESERV_INDEX(object, pindex) || 432 pindex + npages > object->size) 433 return (NULL); 434 435 /* 436 * All reservations of a particular size have the same alignment. 437 * Assuming that the first page is allocated from a reservation, the 438 * least significant bits of its physical address can be determined 439 * from its offset from the beginning of the reservation and the size 440 * of the reservation. 441 * 442 * Could the specified index within a reservation of the smallest 443 * possible size satisfy the alignment and boundary requirements? 444 */ 445 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 446 if ((pa & (alignment - 1)) != 0) 447 return (NULL); 448 size = npages << PAGE_SHIFT; 449 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 450 return (NULL); 451 452 /* 453 * Look for an existing reservation. 454 */ 455 if (mpred != NULL) { 456 KASSERT(mpred->object == object, 457 ("vm_reserv_alloc_contig: object doesn't contain mpred")); 458 KASSERT(mpred->pindex < pindex, 459 ("vm_reserv_alloc_contig: mpred doesn't precede pindex")); 460 rv = vm_reserv_from_page(mpred); 461 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 462 goto found; 463 msucc = TAILQ_NEXT(mpred, listq); 464 } else 465 msucc = TAILQ_FIRST(&object->memq); 466 if (msucc != NULL) { 467 KASSERT(msucc->pindex > pindex, 468 ("vm_reserv_alloc_contig: msucc doesn't succeed pindex")); 469 rv = vm_reserv_from_page(msucc); 470 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 471 goto found; 472 } 473 474 /* 475 * Could at least one reservation fit between the first index to the 476 * left that can be used ("leftcap") and the first index to the right 477 * that cannot be used ("rightcap")? 478 */ 479 first = pindex - VM_RESERV_INDEX(object, pindex); 480 if (mpred != NULL) { 481 if ((rv = vm_reserv_from_page(mpred))->object != object) 482 leftcap = mpred->pindex + 1; 483 else 484 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 485 if (leftcap > first) 486 return (NULL); 487 } 488 minpages = VM_RESERV_INDEX(object, pindex) + npages; 489 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 490 allocpages = maxpages; 491 if (msucc != NULL) { 492 if ((rv = vm_reserv_from_page(msucc))->object != object) 493 rightcap = msucc->pindex; 494 else 495 rightcap = rv->pindex; 496 if (first + maxpages > rightcap) { 497 if (maxpages == VM_LEVEL_0_NPAGES) 498 return (NULL); 499 500 /* 501 * At least one reservation will fit between "leftcap" 502 * and "rightcap". However, a reservation for the 503 * last of the requested pages will not fit. Reduce 504 * the size of the upcoming allocation accordingly. 505 */ 506 allocpages = minpages; 507 } 508 } 509 510 /* 511 * Would the last new reservation extend past the end of the object? 512 */ 513 if (first + maxpages > object->size) { 514 /* 515 * Don't allocate the last new reservation if the object is a 516 * vnode or backed by another object that is a vnode. 517 */ 518 if (object->type == OBJT_VNODE || 519 (object->backing_object != NULL && 520 object->backing_object->type == OBJT_VNODE)) { 521 if (maxpages == VM_LEVEL_0_NPAGES) 522 return (NULL); 523 allocpages = minpages; 524 } 525 /* Speculate that the object may grow. */ 526 } 527 528 /* 529 * Allocate the physical pages. The alignment and boundary specified 530 * for this allocation may be different from the alignment and 531 * boundary specified for the requested pages. For instance, the 532 * specified index may not be the first page within the first new 533 * reservation. 534 */ 535 m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment, 536 VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0); 537 if (m == NULL) 538 return (NULL); 539 540 /* 541 * The allocated physical pages always begin at a reservation 542 * boundary, but they do not always end at a reservation boundary. 543 * Initialize every reservation that is completely covered by the 544 * allocated physical pages. 