xref: /freebsd/sys/vm/vm_reserv.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_vm.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_phys.h>
67 #include <vm/vm_pagequeue.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70 
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77 
78 #if VM_NRESERVLEVEL > 0
79 
80 /*
81  * The number of small pages that are contained in a level 0 reservation
82  */
83 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
84 
85 /*
86  * The number of bits by which a physical address is shifted to obtain the
87  * reservation number
88  */
89 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
90 
91 /*
92  * The size of a level 0 reservation in bytes
93  */
94 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
95 
96 /*
97  * Computes the index of the small page underlying the given (object, pindex)
98  * within the reservation's array of small pages.
99  */
100 #define	VM_RESERV_INDEX(object, pindex)	\
101     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
102 
103 /*
104  * The size of a population map entry
105  */
106 typedef	u_long		popmap_t;
107 
108 /*
109  * The number of bits in a population map entry
110  */
111 #define	NBPOPMAP	(NBBY * sizeof(popmap_t))
112 
113 /*
114  * The number of population map entries in a reservation
115  */
116 #define	NPOPMAP		howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
117 
118 /*
119  * Clear a bit in the population map.
120  */
121 static __inline void
122 popmap_clear(popmap_t popmap[], int i)
123 {
124 
125 	popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
126 }
127 
128 /*
129  * Set a bit in the population map.
130  */
131 static __inline void
132 popmap_set(popmap_t popmap[], int i)
133 {
134 
135 	popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
136 }
137 
138 /*
139  * Is a bit in the population map clear?
140  */
141 static __inline boolean_t
142 popmap_is_clear(popmap_t popmap[], int i)
143 {
144 
145 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
146 }
147 
148 /*
149  * Is a bit in the population map set?
150  */
151 static __inline boolean_t
152 popmap_is_set(popmap_t popmap[], int i)
153 {
154 
155 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
156 }
157 
158 /*
159  * The reservation structure
160  *
161  * A reservation structure is constructed whenever a large physical page is
162  * speculatively allocated to an object.  The reservation provides the small
163  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
164  * within that object.  The reservation's "popcnt" tracks the number of these
165  * small physical pages that are in use at any given time.  When and if the
166  * reservation is not fully utilized, it appears in the queue of partially
167  * populated reservations.  The reservation always appears on the containing
168  * object's list of reservations.
169  *
170  * A partially populated reservation can be broken and reclaimed at any time.
171  *
172  * r - vm_reserv_lock
173  * d - vm_reserv_domain_lock
174  * o - vm_reserv_object_lock
175  * c - constant after boot
176  */
177 struct vm_reserv {
178 	struct mtx	lock;			/* reservation lock. */
179 	TAILQ_ENTRY(vm_reserv) partpopq;	/* (d) per-domain queue. */
180 	LIST_ENTRY(vm_reserv) objq;		/* (o, r) object queue */
181 	vm_object_t	object;			/* (o, r) containing object */
182 	vm_pindex_t	pindex;			/* (o, r) offset in object */
183 	vm_page_t	pages;			/* (c) first page  */
184 	uint16_t	domain;			/* (c) NUMA domain. */
185 	uint16_t	popcnt;			/* (r) # of pages in use */
186 	char		inpartpopq;		/* (d) */
187 	popmap_t	popmap[NPOPMAP];	/* (r) bit vector, used pages */
188 };
189 
190 #define	vm_reserv_lockptr(rv)		(&(rv)->lock)
191 #define	vm_reserv_assert_locked(rv)					\
192 	    mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
193 #define	vm_reserv_lock(rv)		mtx_lock(vm_reserv_lockptr(rv))
194 #define	vm_reserv_trylock(rv)		mtx_trylock(vm_reserv_lockptr(rv))
195 #define	vm_reserv_unlock(rv)		mtx_unlock(vm_reserv_lockptr(rv))
196 
197 static struct mtx_padalign vm_reserv_domain_locks[MAXMEMDOM];
198 
199 #define	vm_reserv_domain_lockptr(d)	&vm_reserv_domain_locks[(d)]
200 #define	vm_reserv_domain_lock(d)	mtx_lock(vm_reserv_domain_lockptr(d))
201 #define	vm_reserv_domain_unlock(d)	mtx_unlock(vm_reserv_domain_lockptr(d))
202 
203 /*
204  * The reservation array
205  *
206  * This array is analoguous in function to vm_page_array.  It differs in the
207  * respect that it may contain a greater number of useful reservation
208  * structures than there are (physical) superpages.  These "invalid"
209  * reservation structures exist to trade-off space for time in the
210  * implementation of vm_reserv_from_page().  Invalid reservation structures are
211  * distinguishable from "valid" reservation structures by inspecting the
212  * reservation's "pages" field.  Invalid reservation structures have a NULL
213  * "pages" field.
214  *
215  * vm_reserv_from_page() maps a small (physical) page to an element of this
216  * array by computing a physical reservation number from the page's physical
217  * address.  The physical reservation number is used as the array index.
218  *
219  * An "active" reservation is a valid reservation structure that has a non-NULL
220  * "object" field and a non-zero "popcnt" field.  In other words, every active
221  * reservation belongs to a particular object.  Moreover, every active
222  * reservation has an entry in the containing object's list of reservations.
223  */
224 static vm_reserv_t vm_reserv_array;
225 
226 /*
227  * The partially populated reservation queue
228  *
229  * This queue enables the fast recovery of an unused free small page from a
230  * partially populated reservation.  The reservation at the head of this queue
231  * is the least recently changed, partially populated reservation.
232  *
233  * Access to this queue is synchronized by the free page queue lock.
234  */
235 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop[MAXMEMDOM];
236 
237 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
238 
239 static counter_u64_t vm_reserv_broken = EARLY_COUNTER;
240 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
241     &vm_reserv_broken, "Cumulative number of broken reservations");
242 
243 static counter_u64_t vm_reserv_freed = EARLY_COUNTER;
244 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
245     &vm_reserv_freed, "Cumulative number of freed reservations");
246 
247 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
248 
249 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
250     sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
251 
252 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
253 
254 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
255     sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
256 
257 static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER;
258 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
259     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
260 
261 /*
262  * The object lock pool is used to synchronize the rvq.  We can not use a
263  * pool mutex because it is required before malloc works.
