1 /*- 2 * Copyright (c) 2002-2006 Rice University 3 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 4 * All rights reserved. 5 * 6 * This software was developed for the FreeBSD Project by Alan L. Cox, 7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Superpage reservation management module 34 * 35 * Any external functions defined by this module are only to be used by the 36 * virtual memory system. 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_vm.h" 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/queue.h> 50 #include <sys/rwlock.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <vm/vm.h> 56 #include <vm/vm_param.h> 57 #include <vm/vm_object.h> 58 #include <vm/vm_page.h> 59 #include <vm/vm_phys.h> 60 #include <vm/vm_radix.h> 61 #include <vm/vm_reserv.h> 62 63 /* 64 * The reservation system supports the speculative allocation of large physical 65 * pages ("superpages"). Speculative allocation enables the fully-automatic 66 * utilization of superpages by the virtual memory system. In other words, no 67 * programmatic directives are required to use superpages. 68 */ 69 70 #if VM_NRESERVLEVEL > 0 71 72 /* 73 * The number of small pages that are contained in a level 0 reservation 74 */ 75 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 76 77 /* 78 * The number of bits by which a physical address is shifted to obtain the 79 * reservation number 80 */ 81 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 82 83 /* 84 * The size of a level 0 reservation in bytes 85 */ 86 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 87 88 /* 89 * Computes the index of the small page underlying the given (object, pindex) 90 * within the reservation's array of small pages. 91 */ 92 #define VM_RESERV_INDEX(object, pindex) \ 93 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 94 95 /* 96 * The size of a population map entry 97 */ 98 typedef u_long popmap_t; 99 100 /* 101 * The number of bits in a population map entry 102 */ 103 #define NBPOPMAP (NBBY * sizeof(popmap_t)) 104 105 /* 106 * The number of population map entries in a reservation 107 */ 108 #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP) 109 110 /* 111 * The reservation structure 112 * 113 * A reservation structure is constructed whenever a large physical page is 114 * speculatively allocated to an object. The reservation provides the small 115 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 116 * within that object. The reservation's "popcnt" tracks the number of these 117 * small physical pages that are in use at any given time. When and if the 118 * reservation is not fully utilized, it appears in the queue of partially- 119 * populated reservations. The reservation always appears on the containing 120 * object's list of reservations. 121 * 122 * A partially-populated reservation can be broken and reclaimed at any time. 123 */ 124 struct vm_reserv { 125 TAILQ_ENTRY(vm_reserv) partpopq; 126 LIST_ENTRY(vm_reserv) objq; 127 vm_object_t object; /* containing object */ 128 vm_pindex_t pindex; /* offset within object */ 129 vm_page_t pages; /* first page of a superpage */ 130 int popcnt; /* # of pages in use */ 131 char inpartpopq; 132 popmap_t popmap[NPOPMAP]; /* bit vector of used pages */ 133 }; 134 135 /* 136 * The reservation array 137 * 138 * This array is analoguous in function to vm_page_array. It differs in the 139 * respect that it may contain a greater number of useful reservation 140 * structures than there are (physical) superpages. These "invalid" 141 * reservation structures exist to trade-off space for time in the 142 * implementation of vm_reserv_from_page(). Invalid reservation structures are 143 * distinguishable from "valid" reservation structures by inspecting the 144 * reservation's "pages" field. Invalid reservation structures have a NULL 145 * "pages" field. 146 * 147 * vm_reserv_from_page() maps a small (physical) page to an element of this 148 * array by computing a physical reservation number from the page's physical 149 * address. The physical reservation number is used as the array index. 