545 */ 546 m_ret = NULL; 547 index = VM_RESERV_INDEX(object, pindex); 548 do { 549 rv = vm_reserv_from_page(m); 550 KASSERT(rv->pages == m, 551 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 552 rv)); 553 KASSERT(rv->object == NULL, 554 ("vm_reserv_alloc_contig: reserv %p isn't free", rv)); 555 LIST_INSERT_HEAD(&object->rvq, rv, objq); 556 rv->object = object; 557 rv->pindex = first; 558 KASSERT(rv->popcnt == 0, 559 ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted", 560 rv)); 561 KASSERT(!rv->inpartpopq, 562 ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE", 563 rv)); 564 for (i = 0; i < NPOPMAP; i++) 565 KASSERT(rv->popmap[i] == 0, 566 ("vm_reserv_alloc_contig: reserv %p's popmap is corrupted", 567 rv)); 568 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 569 for (i = 0; i < n; i++) 570 vm_reserv_populate(rv, index + i); 571 npages -= n; 572 if (m_ret == NULL) { 573 m_ret = &rv->pages[index]; 574 index = 0; 575 } 576 m += VM_LEVEL_0_NPAGES; 577 first += VM_LEVEL_0_NPAGES; 578 allocpages -= VM_LEVEL_0_NPAGES; 579 } while (allocpages >= VM_LEVEL_0_NPAGES); 580 return (m_ret); 581 582 /* 583 * Found a matching reservation. 584 */ 585 found: 586 index = VM_RESERV_INDEX(object, pindex); 587 /* Does the allocation fit within the reservation? */ 588 if (index + npages > VM_LEVEL_0_NPAGES) 589 return (NULL); 590 m = &rv->pages[index]; 591 pa = VM_PAGE_TO_PHYS(m); 592 if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 || 593 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 594 return (NULL); 595 /* Handle vm_page_rename(m, new_object, ...). */ 596 for (i = 0; i < npages; i++) 597 if (popmap_is_set(rv->popmap, index + i)) 598 return (NULL); 599 for (i = 0; i < npages; i++) 600 vm_reserv_populate(rv, index + i); 601 return (m); 602 } 603 604 /* 605 * Allocates a page from an existing or newly created reservation. 606 * 607 * The page "mpred" must immediately precede the offset "pindex" within the 608 * specified object. 609 * 610 * The object and free page queue must be locked. 611 */ 612 vm_page_t 613 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred) 614 { 615 vm_page_t m, msucc; 616 vm_pindex_t first, leftcap, rightcap; 617 vm_reserv_t rv; 618 int i, index; 619 620 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 621 VM_OBJECT_ASSERT_WLOCKED(object); 622 623 /* 624 * Is a reservation fundamentally impossible? 625 */ 626 if (pindex < VM_RESERV_INDEX(object, pindex) || 627 pindex >= object->size) 628 return (NULL); 629 630 /* 631 * Look for an existing reservation. 632 */ 633 if (mpred != NULL) { 634 KASSERT(mpred->object == object, 635 ("vm_reserv_alloc_page: object doesn't contain mpred")); 636 KASSERT(mpred->pindex < pindex, 637 ("vm_reserv_alloc_page: mpred doesn't precede pindex")); 638 rv = vm_reserv_from_page(mpred); 639 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 640 goto found; 641 msucc = TAILQ_NEXT(mpred, listq); 642 } else 643 msucc = TAILQ_FIRST(&object->memq); 644 if (msucc != NULL) { 645 KASSERT(msucc->pindex > pindex, 646 ("vm_reserv_alloc_page: msucc doesn't succeed pindex")); 647 rv = vm_reserv_from_page(msucc); 648 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 649 goto found; 650 } 651 652 /* 653 * Could a reservation fit between the first index to the left that 654 * can be used and the first index to the right that cannot be used? 655 */ 656 first = pindex - VM_RESERV_INDEX(object, pindex); 657 if (mpred != NULL) { 658 if ((rv = vm_reserv_from_page(mpred))->object != object) 659 leftcap = mpred->pindex + 1; 660 else 661 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 662 if (leftcap > first) 663 return (NULL); 664 } 665 if (msucc != NULL) { 666 if ((rv = vm_reserv_from_page(msucc))->object != object) 667 rightcap = msucc->pindex; 668 else 669 rightcap = rv->pindex; 670 if (first + VM_LEVEL_0_NPAGES > rightcap) 671 return (NULL); 672 } 673 674 /* 675 * Would a new reservation extend past the end of the object? 676 */ 677 if (first + VM_LEVEL_0_NPAGES > object->size) { 678 /* 679 * Don't allocate a new reservation if the object is a vnode or 680 * backed by another object that is a vnode. 681 */ 682 if (object->type == OBJT_VNODE || 683 (object->backing_object != NULL && 684 object->backing_object->type == OBJT_VNODE)) 685 return (NULL); 686 /* Speculate that the object may grow. */ 687 } 688 689 /* 690 * Allocate and populate the new reservation. 