264  *
265  * The "hash" function could be made faster without divide and modulo.
266  */
267 #define	VM_RESERV_OBJ_LOCK_COUNT	MAXCPU
268 
269 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
270 
271 #define	vm_reserv_object_lock_idx(object)			\
272 	    (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
273 #define	vm_reserv_object_lock_ptr(object)			\
274 	    &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
275 #define	vm_reserv_object_lock(object)				\
276 	    mtx_lock(vm_reserv_object_lock_ptr((object)))
277 #define	vm_reserv_object_unlock(object)				\
278 	    mtx_unlock(vm_reserv_object_lock_ptr((object)))
279 
280 static void		vm_reserv_break(vm_reserv_t rv);
281 static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
282 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
283 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
284 			    vm_pindex_t pindex);
285 static void		vm_reserv_populate(vm_reserv_t rv, int index);
286 static void		vm_reserv_reclaim(vm_reserv_t rv);
287 
288 /*
289  * Returns the current number of full reservations.
290  *
291  * Since the number of full reservations is computed without acquiring the
292  * free page queue lock, the returned value may be inexact.
293  */
294 static int
295 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
296 {
297 	vm_paddr_t paddr;
298 	struct vm_phys_seg *seg;
299 	vm_reserv_t rv;
300 	int fullpop, segind;
301 
302 	fullpop = 0;
303 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
304 		seg = &vm_phys_segs[segind];
305 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
306 		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
307 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
308 			fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
309 			paddr += VM_LEVEL_0_SIZE;
310 		}
311 	}
312 	return (sysctl_handle_int(oidp, &fullpop, 0, req));
313 }
314 
315 /*
316  * Describes the current state of the partially populated reservation queue.
317  */
318 static int
319 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
320 {
321 	struct sbuf sbuf;
322 	vm_reserv_t rv;
323 	int counter, error, domain, level, unused_pages;
324 
325 	error = sysctl_wire_old_buffer(req, 0);
326 	if (error != 0)
327 		return (error);
328 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
329 	sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
330 	for (domain = 0; domain < vm_ndomains; domain++) {
331 		for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
332 			counter = 0;
333 			unused_pages = 0;
334 			vm_reserv_domain_lock(domain);
335 			TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) {
336 				counter++;
337 				unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
338 			}
339 			vm_reserv_domain_unlock(domain);
340 			sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
341 			    domain, level,
342 			    unused_pages * ((int)PAGE_SIZE / 1024), counter);
343 		}
344 	}
345 	error = sbuf_finish(&sbuf);
346 	sbuf_delete(&sbuf);
347 	return (error);
348 }
349 
350 /*
351  * Remove a reservation from the object's objq.
352  */
353 static void
354 vm_reserv_remove(vm_reserv_t rv)
355 {
356 	vm_object_t object;
357 
358 	vm_reserv_assert_locked(rv);
359 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
360 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
361 	KASSERT(rv->object != NULL,
362 	    ("vm_reserv_remove: reserv %p is free", rv));
363 	KASSERT(!rv->inpartpopq,
364 	    ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
365 	object = rv->object;
366 	vm_reserv_object_lock(object);
367 	LIST_REMOVE(rv, objq);
368 	rv->object = NULL;
369 	vm_reserv_object_unlock(object);
370 }
371 
372 /*
373  * Insert a new reservation into the object's objq.
374  */
375 static void
376 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
377 {
378 	int i;
379 
380 	vm_reserv_assert_locked(rv);
381 	CTR6(KTR_VM,
382 	    "%s: rv %p(%p) object %p new %p popcnt %d",
383 	    __FUNCTION__, rv, rv->pages, rv->object, object,
384 	   rv->popcnt);
385 	KASSERT(rv->object == NULL,
386 	    ("vm_reserv_insert: reserv %p isn't free", rv));
387 	KASSERT(rv->popcnt == 0,
388 	    ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
389 	KASSERT(!rv->inpartpopq,
390 	    ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
391 	for (i = 0; i < NPOPMAP; i++)
392 		KASSERT(rv->popmap[i] == 0,
393 		    ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
394 	vm_reserv_object_lock(object);
395 	rv->pindex = pindex;
396 	rv->object = object;
397 	LIST_INSERT_HEAD(&object->rvq, rv, objq);
398 	vm_reserv_object_unlock(object);
399 }
400 
401 /*
402  * Reduces the given reservation's population count.  If the population count
403  * becomes zero, the reservation is destroyed.  Additionally, moves the
404  * reservation to the tail of the partially populated reservation queue if the
405  * population count is non-zero.
406  */
407 static void
408 vm_reserv_depopulate(vm_reserv_t rv, int index)
409 {
410 	struct vm_domain *vmd;
411 
412 	vm_reserv_assert_locked(rv);
413 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
414 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
415 	KASSERT(rv->object != NULL,
416 	    ("vm_reserv_depopulate: reserv %p is free", rv));
417 	KASSERT(popmap_is_set(rv->popmap, index),
418 	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
419 	    index));
420 	KASSERT(rv->popcnt > 0,
421 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
422 	KASSERT(rv->domain < vm_ndomains,
423 	    ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
424 	    rv, rv->domain));
425 	if (rv->popcnt == VM_LEVEL_0_NPAGES) {
426 		KASSERT(rv->pages->psind == 1,
427 		    ("vm_reserv_depopulate: reserv %p is already demoted",
428 		    rv));
429 		rv->pages->psind = 0;
430 	}
431 	popmap_clear(rv->popmap, index);
432 	rv->popcnt--;
433 	vm_reserv_domain_lock(rv->domain);
434 	if (rv->inpartpopq) {
435 		TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
436 		rv->inpartpopq = FALSE;
437 	}
438 	if (rv->popcnt != 0) {
439 		rv->inpartpopq = TRUE;
440 		TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
441 	}
442 	vm_reserv_domain_unlock(rv->domain);
443 	vmd = VM_DOMAIN(rv->domain);
444 	if (rv->popcnt == 0) {
445 		vm_reserv_remove(rv);
446 		vm_domain_free_lock(vmd);
447 		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
448 		vm_domain_free_unlock(vmd);
449 		counter_u64_add(vm_reserv_freed, 1);
450 	}
451 	vm_domain_freecnt_inc(vmd, 1);
452 }
453 
454 /*
455  * Returns the reservation to which the given page might belong.