150 * 151 * An "active" reservation is a valid reservation structure that has a non-NULL 152 * "object" field and a non-zero "popcnt" field. In other words, every active 153 * reservation belongs to a particular object. Moreover, every active 154 * reservation has an entry in the containing object's list of reservations. 155 */ 156 static vm_reserv_t vm_reserv_array; 157 158 /* 159 * The partially-populated reservation queue 160 * 161 * This queue enables the fast recovery of an unused cached or free small page 162 * from a partially-populated reservation. The reservation at the head of 163 * this queue is the least-recently-changed, partially-populated reservation. 164 * 165 * Access to this queue is synchronized by the free page queue lock. 166 */ 167 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop = 168 TAILQ_HEAD_INITIALIZER(vm_rvq_partpop); 169 170 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); 171 172 static long vm_reserv_broken; 173 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 174 &vm_reserv_broken, 0, "Cumulative number of broken reservations"); 175 176 static long vm_reserv_freed; 177 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 178 &vm_reserv_freed, 0, "Cumulative number of freed reservations"); 179 180 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 181 182 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 183 sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues"); 184 185 static long vm_reserv_reclaimed; 186 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 187 &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations"); 188 189 static void vm_reserv_break(vm_reserv_t rv, vm_page_t m); 190 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 191 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 192 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 193 vm_pindex_t pindex); 194 static void vm_reserv_populate(vm_reserv_t rv, int index); 195 static void vm_reserv_reclaim(vm_reserv_t rv); 196 197 /* 198 * Describes the current state of the partially-populated reservation queue. 199 */ 200 static int 201 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 202 { 203 struct sbuf sbuf; 204 vm_reserv_t rv; 205 int counter, error, level, unused_pages; 206 207 error = sysctl_wire_old_buffer(req, 0); 208 if (error != 0) 209 return (error); 210 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 211 sbuf_printf(&sbuf, "\nLEVEL SIZE NUMBER\n\n"); 212 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 213 counter = 0; 214 unused_pages = 0; 215 mtx_lock(&vm_page_queue_free_mtx); 216 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) { 217 counter++; 218 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 219 } 220 mtx_unlock(&vm_page_queue_free_mtx); 221 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level, 222 unused_pages * ((int)PAGE_SIZE / 1024), counter); 223 } 224 error = sbuf_finish(&sbuf); 225 sbuf_delete(&sbuf); 226 return (error); 227 } 228 229 /* 230 * Reduces the given reservation's population count. If the population count 231 * becomes zero, the reservation is destroyed. Additionally, moves the 232 * reservation to the tail of the partially-populated reservation queue if the 233 * population count is non-zero. 234 * 235 * The free page queue lock must be held. 236 */ 237 static void 238 vm_reserv_depopulate(vm_reserv_t rv, int index) 239 { 240 241 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 242 KASSERT(rv->object != NULL, 243 ("vm_reserv_depopulate: reserv %p is free", rv)); 244 KASSERT(isset(rv->popmap, index), 245 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 246 index)); 247 KASSERT(rv->popcnt > 0, 248 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 249 if (rv->inpartpopq) { 250 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 251 rv->inpartpopq = FALSE; 252 } 253 clrbit(rv->popmap, index); 254 rv->popcnt--; 255 if (rv->popcnt == 0) { 256 LIST_REMOVE(rv, objq); 257 rv->object = NULL; 258 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 259 vm_reserv_freed++; 260 } else { 261 rv->inpartpopq = TRUE; 262 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 263 } 264 } 265 266 /* 267 * Returns the reservation to which the given page might belong. 