691 */ 692 m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); 693 if (m == NULL) 694 return (NULL); 695 rv = vm_reserv_from_page(m); 696 KASSERT(rv->pages == m, 697 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 698 KASSERT(rv->object == NULL, 699 ("vm_reserv_alloc_page: reserv %p isn't free", rv)); 700 LIST_INSERT_HEAD(&object->rvq, rv, objq); 701 rv->object = object; 702 rv->pindex = first; 703 KASSERT(rv->popcnt == 0, 704 ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv)); 705 KASSERT(!rv->inpartpopq, 706 ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv)); 707 for (i = 0; i < NPOPMAP; i++) 708 KASSERT(rv->popmap[i] == 0, 709 ("vm_reserv_alloc_page: reserv %p's popmap is corrupted", 710 rv)); 711 index = VM_RESERV_INDEX(object, pindex); 712 vm_reserv_populate(rv, index); 713 return (&rv->pages[index]); 714 715 /* 716 * Found a matching reservation. 717 */ 718 found: 719 index = VM_RESERV_INDEX(object, pindex); 720 m = &rv->pages[index]; 721 /* Handle vm_page_rename(m, new_object, ...). */ 722 if (popmap_is_set(rv->popmap, index)) 723 return (NULL); 724 vm_reserv_populate(rv, index); 725 return (m); 726 } 727 728 /* 729 * Breaks the given reservation. Except for the specified free page, all free 730 * pages in the reservation are returned to the physical memory allocator. 731 * The reservation's population count and map are reset to their initial 732 * state. 733 * 734 * The given reservation must not be in the partially populated reservation 735 * queue. The free page queue lock must be held. 736 */ 737 static void 738 vm_reserv_break(vm_reserv_t rv, vm_page_t m) 739 { 740 int begin_zeroes, hi, i, lo; 741 742 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 743 KASSERT(rv->object != NULL, 744 ("vm_reserv_break: reserv %p is free", rv)); 745 KASSERT(!rv->inpartpopq, 746 ("vm_reserv_break: reserv %p's inpartpopq is TRUE", rv)); 747 LIST_REMOVE(rv, objq); 748 rv->object = NULL; 749 if (m != NULL) { 750 /* 751 * Since the reservation is being broken, there is no harm in 752 * abusing the population map to stop "m" from being returned 753 * to the physical memory allocator. 754 */ 755 i = m - rv->pages; 756 KASSERT(popmap_is_clear(rv->popmap, i), 757 ("vm_reserv_break: reserv %p's popmap is corrupted", rv)); 758 popmap_set(rv->popmap, i); 759 rv->popcnt++; 760 } 761 i = hi = 0; 762 do { 763 /* Find the next 0 bit. Any previous 0 bits are < "hi". */ 764 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 765 if (lo == 0) { 766 /* Redundantly clears bits < "hi". */ 767 rv->popmap[i] = 0; 768 rv->popcnt -= NBPOPMAP - hi; 769 while (++i < NPOPMAP) { 770 lo = ffsl(~rv->popmap[i]); 771 if (lo == 0) { 772 rv->popmap[i] = 0; 773 rv->popcnt -= NBPOPMAP; 774 } else 775 break; 776 } 777 if (i == NPOPMAP) 778 break; 779 hi = 0; 780 } 781 KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo)); 782 /* Convert from ffsl() to ordinary bit numbering. */ 783 lo--; 784 if (lo > 0) { 785 /* Redundantly clears bits < "hi". */ 786 rv->popmap[i] &= ~((1UL << lo) - 1); 787 rv->popcnt -= lo - hi; 788 } 789 begin_zeroes = NBPOPMAP * i + lo; 790 /* Find the next 1 bit. */ 791 do 792 hi = ffsl(rv->popmap[i]); 793 while (hi == 0 && ++i < NPOPMAP); 794 if (i != NPOPMAP) 795 /* Convert from ffsl() to ordinary bit numbering. */ 796 hi--; 797 vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i + 798 hi - begin_zeroes); 799 } while (i < NPOPMAP); 800 KASSERT(rv->popcnt == 0, 801 ("vm_reserv_break: reserv %p's popcnt is corrupted", rv)); 802 vm_reserv_broken++; 803 } 804 805 /* 806 * Breaks all reservations belonging to the given object. 807 */ 808 void 809 vm_reserv_break_all(vm_object_t object) 810 { 811 vm_reserv_t rv; 812 813 mtx_lock(&vm_page_queue_free_mtx); 814 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 815 KASSERT(rv->object == object, 816 ("vm_reserv_break_all: reserv %p is corrupted", rv)); 817 if (rv->inpartpopq) { 818 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 819 rv->inpartpopq = FALSE; 820 } 821 vm_reserv_break(rv, NULL); 822 } 823 mtx_unlock(&vm_page_queue_free_mtx); 824 } 825 826 /* 827 * Frees the given page if it belongs to a reservation. Returns TRUE if the 828 * page is freed and FALSE otherwise. 