456  */
457 static __inline vm_reserv_t
458 vm_reserv_from_page(vm_page_t m)
459 {
460 
461 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
462 }
463 
464 /*
465  * Returns an existing reservation or NULL and initialized successor pointer.
466  */
467 static vm_reserv_t
468 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
469     vm_page_t mpred, vm_page_t *msuccp)
470 {
471 	vm_reserv_t rv;
472 	vm_page_t msucc;
473 
474 	msucc = NULL;
475 	if (mpred != NULL) {
476 		KASSERT(mpred->object == object,
477 		    ("vm_reserv_from_object: object doesn't contain mpred"));
478 		KASSERT(mpred->pindex < pindex,
479 		    ("vm_reserv_from_object: mpred doesn't precede pindex"));
480 		rv = vm_reserv_from_page(mpred);
481 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
482 			goto found;
483 		msucc = TAILQ_NEXT(mpred, listq);
484 	} else
485 		msucc = TAILQ_FIRST(&object->memq);
486 	if (msucc != NULL) {
487 		KASSERT(msucc->pindex > pindex,
488 		    ("vm_reserv_from_object: msucc doesn't succeed pindex"));
489 		rv = vm_reserv_from_page(msucc);
490 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
491 			goto found;
492 	}
493 	rv = NULL;
494 
495 found:
496 	*msuccp = msucc;
497 
498 	return (rv);
499 }
500 
501 /*
502  * Returns TRUE if the given reservation contains the given page index and
503  * FALSE otherwise.
504  */
505 static __inline boolean_t
506 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
507 {
508 
509 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
510 }
511 
512 /*
513  * Increases the given reservation's population count.  Moves the reservation
514  * to the tail of the partially populated reservation queue.
515  *
516  * The free page queue must be locked.
517  */
518 static void
519 vm_reserv_populate(vm_reserv_t rv, int index)
520 {
521 
522 	vm_reserv_assert_locked(rv);
523 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
524 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
525 	KASSERT(rv->object != NULL,
526 	    ("vm_reserv_populate: reserv %p is free", rv));
527 	KASSERT(popmap_is_clear(rv->popmap, index),
528 	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
529 	    index));
530 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
531 	    ("vm_reserv_populate: reserv %p is already full", rv));
532 	KASSERT(rv->pages->psind == 0,
533 	    ("vm_reserv_populate: reserv %p is already promoted", rv));
534 	KASSERT(rv->domain < vm_ndomains,
535 	    ("vm_reserv_populate: reserv %p's domain is corrupted %d",
536 	    rv, rv->domain));
537 	popmap_set(rv->popmap, index);
538 	rv->popcnt++;
539 	vm_reserv_domain_lock(rv->domain);
540 	if (rv->inpartpopq) {
541 		TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
542 		rv->inpartpopq = FALSE;
543 	}
544 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
545 		rv->inpartpopq = TRUE;
546 		TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
547 	} else {
548 		KASSERT(rv->pages->psind == 0,
549 		    ("vm_reserv_populate: reserv %p is already promoted",
550 		    rv));
551 		rv->pages->psind = 1;
552 	}
553 	vm_reserv_domain_unlock(rv->domain);
554 }
555 
556 /*
557  * Attempts to allocate a contiguous set of physical pages from existing
558  * reservations.  See vm_reserv_alloc_contig() for a description of the
559  * function's parameters.
560  *
561  * The page "mpred" must immediately precede the offset "pindex" within the
562  * specified object.
563  *
564  * The object must be locked.
565  */
566 vm_page_t
567 vm_reserv_extend_contig(int req, vm_object_t object, vm_pindex_t pindex,
568     int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
569     u_long alignment, vm_paddr_t boundary, vm_page_t mpred)
570 {
571 	struct vm_domain *vmd;
572 	vm_paddr_t pa, size;
573 	vm_page_t m, msucc;
574 	vm_reserv_t rv;
575 	int i, index;
576 
577 	VM_OBJECT_ASSERT_WLOCKED(object);
578 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
579 
580 	/*
581 	 * Is a reservation fundamentally impossible?
582 	 */
583 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
584 	    pindex + npages > object->size || object->resident_page_count == 0)
585 		return (NULL);
586 
587 	/*
588 	 * All reservations of a particular size have the same alignment.
589 	 * Assuming that the first page is allocated from a reservation, the
590 	 * least significant bits of its physical address can be determined
591 	 * from its offset from the beginning of the reservation and the size
592 	 * of the reservation.
593 	 *
594 	 * Could the specified index within a reservation of the smallest
595 	 * possible size satisfy the alignment and boundary requirements?
596 	 */
597 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
598 	if ((pa & (alignment - 1)) != 0)
599 		return (NULL);
600 	size = npages << PAGE_SHIFT;
601 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
602 		return (NULL);
603 
604 	/*
605 	 * Look for an existing reservation.