268 */ 269 static __inline vm_reserv_t 270 vm_reserv_from_page(vm_page_t m) 271 { 272 273 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 274 } 275 276 /* 277 * Returns TRUE if the given reservation contains the given page index and 278 * FALSE otherwise. 279 */ 280 static __inline boolean_t 281 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 282 { 283 284 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 285 } 286 287 /* 288 * Increases the given reservation's population count. Moves the reservation 289 * to the tail of the partially-populated reservation queue. 290 * 291 * The free page queue must be locked. 292 */ 293 static void 294 vm_reserv_populate(vm_reserv_t rv, int index) 295 { 296 297 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 298 KASSERT(rv->object != NULL, 299 ("vm_reserv_populate: reserv %p is free", rv)); 300 KASSERT(isclr(rv->popmap, index), 301 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 302 index)); 303 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 304 ("vm_reserv_populate: reserv %p is already full", rv)); 305 if (rv->inpartpopq) { 306 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 307 rv->inpartpopq = FALSE; 308 } 309 setbit(rv->popmap, index); 310 rv->popcnt++; 311 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 312 rv->inpartpopq = TRUE; 313 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq); 314 } 315 } 316 317 /* 318 * Allocates a contiguous set of physical pages of the given size "npages" 319 * from an existing or newly-created reservation. All of the physical pages 320 * must be at or above the given physical address "low" and below the given 321 * physical address "high". The given value "alignment" determines the 322 * alignment of the first physical page in the set. If the given value 323 * "boundary" is non-zero, then the set of physical pages cannot cross any 324 * physical address boundary that is a multiple of that value. Both 325 * "alignment" and "boundary" must be a power of two. 326 * 327 * The object and free page queue must be locked. 328 */ 329 vm_page_t 330 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages, 331 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 332 { 333 vm_paddr_t pa, size; 334 vm_page_t m, m_ret, mpred, msucc; 335 vm_pindex_t first, leftcap, rightcap; 336 vm_reserv_t rv; 337 u_long allocpages, maxpages, minpages; 338 int i, index, n; 339 340 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 341 VM_OBJECT_ASSERT_WLOCKED(object); 342 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 343 344 /* 345 * Is a reservation fundamentally impossible? 346 */ 347 if (pindex < VM_RESERV_INDEX(object, pindex) || 348 pindex + npages > object->size) 349 return (NULL); 350 351 /* 352 * All reservations of a particular size have the same alignment. 353 * Assuming that the first page is allocated from a reservation, the 354 * least significant bits of its physical address can be determined 355 * from its offset from the beginning of the reservation and the size 356 * of the reservation. 357 * 358 * Could the specified index within a reservation of the smallest 359 * possible size satisfy the alignment and boundary requirements? 360 */ 361 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 362 if ((pa & (alignment - 1)) != 0) 363 return (NULL); 364 size = npages << PAGE_SHIFT; 365 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 366 return (NULL); 367 368 /* 369 * Look for an existing reservation. 