829 * 830 * The free page queue lock must be held. 831 */ 832 boolean_t 833 vm_reserv_free_page(vm_page_t m) 834 { 835 vm_reserv_t rv; 836 837 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 838 rv = vm_reserv_from_page(m); 839 if (rv->object == NULL) 840 return (FALSE); 841 vm_reserv_depopulate(rv, m - rv->pages); 842 return (TRUE); 843 } 844 845 /* 846 * Initializes the reservation management system. Specifically, initializes 847 * the reservation array. 848 * 849 * Requires that vm_page_array and first_page are initialized! 850 */ 851 void 852 vm_reserv_init(void) 853 { 854 vm_paddr_t paddr; 855 struct vm_phys_seg *seg; 856 int segind; 857 858 /* 859 * Initialize the reservation array. Specifically, initialize the 860 * "pages" field for every element that has an underlying superpage. 861 */ 862 for (segind = 0; segind < vm_phys_nsegs; segind++) { 863 seg = &vm_phys_segs[segind]; 864 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 865 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 866 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages = 867 PHYS_TO_VM_PAGE(paddr); 868 paddr += VM_LEVEL_0_SIZE; 869 } 870 } 871 } 872 873 /* 874 * Returns true if the given page belongs to a reservation and that page is 875 * free. Otherwise, returns false. 876 */ 877 bool 878 vm_reserv_is_page_free(vm_page_t m) 879 { 880 vm_reserv_t rv; 881 882 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 883 rv = vm_reserv_from_page(m); 884 if (rv->object == NULL) 885 return (false); 886 return (popmap_is_clear(rv->popmap, m - rv->pages)); 887 } 888 889 /* 890 * If the given page belongs to a reservation, returns the level of that 891 * reservation. Otherwise, returns -1. 892 */ 893 int 894 vm_reserv_level(vm_page_t m) 895 { 896 vm_reserv_t rv; 897 898 rv = vm_reserv_from_page(m); 899 return (rv->object != NULL ? 0 : -1); 900 } 901 902 /* 903 * Returns a reservation level if the given page belongs to a fully populated 904 * reservation and -1 otherwise. 905 */ 906 int 907 vm_reserv_level_iffullpop(vm_page_t m) 908 { 909 vm_reserv_t rv; 910 911 rv = vm_reserv_from_page(m); 912 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 913 } 914 915 /* 916 * Breaks the given partially populated reservation, releasing its free pages 917 * to the physical memory allocator. 918 * 919 * The free page queue lock must be held. 920 */ 921 static void 922 vm_reserv_reclaim(vm_reserv_t rv) 923 { 924 925 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 926 KASSERT(rv->inpartpopq, 927 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 928 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 929 rv->inpartpopq = FALSE; 930 vm_reserv_break(rv, NULL); 931 vm_reserv_reclaimed++; 932 } 933 934 /* 935 * Breaks the reservation at the head of the partially populated reservation 936 * queue, releasing its free pages to the physical memory allocator. Returns 937 * TRUE if a reservation is broken and FALSE otherwise. 938 * 939 * The free page queue lock must be held. 940 */ 941 boolean_t 942 vm_reserv_reclaim_inactive(void) 943 { 944 vm_reserv_t rv; 945 946 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 947 if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) { 948 vm_reserv_reclaim(rv); 949 return (TRUE); 950 } 951 return (FALSE); 952 } 953 954 /* 955 * Searches the partially populated reservation queue for the least recently 956 * changed reservation with free pages that satisfy the given request for 957 * contiguous physical memory. If a satisfactory reservation is found, it is 958 * broken. Returns TRUE if a reservation is broken and FALSE otherwise. 