606 	 */
607 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
608 	if (rv == NULL)
609 		return (NULL);
610 	KASSERT(object != kernel_object || rv->domain == domain,
611 	    ("vm_reserv_extend_contig: Domain mismatch from reservation."));
612 	index = VM_RESERV_INDEX(object, pindex);
613 	/* Does the allocation fit within the reservation? */
614 	if (index + npages > VM_LEVEL_0_NPAGES)
615 		return (NULL);
616 	domain = rv->domain;
617 	vmd = VM_DOMAIN(domain);
618 	vm_reserv_lock(rv);
619 	if (rv->object != object)
620 		goto out;
621 	m = &rv->pages[index];
622 	pa = VM_PAGE_TO_PHYS(m);
623 	if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
624 	    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
625 		goto out;
626 	/* Handle vm_page_rename(m, new_object, ...). */
627 	for (i = 0; i < npages; i++) {
628 		if (popmap_is_set(rv->popmap, index + i))
629 			goto out;
630 	}
631 	if (!vm_domain_allocate(vmd, req, npages))
632 		goto out;
633 	for (i = 0; i < npages; i++)
634 		vm_reserv_populate(rv, index + i);
635 	vm_reserv_unlock(rv);
636 	return (m);
637 
638 out:
639 	vm_reserv_unlock(rv);
640 	return (NULL);
641 }
642 
643 /*
644  * Allocates a contiguous set of physical pages of the given size "npages"
645  * from newly created reservations.  All of the physical pages
646  * must be at or above the given physical address "low" and below the given
647  * physical address "high".  The given value "alignment" determines the
648  * alignment of the first physical page in the set.  If the given value
649  * "boundary" is non-zero, then the set of physical pages cannot cross any
650  * physical address boundary that is a multiple of that value.  Both
651  * "alignment" and "boundary" must be a power of two.
652  *
653  * Callers should first invoke vm_reserv_extend_contig() to attempt an
654  * allocation from existing reservations.
655  *
656  * The page "mpred" must immediately precede the offset "pindex" within the
657  * specified object.
658  *
659  * The object and free page queue must be locked.
660  */
661 vm_page_t
662 vm_reserv_alloc_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain,
663     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
664     vm_paddr_t boundary, vm_page_t mpred)
665 {
666 	struct vm_domain *vmd;
667 	vm_paddr_t pa, size;
668 	vm_page_t m, m_ret, msucc;
669 	vm_pindex_t first, leftcap, rightcap;
670 	vm_reserv_t rv;
671 	u_long allocpages, maxpages, minpages;
672 	int i, index, n;
673 
674 	VM_OBJECT_ASSERT_WLOCKED(object);
675 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
676 
677 	/*
678 	 * Is a reservation fundamentally impossible?
679 	 */
680 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
681 	    pindex + npages > object->size)
682 		return (NULL);
683 
684 	/*
685 	 * All reservations of a particular size have the same alignment.
686 	 * Assuming that the first page is allocated from a reservation, the
687 	 * least significant bits of its physical address can be determined
688 	 * from its offset from the beginning of the reservation and the size
689 	 * of the reservation.
690 	 *
691 	 * Could the specified index within a reservation of the smallest
692 	 * possible size satisfy the alignment and boundary requirements?
693 	 */
694 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
695 	if ((pa & (alignment - 1)) != 0)
696 		return (NULL);
697 	size = npages << PAGE_SHIFT;
698 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
699 		return (NULL);
700 
701 	/*
702 	 * Callers should've extended an existing reservation prior to
703 	 * calling this function.  If a reservation exists it is
704 	 * incompatible with the allocation.
705 	 */
706 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
707 	if (rv != NULL)
708 		return (NULL);
709 
710 	/*
711 	 * Could at least one reservation fit between the first index to the
712 	 * left that can be used ("leftcap") and the first index to the right
713 	 * that cannot be used ("rightcap")?
714 	 *
715 	 * We must synchronize with the reserv object lock to protect the
716 	 * pindex/object of the resulting reservations against rename while
717 	 * we are inspecting.
718 	 */
719 	first = pindex - VM_RESERV_INDEX(object, pindex);
720 	minpages = VM_RESERV_INDEX(object, pindex) + npages;
721 	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
722 	allocpages = maxpages;
723 	vm_reserv_object_lock(object);
724 	if (mpred != NULL) {
725 		if ((rv = vm_reserv_from_page(mpred))->object != object)
726 			leftcap = mpred->pindex + 1;
727 		else
728 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
729 		if (leftcap > first) {
730 			vm_reserv_object_unlock(object);
731 			return (NULL);
732 		}
733 	}
734 	if (msucc != NULL) {
735 		if ((rv = vm_reserv_from_page(msucc))->object != object)
736 			rightcap = msucc->pindex;
737 		else
738 			rightcap = rv->pindex;
739 		if (first + maxpages > rightcap) {
740 			if (maxpages == VM_LEVEL_0_NPAGES) {
741 				vm_reserv_object_unlock(object);
742 				return (NULL);
743 			}
744 
745 			/*
746 			 * At least one reservation will fit between "leftcap"
747 			 * and "rightcap".  However, a reservation for the
748 			 * last of the requested pages will not fit.  Reduce
749 			 * the size of the upcoming allocation accordingly.
750 			 */
751 			allocpages = minpages;
752 		}
753 	}
754 	vm_reserv_object_unlock(object);
755 
756 	/*
757 	 * Would the last new reservation extend past the end of the object?
758 	 */
759 	if (first + maxpages > object->size) {
760 		/*
761 		 * Don't allocate the last new reservation if the object is a
762 		 * vnode or backed by another object that is a vnode.
763 		 */
764 		if (object->type == OBJT_VNODE ||
765 		    (object->backing_object != NULL &&
766 		    object->backing_object->type == OBJT_VNODE)) {
767 			if (maxpages == VM_LEVEL_0_NPAGES)
768 				return (NULL);
769 			allocpages = minpages;
770 		}
771 		/* Speculate that the object may grow. */
772 	}
773 
774 	/*
775 	 * Allocate the physical pages.  The alignment and boundary specified
776 	 * for this allocation may be different from the alignment and
777 	 * boundary specified for the requested pages.  For instance, the
778 	 * specified index may not be the first page within the first new
779 	 * reservation.