370 */ 371 mpred = vm_radix_lookup_le(&object->rtree, pindex); 372 if (mpred != NULL) { 373 KASSERT(mpred->pindex < pindex, 374 ("vm_reserv_alloc_contig: pindex already allocated")); 375 rv = vm_reserv_from_page(mpred); 376 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 377 goto found; 378 msucc = TAILQ_NEXT(mpred, listq); 379 } else 380 msucc = TAILQ_FIRST(&object->memq); 381 if (msucc != NULL) { 382 KASSERT(msucc->pindex > pindex, 383 ("vm_reserv_alloc_page: pindex already allocated")); 384 rv = vm_reserv_from_page(msucc); 385 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 386 goto found; 387 } 388 389 /* 390 * Could at least one reservation fit between the first index to the 391 * left that can be used and the first index to the right that cannot 392 * be used? 393 */ 394 first = pindex - VM_RESERV_INDEX(object, pindex); 395 if (mpred != NULL) { 396 if ((rv = vm_reserv_from_page(mpred))->object != object) 397 leftcap = mpred->pindex + 1; 398 else 399 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 400 if (leftcap > first) 401 return (NULL); 402 } 403 minpages = VM_RESERV_INDEX(object, pindex) + npages; 404 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 405 allocpages = maxpages; 406 if (msucc != NULL) { 407 if ((rv = vm_reserv_from_page(msucc))->object != object) 408 rightcap = msucc->pindex; 409 else 410 rightcap = rv->pindex; 411 if (first + maxpages > rightcap) { 412 if (maxpages == VM_LEVEL_0_NPAGES) 413 return (NULL); 414 allocpages = minpages; 415 } 416 } 417 418 /* 419 * Would the last new reservation extend past the end of the object? 420 */ 421 if (first + maxpages > object->size) { 422 /* 423 * Don't allocate the last new reservation if the object is a 424 * vnode or backed by another object that is a vnode. 425 */ 426 if (object->type == OBJT_VNODE || 427 (object->backing_object != NULL && 428 object->backing_object->type == OBJT_VNODE)) { 429 if (maxpages == VM_LEVEL_0_NPAGES) 430 return (NULL); 431 allocpages = minpages; 432 } 433 /* Speculate that the object may grow. */ 434 } 435 436 /* 437 * Allocate and populate the new reservations. The alignment and 438 * boundary specified for this allocation may be different from the 439 * alignment and boundary specified for the requested pages. For 440 * instance, the specified index may not be the first page within the 441 * first new reservation. 442 */ 443 m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment, 444 VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0); 445 if (m == NULL) 446 return (NULL); 447 m_ret = NULL; 448 index = VM_RESERV_INDEX(object, pindex); 449 do { 450 rv = vm_reserv_from_page(m); 451 KASSERT(rv->pages == m, 452 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 453 rv)); 454 KASSERT(rv->object == NULL, 455 ("vm_reserv_alloc_contig: reserv %p isn't free", rv)); 456 LIST_INSERT_HEAD(&object->rvq, rv, objq); 457 rv->object = object; 458 rv->pindex = first; 459 KASSERT(rv->popcnt == 0, 460 ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted", 461 rv)); 462 KASSERT(!rv->inpartpopq, 463 ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE", 464 rv)); 465 for (i = 0; i < NPOPMAP; i++) 466 KASSERT(rv->popmap[i] == 0, 467 ("vm_reserv_alloc_contig: reserv %p's popmap is corrupted", 468 rv)); 469 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 470 for (i = 0; i < n; i++) 471 vm_reserv_populate(rv, index + i); 472 npages -= n; 473 if (m_ret == NULL) { 474 m_ret = &rv->pages[index]; 475 index = 0; 476 } 477 m += VM_LEVEL_0_NPAGES; 478 first += VM_LEVEL_0_NPAGES; 479 allocpages -= VM_LEVEL_0_NPAGES; 480 } while (allocpages > 0); 481 return (m_ret); 482 483 /* 484 * Found a matching reservation. 485 */ 486 found: 487 index = VM_RESERV_INDEX(object, pindex); 488 /* Does the allocation fit within the reservation? */ 489 if (index + npages > VM_LEVEL_0_NPAGES) 490 return (NULL); 491 m = &rv->pages[index]; 492 pa = VM_PAGE_TO_PHYS(m); 493 if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 || 494 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 495 return (NULL); 496 /* Handle vm_page_rename(m, new_object, ...). */ 497 for (i = 0; i < npages; i++) 498 if (isset(rv->popmap, index + i)) 499 return (NULL); 500 for (i = 0; i < npages; i++) 501 vm_reserv_populate(rv, index + i); 502 return (m); 503 } 504 505 /* 506 * Allocates a page from an existing or newly-created reservation. 