959 * 960 * The free page queue lock must be held. 961 */ 962 boolean_t 963 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 964 u_long alignment, vm_paddr_t boundary) 965 { 966 vm_paddr_t pa, size; 967 vm_reserv_t rv; 968 int hi, i, lo, low_index, next_free; 969 970 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 971 if (npages > VM_LEVEL_0_NPAGES - 1) 972 return (FALSE); 973 size = npages << PAGE_SHIFT; 974 TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) { 975 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); 976 if (pa + PAGE_SIZE - size < low) { 977 /* This entire reservation is too low; go to next. */ 978 continue; 979 } 980 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 981 if (pa + size > high) { 982 /* This entire reservation is too high; go to next. */ 983 continue; 984 } 985 if (pa < low) { 986 /* Start the search for free pages at "low". */ 987 low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT; 988 i = low_index / NBPOPMAP; 989 hi = low_index % NBPOPMAP; 990 } else 991 i = hi = 0; 992 do { 993 /* Find the next free page. */ 994 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 995 while (lo == 0 && ++i < NPOPMAP) 996 lo = ffsl(~rv->popmap[i]); 997 if (i == NPOPMAP) 998 break; 999 /* Convert from ffsl() to ordinary bit numbering. */ 1000 lo--; 1001 next_free = NBPOPMAP * i + lo; 1002 pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]); 1003 KASSERT(pa >= low, 1004 ("vm_reserv_reclaim_contig: pa is too low")); 1005 if (pa + size > high) { 1006 /* The rest of this reservation is too high. */ 1007 break; 1008 } else if ((pa & (alignment - 1)) != 0 || 1009 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) { 1010 /* 1011 * The current page doesn't meet the alignment 1012 * and/or boundary requirements. Continue 1013 * searching this reservation until the rest 1014 * of its free pages are either excluded or 1015 * exhausted. 1016 */ 1017 hi = lo + 1; 1018 if (hi >= NBPOPMAP) { 1019 hi = 0; 1020 i++; 1021 } 1022 continue; 1023 } 1024 /* Find the next used page. */ 1025 hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1)); 1026 while (hi == 0 && ++i < NPOPMAP) { 1027 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >= 1028 size) { 1029 vm_reserv_reclaim(rv); 1030 return (TRUE); 1031 } 1032 hi = ffsl(rv->popmap[i]); 1033 } 1034 /* Convert from ffsl() to ordinary bit numbering. */ 1035 if (i != NPOPMAP) 1036 hi--; 1037 if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >= 1038 size) { 1039 vm_reserv_reclaim(rv); 1040 return (TRUE); 1041 } 1042 } while (i < NPOPMAP); 1043 } 1044 return (FALSE); 1045 } 1046 1047 /* 1048 * Transfers the reservation underlying the given page to a new object. 1049 * 1050 * The object must be locked. 1051 */ 1052 void 1053 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 1054 vm_pindex_t old_object_offset) 1055 { 1056 vm_reserv_t rv; 1057 1058 VM_OBJECT_ASSERT_WLOCKED(new_object); 1059 rv = vm_reserv_from_page(m); 1060 if (rv->object == old_object) { 1061 mtx_lock(&vm_page_queue_free_mtx); 1062 if (rv->object == old_object) { 1063 LIST_REMOVE(rv, objq); 1064 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 1065 rv->object = new_object; 1066 rv->pindex -= old_object_offset; 1067 } 1068 mtx_unlock(&vm_page_queue_free_mtx); 1069 } 1070 } 1071 1072 /* 1073 * Returns the size (in bytes) of a reservation of the specified level. 1074 */ 1075 int 1076 vm_reserv_size(int level) 1077 { 1078 1079 switch (level) { 1080 case 0: 1081 return (VM_LEVEL_0_SIZE); 1082 case -1: 1083 return (PAGE_SIZE); 1084 default: 1085 return (0); 1086 } 1087 } 1088 1089 /* 1090 * Allocates the virtual and physical memory required by the reservation 1091 * management system's data structures, in particular, the reservation array. 1092 */ 1093 vm_paddr_t 1094 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) 1095 { 1096 vm_paddr_t new_end; 1097 size_t size; 1098 1099 /* 1100 * Calculate the size (in bytes) of the reservation array. Round up 1101 * from "high_water" because every small page is mapped to an element 1102 * in the reservation array based on its physical address. Thus, the 1103 * number of elements in the reservation array can be greater than the 1104 * number of superpages. 1105 */ 1106 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); 1107 1108 /* 1109 * Allocate and map the physical memory for the reservation array. The 1110 * next available virtual address is returned by reference. 1111 */ 1112 new_end = end - round_page(size); 1113 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 1114 VM_PROT_READ | VM_PROT_WRITE); 1115 bzero(vm_reserv_array, size); 1116 1117 /* 1118 * Return the next available physical address. 1119 */ 1120 return (new_end); 1121 } 1122 1123 #endif /* VM_NRESERVLEVEL > 0 */ 1124