780 	 */
781 	m = NULL;
782 	vmd = VM_DOMAIN(domain);
783 	if (vm_domain_allocate(vmd, req, npages)) {
784 		vm_domain_free_lock(vmd);
785 		m = vm_phys_alloc_contig(domain, allocpages, low, high,
786 		    ulmax(alignment, VM_LEVEL_0_SIZE),
787 		    boundary > VM_LEVEL_0_SIZE ? boundary : 0);
788 		vm_domain_free_unlock(vmd);
789 		if (m == NULL) {
790 			vm_domain_freecnt_inc(vmd, npages);
791 			return (NULL);
792 		}
793 	} else
794 		return (NULL);
795 	KASSERT(vm_phys_domain(m) == domain,
796 	    ("vm_reserv_alloc_contig: Page domain does not match requested."));
797 
798 	/*
799 	 * The allocated physical pages always begin at a reservation
800 	 * boundary, but they do not always end at a reservation boundary.
801 	 * Initialize every reservation that is completely covered by the
802 	 * allocated physical pages.
803 	 */
804 	m_ret = NULL;
805 	index = VM_RESERV_INDEX(object, pindex);
806 	do {
807 		rv = vm_reserv_from_page(m);
808 		KASSERT(rv->pages == m,
809 		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
810 		    rv));
811 		vm_reserv_lock(rv);
812 		vm_reserv_insert(rv, object, first);
813 		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
814 		for (i = 0; i < n; i++)
815 			vm_reserv_populate(rv, index + i);
816 		npages -= n;
817 		if (m_ret == NULL) {
818 			m_ret = &rv->pages[index];
819 			index = 0;
820 		}
821 		vm_reserv_unlock(rv);
822 		m += VM_LEVEL_0_NPAGES;
823 		first += VM_LEVEL_0_NPAGES;
824 		allocpages -= VM_LEVEL_0_NPAGES;
825 	} while (allocpages >= VM_LEVEL_0_NPAGES);
826 	return (m_ret);
827 }
828 
829 /*
830  * Attempts to extend an existing reservation and allocate the page to the
831  * object.
832  *
833  * The page "mpred" must immediately precede the offset "pindex" within the
834  * specified object.
835  *
836  * The object must be locked.
837  */
838 vm_page_t
839 vm_reserv_extend(int req, vm_object_t object, vm_pindex_t pindex, int domain,
840     vm_page_t mpred)
841 {
842 	struct vm_domain *vmd;
843 	vm_page_t m, msucc;
844 	vm_reserv_t rv;
845 	int index;
846 
847 	VM_OBJECT_ASSERT_WLOCKED(object);
848 
849 	/*
850 	 * Could a reservation currently exist?
851 	 */
852 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
853 	    pindex >= object->size || object->resident_page_count == 0)
854 		return (NULL);
855 
856 	/*
857 	 * Look for an existing reservation.
858 	 */
859 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
860 	if (rv == NULL)
861 		return (NULL);
862 
863 	KASSERT(object != kernel_object || rv->domain == domain,
864 	    ("vm_reserv_extend: Domain mismatch from reservation."));
865 	domain = rv->domain;
866 	vmd = VM_DOMAIN(domain);
867 	index = VM_RESERV_INDEX(object, pindex);
868 	m = &rv->pages[index];
869 	vm_reserv_lock(rv);
870 	/* Handle reclaim race. */
871 	if (rv->object != object ||
872 	    /* Handle vm_page_rename(m, new_object, ...). */
873 	    popmap_is_set(rv->popmap, index)) {
874 		m = NULL;
875 		goto out;
876 	}
877 	if (vm_domain_allocate(vmd, req, 1) == 0)
878 		m = NULL;
879 	else
880 		vm_reserv_populate(rv, index);
881 out:
882 	vm_reserv_unlock(rv);
883 
884 	return (m);
885 }
886 
887 /*
888  * Attempts to allocate a new reservation for the object, and allocates a
889  * page from that reservation.  Callers should first invoke vm_reserv_extend()
890  * to attempt an allocation from an existing reservation.
891  *
892  * The page "mpred" must immediately precede the offset "pindex" within the
893  * specified object.
894  *
895  * The object and free page queue must be locked.
896  */
897 vm_page_t
898 vm_reserv_alloc_page(int req, vm_object_t object, vm_pindex_t pindex, int domain,
899     vm_page_t mpred)
900 {
901 	struct vm_domain *vmd;
902 	vm_page_t m, msucc;
903 	vm_pindex_t first, leftcap, rightcap;
904 	vm_reserv_t rv;
905 	int index;
906 
907 	VM_OBJECT_ASSERT_WLOCKED(object);
908 
909 	/*
910 	 * Is a reservation fundamentally impossible?
911 	 */
912 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
913 	    pindex >= object->size)
914 		return (NULL);
915 
916 	/*
917 	 * Callers should've extended an existing reservation prior to
918 	 * calling this function.  If a reservation exists it is
919 	 * incompatible with the allocation.
920 	 */
921 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
922 	if (rv != NULL)
923 		return (NULL);
924 
925 	/*
926 	 * Could a reservation fit between the first index to the left that
927 	 * can be used and the first index to the right that cannot be used?
928 	 *
929 	 * We must synchronize with the reserv object lock to protect the
930 	 * pindex/object of the resulting reservations against rename while
931 	 * we are inspecting.
932 	 */
933 	first = pindex - VM_RESERV_INDEX(object, pindex);
934 	vm_reserv_object_lock(object);
935 	if (mpred != NULL) {
936 		if ((rv = vm_reserv_from_page(mpred))->object != object)
937 			leftcap = mpred->pindex + 1;
938 		else
939 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
940 		if (leftcap > first) {
941 			vm_reserv_object_unlock(object);
942 			return (NULL);
943 		}
944 	}
945 	if (msucc != NULL) {
946 		if ((rv = vm_reserv_from_page(msucc))->object != object)
947 			rightcap = msucc->pindex;
948 		else
949 			rightcap = rv->pindex;
950 		if (first + VM_LEVEL_0_NPAGES > rightcap) {
951 			vm_reserv_object_unlock(object);
952 			return (NULL);
953 		}
954 	}
955 	vm_reserv_object_unlock(object);
956 
957 	/*
958 	 * Would a new reservation extend past the end of the object?
959 	 */
960 	if (first + VM_LEVEL_0_NPAGES > object->size) {
961 		/*
962 		 * Don't allocate a new reservation if the object is a vnode or
963 		 * backed by another object that is a vnode.