507 * 508 * The page "mpred" must immediately precede the offset "pindex" within the 509 * specified object. 510 * 511 * The object and free page queue must be locked. 512 */ 513 vm_page_t 514 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred) 515 { 516 vm_page_t m, msucc; 517 vm_pindex_t first, leftcap, rightcap; 518 vm_reserv_t rv; 519 int i, index; 520 521 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 522 VM_OBJECT_ASSERT_WLOCKED(object); 523 524 /* 525 * Is a reservation fundamentally impossible? 526 */ 527 if (pindex < VM_RESERV_INDEX(object, pindex) || 528 pindex >= object->size) 529 return (NULL); 530 531 /* 532 * Look for an existing reservation. 533 */ 534 if (mpred != NULL) { 535 KASSERT(mpred->object == object, 536 ("vm_reserv_alloc_page: object doesn't contain mpred")); 537 KASSERT(mpred->pindex < pindex, 538 ("vm_reserv_alloc_page: mpred doesn't precede pindex")); 539 rv = vm_reserv_from_page(mpred); 540 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 541 goto found; 542 msucc = TAILQ_NEXT(mpred, listq); 543 } else 544 msucc = TAILQ_FIRST(&object->memq); 545 if (msucc != NULL) { 546 KASSERT(msucc->pindex > pindex, 547 ("vm_reserv_alloc_page: msucc doesn't succeed pindex")); 548 rv = vm_reserv_from_page(msucc); 549 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 550 goto found; 551 } 552 553 /* 554 * Could a reservation fit between the first index to the left that 555 * can be used and the first index to the right that cannot be used? 556 */ 557 first = pindex - VM_RESERV_INDEX(object, pindex); 558 if (mpred != NULL) { 559 if ((rv = vm_reserv_from_page(mpred))->object != object) 560 leftcap = mpred->pindex + 1; 561 else 562 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 563 if (leftcap > first) 564 return (NULL); 565 } 566 if (msucc != NULL) { 567 if ((rv = vm_reserv_from_page(msucc))->object != object) 568 rightcap = msucc->pindex; 569 else 570 rightcap = rv->pindex; 571 if (first + VM_LEVEL_0_NPAGES > rightcap) 572 return (NULL); 573 } 574 575 /* 576 * Would a new reservation extend past the end of the object? 577 */ 578 if (first + VM_LEVEL_0_NPAGES > object->size) { 579 /* 580 * Don't allocate a new reservation if the object is a vnode or 581 * backed by another object that is a vnode. 582 */ 583 if (object->type == OBJT_VNODE || 584 (object->backing_object != NULL && 585 object->backing_object->type == OBJT_VNODE)) 586 return (NULL); 587 /* Speculate that the object may grow. */ 588 } 589 590 /* 591 * Allocate and populate the new reservation. 592 */ 593 m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER); 594 if (m == NULL) 595 return (NULL); 596 rv = vm_reserv_from_page(m); 597 KASSERT(rv->pages == m, 598 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 599 KASSERT(rv->object == NULL, 600 ("vm_reserv_alloc_page: reserv %p isn't free", rv)); 601 LIST_INSERT_HEAD(&object->rvq, rv, objq); 602 rv->object = object; 603 rv->pindex = first; 604 KASSERT(rv->popcnt == 0, 605 ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv)); 606 KASSERT(!rv->inpartpopq, 607 ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv)); 608 for (i = 0; i < NPOPMAP; i++) 609 KASSERT(rv->popmap[i] == 0, 610 ("vm_reserv_alloc_page: reserv %p's popmap is corrupted", 611 rv)); 612 index = VM_RESERV_INDEX(object, pindex); 613 vm_reserv_populate(rv, index); 614 return (&rv->pages[index]); 615 616 /* 617 * Found a matching reservation. 618 */ 619 found: 620 index = VM_RESERV_INDEX(object, pindex); 621 m = &rv->pages[index]; 622 /* Handle vm_page_rename(m, new_object, ...). */ 623 if (isset(rv->popmap, index)) 624 return (NULL); 625 vm_reserv_populate(rv, index); 626 return (m); 627 } 628 629 /* 630 * Breaks the given reservation. Except for the specified cached or free 631 * page, all cached and free pages in the reservation are returned to the 632 * physical memory allocator. The reservation's population count and map are 633 * reset to their initial state. 634 * 635 * The given reservation must not be in the partially-populated reservation 636 * queue. The free page queue lock must be held. 637 */ 638 static void 639 vm_reserv_break(vm_reserv_t rv, vm_page_t m) 640 { 641 int begin_zeroes, hi, i, lo; 642 643 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 644 KASSERT(rv->object != NULL, 645 ("vm_reserv_break: reserv %p is free", rv)); 646 KASSERT(!rv->inpartpopq, 647 ("vm_reserv_break: reserv %p's inpartpopq is TRUE", rv)); 648 LIST_REMOVE(rv, objq); 649 rv->object = NULL; 650 if (m != NULL) { 651 /* 652 * Since the reservation is being broken, there is no harm in 653 * abusing the population map to stop "m" from being returned 654 * to the physical memory allocator. 655 */ 656 i = m - rv->pages; 657 KASSERT(isclr(rv->popmap, i), 658 ("vm_reserv_break: reserv %p's popmap is corrupted", rv)); 659 setbit(rv->popmap, i); 660 rv->popcnt++; 661 } 662 i = hi = 0; 663 do { 664 /* Find the next 0 bit. Any previous 0 bits are < "hi". */ 665 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 666 if (lo == 0) { 667 /* Redundantly clears bits < "hi". */ 668 rv->popmap[i] = 0; 669 rv->popcnt -= NBPOPMAP - hi; 670 while (++i < NPOPMAP) { 671 lo = ffsl(~rv->popmap[i]); 672 if (lo == 0) { 673 rv->popmap[i] = 0; 674 rv->popcnt -= NBPOPMAP; 675 } else 676 break; 677 } 678 if (i == NPOPMAP) 679 break; 680 hi = 0; 681 } 682 KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo)); 683 /* Convert from ffsl() to ordinary bit numbering. */ 684 lo--; 685 if (lo > 0) { 686 /* Redundantly clears bits < "hi". */ 687 rv->popmap[i] &= ~((1UL << lo) - 1); 688 rv->popcnt -= lo - hi; 689 } 690 begin_zeroes = NBPOPMAP * i + lo; 691 /* Find the next 1 bit. */ 692 do 693 hi = ffsl(rv->popmap[i]); 694 while (hi == 0 && ++i < NPOPMAP); 695 if (i != NPOPMAP) 696 /* Convert from ffsl() to ordinary bit numbering. */ 697 hi--; 698 vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i + 699 hi - begin_zeroes); 700 } while (i < NPOPMAP); 701 KASSERT(rv->popcnt == 0, 702 ("vm_reserv_break: reserv %p's popcnt is corrupted", rv)); 703 vm_reserv_broken++; 704 } 705 706 /* 707 * Breaks all reservations belonging to the given object. 708 */ 709 void 710 vm_reserv_break_all(vm_object_t object) 711 { 712 vm_reserv_t rv; 713 714 mtx_lock(&vm_page_queue_free_mtx); 715 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 716 KASSERT(rv->object == object, 717 ("vm_reserv_break_all: reserv %p is corrupted", rv)); 718 if (rv->inpartpopq) { 719 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 720 rv->inpartpopq = FALSE; 721 } 722 vm_reserv_break(rv, NULL); 723 } 724 mtx_unlock(&vm_page_queue_free_mtx); 725 } 726 727 /* 728 * Frees the given page if it belongs to a reservation. Returns TRUE if the 729 * page is freed and FALSE otherwise. 730 * 731 * The free page queue lock must be held. 732 */ 733 boolean_t 734 vm_reserv_free_page(vm_page_t m) 735 { 736 vm_reserv_t rv; 737 738 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 739 rv = vm_reserv_from_page(m); 740 if (rv->object == NULL) 741 return (FALSE); 742 if ((m->flags & PG_CACHED) != 0 && m->pool != VM_FREEPOOL_CACHE) 743 vm_phys_set_pool(VM_FREEPOOL_CACHE, rv->pages, 744 VM_LEVEL_0_ORDER); 745 vm_reserv_depopulate(rv, m - rv->pages); 746 return (TRUE); 747 } 748 749 /* 750 * Initializes the reservation management system. Specifically, initializes 751 * the reservation array. 752 * 753 * Requires that vm_page_array and first_page are initialized! 754 */ 755 void 756 vm_reserv_init(void) 757 { 758 vm_paddr_t paddr; 759 int i; 760 761 /* 762 * Initialize the reservation array. Specifically, initialize the 763 * "pages" field for every element that has an underlying superpage. 