964 		 */
965 		if (object->type == OBJT_VNODE ||
966 		    (object->backing_object != NULL &&
967 		    object->backing_object->type == OBJT_VNODE))
968 			return (NULL);
969 		/* Speculate that the object may grow. */
970 	}
971 
972 	/*
973 	 * Allocate and populate the new reservation.
974 	 */
975 	m = NULL;
976 	vmd = VM_DOMAIN(domain);
977 	if (vm_domain_allocate(vmd, req, 1)) {
978 		vm_domain_free_lock(vmd);
979 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
980 		    VM_LEVEL_0_ORDER);
981 		vm_domain_free_unlock(vmd);
982 		if (m == NULL) {
983 			vm_domain_freecnt_inc(vmd, 1);
984 			return (NULL);
985 		}
986 	} else
987 		return (NULL);
988 	rv = vm_reserv_from_page(m);
989 	vm_reserv_lock(rv);
990 	KASSERT(rv->pages == m,
991 	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
992 	vm_reserv_insert(rv, object, first);
993 	index = VM_RESERV_INDEX(object, pindex);
994 	vm_reserv_populate(rv, index);
995 	vm_reserv_unlock(rv);
996 
997 	return (&rv->pages[index]);
998 }
999 
1000 /*
1001  * Breaks the given reservation.  All free pages in the reservation
1002  * are returned to the physical memory allocator.  The reservation's
1003  * population count and map are reset to their initial state.
1004  *
1005  * The given reservation must not be in the partially populated reservation
1006  * queue.  The free page queue lock must be held.
1007  */
1008 static void
1009 vm_reserv_break(vm_reserv_t rv)
1010 {
1011 	int begin_zeroes, hi, i, lo;
1012 
1013 	vm_reserv_assert_locked(rv);
1014 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1015 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1016 	vm_reserv_remove(rv);
1017 	rv->pages->psind = 0;
1018 	i = hi = 0;
1019 	do {
1020 		/* Find the next 0 bit.  Any previous 0 bits are < "hi". */
1021 		lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1022 		if (lo == 0) {
1023 			/* Redundantly clears bits < "hi". */
1024 			rv->popmap[i] = 0;
1025 			rv->popcnt -= NBPOPMAP - hi;
1026 			while (++i < NPOPMAP) {
1027 				lo = ffsl(~rv->popmap[i]);
1028 				if (lo == 0) {
1029 					rv->popmap[i] = 0;
1030 					rv->popcnt -= NBPOPMAP;
1031 				} else
1032 					break;
1033 			}
1034 			if (i == NPOPMAP)
1035 				break;
1036 			hi = 0;
1037 		}
1038 		KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo));
1039 		/* Convert from ffsl() to ordinary bit numbering. */
1040 		lo--;
1041 		if (lo > 0) {
1042 			/* Redundantly clears bits < "hi". */
1043 			rv->popmap[i] &= ~((1UL << lo) - 1);
1044 			rv->popcnt -= lo - hi;
1045 		}
1046 		begin_zeroes = NBPOPMAP * i + lo;
1047 		/* Find the next 1 bit. */
1048 		do
1049 			hi = ffsl(rv->popmap[i]);
1050 		while (hi == 0 && ++i < NPOPMAP);
1051 		if (i != NPOPMAP)
1052 			/* Convert from ffsl() to ordinary bit numbering. */
1053 			hi--;
1054 		vm_domain_free_lock(VM_DOMAIN(rv->domain));
1055 		vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i +
1056 		    hi - begin_zeroes);
1057 		vm_domain_free_unlock(VM_DOMAIN(rv->domain));
1058 	} while (i < NPOPMAP);
1059 	KASSERT(rv->popcnt == 0,
1060 	    ("vm_reserv_break: reserv %p's popcnt is corrupted", rv));
1061 	counter_u64_add(vm_reserv_broken, 1);
1062 }
1063 
1064 /*
1065  * Breaks all reservations belonging to the given object.
1066  */
1067 void
1068 vm_reserv_break_all(vm_object_t object)
1069 {
1070 	vm_reserv_t rv;
1071 
1072 	/*
1073 	 * This access of object->rvq is unsynchronized so that the
1074 	 * object rvq lock can nest after the domain_free lock.  We
1075 	 * must check for races in the results.  However, the object
1076 	 * lock prevents new additions, so we are guaranteed that when
1077 	 * it returns NULL the object is properly empty.
1078 	 */
1079 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
1080 		vm_reserv_lock(rv);
1081 		/* Reclaim race. */
1082 		if (rv->object != object) {
1083 			vm_reserv_unlock(rv);
1084 			continue;
1085 		}
1086 		vm_reserv_domain_lock(rv->domain);
1087 		if (rv->inpartpopq) {
1088 			TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1089 			rv->inpartpopq = FALSE;
1090 		}
1091 		vm_reserv_domain_unlock(rv->domain);
1092 		vm_reserv_break(rv);
1093 		vm_reserv_unlock(rv);
1094 	}
1095 }
1096 
1097 /*
1098  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1099  * page is freed and FALSE otherwise.
1100  *
1101  * The free page queue lock must be held.
1102  */
1103 boolean_t
1104 vm_reserv_free_page(vm_page_t m)
1105 {
1106 	vm_reserv_t rv;
1107 	boolean_t ret;
1108 
1109 	rv = vm_reserv_from_page(m);
1110 	if (rv->object == NULL)
1111 		return (FALSE);
1112 	vm_reserv_lock(rv);
1113 	/* Re-validate after lock. */
1114 	if (rv->object != NULL) {
1115 		vm_reserv_depopulate(rv, m - rv->pages);
1116 		ret = TRUE;
1117 	} else
1118 		ret = FALSE;
1119 	vm_reserv_unlock(rv);
1120 
1121 	return (ret);
1122 }
1123 
1124 /*
1125  * Initializes the reservation management system.  Specifically, initializes
1126  * the reservation array.
1127  *
1128  * Requires that vm_page_array and first_page are initialized!
1129  */
1130 void
1131 vm_reserv_init(void)
1132 {
1133 	vm_paddr_t paddr;
1134 	struct vm_phys_seg *seg;
1135 	struct vm_reserv *rv;
1136 	int i, segind;
1137 
1138 	/*
1139 	 * Initialize the reservation array.  Specifically, initialize the
1140 	 * "pages" field for every element that has an underlying superpage.
1141 	 */
1142 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1143 		seg = &vm_phys_segs[segind];
1144 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1145 		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
1146 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
1147 			rv->pages = PHYS_TO_VM_PAGE(paddr);
1148 			rv->domain = seg->domain;
1149 			mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1150 			paddr += VM_LEVEL_0_SIZE;
1151 		}
1152 	}
1153 	for (i = 0; i < MAXMEMDOM; i++) {
1154 		mtx_init(&vm_reserv_domain_locks[i], "VM reserv domain", NULL,
1155 		    MTX_DEF);
1156 		TAILQ_INIT(&vm_rvq_partpop[i]);
1157 	}
1158 
1159 	for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1160 		mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1161 		    MTX_DEF);
1162 }
1163 
1164 /*
1165  * Returns true if the given page belongs to a reservation and that page is
1166  * free.  Otherwise, returns false.
1167  */
1168 bool
1169 vm_reserv_is_page_free(vm_page_t m)
1170 {
1171 	vm_reserv_t rv;
1172 
1173 	rv = vm_reserv_from_page(m);
1174 	if (rv->object == NULL)
1175 		return (false);
1176 	return (popmap_is_clear(rv->popmap, m - rv->pages));
1177 }
1178 
1179 /*
1180  * If the given page belongs to a reservation, returns the level of that
1181  * reservation.  Otherwise, returns -1.
1182  */
1183 int
1184 vm_reserv_level(vm_page_t m)
1185 {
1186 	vm_reserv_t rv;
1187 
1188 	rv = vm_reserv_from_page(m);
1189 	return (rv->object != NULL ? 0 : -1);
1190 }
1191 
1192 /*
1193  * Returns a reservation level if the given page belongs to a fully populated
1194  * reservation and -1 otherwise.
1195  */
1196 int
1197 vm_reserv_level_iffullpop(vm_page_t m)
1198 {
1199 	vm_reserv_t rv;
1200 
1201 	rv = vm_reserv_from_page(m);
1202 	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1203 }
1204 
1205 /*
1206  * Breaks the given partially populated reservation, releasing its free pages
1207  * to the physical memory allocator.
1208  *
1209  * The free page queue lock must be held.
1210  */
1211 static void
1212 vm_reserv_reclaim(vm_reserv_t rv)
1213 {
1214 
1215 	vm_reserv_assert_locked(rv);
1216 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1217 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1218 	vm_reserv_domain_lock(rv->domain);
1219 	KASSERT(rv->inpartpopq,
1220 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1221 	KASSERT(rv->domain < vm_ndomains,
1222 	    ("vm_reserv_reclaim: reserv %p's domain is corrupted %d",
1223 	    rv, rv->domain));
1224 	TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1225 	rv->inpartpopq = FALSE;
1226 	vm_reserv_domain_unlock(rv->domain);
1227 	vm_reserv_break(rv);
1228 	counter_u64_add(vm_reserv_reclaimed, 1);
1229 }
1230 
1231 /*
1232  * Breaks the reservation at the head of the partially populated reservation
1233  * queue, releasing its free pages to the physical memory allocator.  Returns
1234  * TRUE if a reservation is broken and FALSE otherwise.
1235  *
1236  * The free page queue lock must be held.
1237  */
1238 boolean_t
1239 vm_reserv_reclaim_inactive(int domain)
1240 {
1241 	vm_reserv_t rv;
1242 
1243 	while ((rv = TAILQ_FIRST(&vm_rvq_partpop[domain])) != NULL) {
1244 		vm_reserv_lock(rv);
1245 		if (rv != TAILQ_FIRST(&vm_rvq_partpop[domain])) {
1246 			vm_reserv_unlock(rv);
1247 			continue;
1248 		}
1249 		vm_reserv_reclaim(rv);
1250 		vm_reserv_unlock(rv);
1251 		return (TRUE);
1252 	}
1253 	return (FALSE);
1254 }
1255 
1256 /*
1257  * Searches the partially populated reservation queue for the least recently
1258  * changed reservation with free pages that satisfy the given request for
1259  * contiguous physical memory.  If a satisfactory reservation is found, it is
1260  * broken.  Returns TRUE if a reservation is broken and FALSE otherwise.
1261  *
1262  * The free page queue lock must be held.
1263  */
1264 boolean_t
1265 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1266     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1267 {
1268 	vm_paddr_t pa, size;
1269 	vm_reserv_t rv, rvn;
1270 	int hi, i, lo, low_index, next_free;
1271 
1272 	if (npages > VM_LEVEL_0_NPAGES - 1)
1273 		return (FALSE);
1274 	size = npages << PAGE_SHIFT;
1275 	vm_reserv_domain_lock(domain);
1276 again:
1277 	for (rv = TAILQ_FIRST(&vm_rvq_partpop[domain]); rv != NULL; rv = rvn) {
1278 		rvn = TAILQ_NEXT(rv, partpopq);
1279 		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
1280 		if (pa + PAGE_SIZE - size < low) {
1281 			/* This entire reservation is too low; go to next. */
1282 			continue;
1283 		}
1284 		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1285 		if (pa + size > high) {
1286 			/* This entire reservation is too high; go to next. */
1287 			continue;
1288 		}
1289 		if (vm_reserv_trylock(rv) == 0) {
1290 			vm_reserv_domain_unlock(domain);
1291 			vm_reserv_lock(rv);
1292 			if (!rv->inpartpopq) {
1293 				vm_reserv_domain_lock(domain);
1294 				if (!rvn->inpartpopq)
1295 					goto again;
1296 				continue;
1297 			}
1298 		} else
1299 			vm_reserv_domain_unlock(domain);
1300 		if (pa < low) {
1301 			/* Start the search for free pages at "low". */
1302 			low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT;
1303 			i = low_index / NBPOPMAP;
1304 			hi = low_index % NBPOPMAP;
1305 		} else
1306 			i = hi = 0;
1307 		do {
1308 			/* Find the next free page. */
1309 			lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1310 			while (lo == 0 && ++i < NPOPMAP)
1311 				lo = ffsl(~rv->popmap[i]);
1312 			if (i == NPOPMAP)
1313 				break;
1314 			/* Convert from ffsl() to ordinary bit numbering. */
1315 			lo--;
1316 			next_free = NBPOPMAP * i + lo;
1317 			pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
1318 			KASSERT(pa >= low,
1319 			    ("vm_reserv_reclaim_contig: pa is too low"));
1320 			if (pa + size > high) {
1321 				/* The rest of this reservation is too high. */
1322 				break;
1323 			} else if ((pa & (alignment - 1)) != 0 ||
1324 			    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1325 				/*
1326 				 * The current page doesn't meet the alignment
1327 				 * and/or boundary requirements.  Continue
1328 				 * searching this reservation until the rest
1329 				 * of its free pages are either excluded or
1330 				 * exhausted.
1331 				 */
1332 				hi = lo + 1;
1333 				if (hi >= NBPOPMAP) {
1334 					hi = 0;
1335 					i++;
1336 				}
1337 				continue;
1338 			}
1339 			/* Find the next used page. */
1340 			hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
1341 			while (hi == 0 && ++i < NPOPMAP) {
1342 				if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
1343 				    size) {
1344 					vm_reserv_reclaim(rv);
1345 					vm_reserv_unlock(rv);
1346 					return (TRUE);
1347 				}
1348 				hi = ffsl(rv->popmap[i]);
1349 			}
1350 			/* Convert from ffsl() to ordinary bit numbering. */
1351 			if (i != NPOPMAP)
1352 				hi--;
1353 			if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
1354 			    size) {
1355 				vm_reserv_reclaim(rv);
1356 				vm_reserv_unlock(rv);
1357 				return (TRUE);
1358 			}
1359 		} while (i < NPOPMAP);
1360 		vm_reserv_unlock(rv);
1361 		vm_reserv_domain_lock(domain);
1362 		if (rvn != NULL && !rvn->inpartpopq)
1363 			goto again;
1364 	}
1365 	vm_reserv_domain_unlock(domain);
1366 	return (FALSE);
1367 }
1368 
1369 /*
1370  * Transfers the reservation underlying the given page to a new object.
1371  *
1372  * The object must be locked.
1373  */
1374 void
1375 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1376     vm_pindex_t old_object_offset)
1377 {
1378 	vm_reserv_t rv;
1379 
1380 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1381 	rv = vm_reserv_from_page(m);
1382 	if (rv->object == old_object) {
1383 		vm_reserv_lock(rv);
1384 		CTR6(KTR_VM,
1385 		    "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1386 		    __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1387 		    rv->inpartpopq);
1388 		if (rv->object == old_object) {
1389 			vm_reserv_object_lock(old_object);
1390 			rv->object = NULL;
1391 			LIST_REMOVE(rv, objq);
1392 			vm_reserv_object_unlock(old_object);
1393 			vm_reserv_object_lock(new_object);
1394 			rv->object = new_object;
1395 			rv->pindex -= old_object_offset;
1396 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1397 			vm_reserv_object_unlock(new_object);
1398 		}
1399 		vm_reserv_unlock(rv);
1400 	}
1401 }
1402 
1403 /*
1404  * Returns the size (in bytes) of a reservation of the specified level.
1405  */
1406 int
1407 vm_reserv_size(int level)
1408 {
1409 
1410 	switch (level) {
1411 	case 0:
1412 		return (VM_LEVEL_0_SIZE);
1413 	case -1:
1414 		return (PAGE_SIZE);
1415 	default:
1416 		return (0);
1417 	}
1418 }
1419 
1420 /*
1421  * Allocates the virtual and physical memory required by the reservation
1422  * management system's data structures, in particular, the reservation array.
1423  */
1424 vm_paddr_t
1425 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
1426 {
1427 	vm_paddr_t new_end;
1428 	size_t size;
1429 
1430 	/*
1431 	 * Calculate the size (in bytes) of the reservation array.  Round up
1432 	 * from "high_water" because every small page is mapped to an element
1433 	 * in the reservation array based on its physical address.  Thus, the
1434 	 * number of elements in the reservation array can be greater than the
1435 	 * number of superpages.
1436 	 */
1437 	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1438 
1439 	/*
1440 	 * Allocate and map the physical memory for the reservation array.  The
1441 	 * next available virtual address is returned by reference.
1442 	 */
1443 	new_end = end - round_page(size);
1444 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1445 	    VM_PROT_READ | VM_PROT_WRITE);
1446 	bzero(vm_reserv_array, size);
1447 
1448 	/*
1449 	 * Return the next available physical address.
1450 	 */
1451 	return (new_end);
1452 }
1453 
1454 /*
1455  * Initializes the reservation management system.  Specifically, initializes
1456  * the reservation counters.
1457  */
1458 static void
1459 vm_reserv_counter_init(void *unused)
1460 {
1461 
1462 	vm_reserv_freed = counter_u64_alloc(M_WAITOK);
1463 	vm_reserv_broken = counter_u64_alloc(M_WAITOK);
1464 	vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK);
1465 }
1466 SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY,
1467     vm_reserv_counter_init, NULL);
1468 
1469 /*
1470  * Returns the superpage containing the given page.
1471  */
1472 vm_page_t
1473 vm_reserv_to_superpage(vm_page_t m)
1474 {
1475 	vm_reserv_t rv;
1476 
1477 	VM_OBJECT_ASSERT_LOCKED(m->object);
1478 	rv = vm_reserv_from_page(m);
1479 	if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1480 		m = rv->pages;
1481 	else
1482 		m = NULL;
1483 
1484 	return (m);
1485 }
1486 
1487 #endif	/* VM_NRESERVLEVEL > 0 */
1488