764 */ 765 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 766 paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE); 767 while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) { 768 vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages = 769 PHYS_TO_VM_PAGE(paddr); 770 paddr += VM_LEVEL_0_SIZE; 771 } 772 } 773 } 774 775 /* 776 * Returns a reservation level if the given page belongs to a fully-populated 777 * reservation and -1 otherwise. 778 */ 779 int 780 vm_reserv_level_iffullpop(vm_page_t m) 781 { 782 vm_reserv_t rv; 783 784 rv = vm_reserv_from_page(m); 785 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 786 } 787 788 /* 789 * Prepare for the reactivation of a cached page. 790 * 791 * First, suppose that the given page "m" was allocated individually, i.e., not 792 * as part of a reservation, and cached. Then, suppose a reservation 793 * containing "m" is allocated by the same object. Although "m" and the 794 * reservation belong to the same object, "m"'s pindex may not match the 795 * reservation's. 796 * 797 * The free page queue must be locked. 798 */ 799 boolean_t 800 vm_reserv_reactivate_page(vm_page_t m) 801 { 802 vm_reserv_t rv; 803 int index; 804 805 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 806 rv = vm_reserv_from_page(m); 807 if (rv->object == NULL) 808 return (FALSE); 809 KASSERT((m->flags & PG_CACHED) != 0, 810 ("vm_reserv_reactivate_page: page %p is not cached", m)); 811 if (m->object == rv->object && 812 m->pindex - rv->pindex == (index = VM_RESERV_INDEX(m->object, 813 m->pindex))) 814 vm_reserv_populate(rv, index); 815 else { 816 KASSERT(rv->inpartpopq, 817 ("vm_reserv_reactivate_page: reserv %p's inpartpopq is FALSE", 818 rv)); 819 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 820 rv->inpartpopq = FALSE; 821 /* Don't release "m" to the physical memory allocator. */ 822 vm_reserv_break(rv, m); 823 } 824 return (TRUE); 825 } 826 827 /* 828 * Breaks the given partially-populated reservation, releasing its cached and 829 * free pages to the physical memory allocator. 830 * 831 * The free page queue lock must be held. 832 */ 833 static void 834 vm_reserv_reclaim(vm_reserv_t rv) 835 { 836 837 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 838 KASSERT(rv->inpartpopq, 839 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 840 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq); 841 rv->inpartpopq = FALSE; 842 vm_reserv_break(rv, NULL); 843 vm_reserv_reclaimed++; 844 } 845 846 /* 847 * Breaks the reservation at the head of the partially-populated reservation 848 * queue, releasing its cached and free pages to the physical memory 849 * allocator. Returns TRUE if a reservation is broken and FALSE otherwise. 850 * 851 * The free page queue lock must be held. 852 */ 853 boolean_t 854 vm_reserv_reclaim_inactive(void) 855 { 856 vm_reserv_t rv; 857 858 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 859 if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) { 860 vm_reserv_reclaim(rv); 861 return (TRUE); 862 } 863 return (FALSE); 864 } 865 866 /* 867 * Searches the partially-populated reservation queue for the least recently 868 * active reservation with unused pages, i.e., cached or free, that satisfy the 869 * given request for contiguous physical memory. If a satisfactory reservation 870 * is found, it is broken. Returns TRUE if a reservation is broken and FALSE 871 * otherwise. 872 * 873 * The free page queue lock must be held. 874 */ 875 boolean_t 876 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high, 877 u_long alignment, vm_paddr_t boundary) 878 { 879 vm_paddr_t pa, size; 880 vm_reserv_t rv; 881 int hi, i, lo, next_free; 882 883 mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); 884 if (npages > VM_LEVEL_0_NPAGES - 1) 885 return (FALSE); 886 size = npages << PAGE_SHIFT; 887 TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) { 888 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); 889 if (pa + PAGE_SIZE - size < low) { 890 /* This entire reservation is too low; go to next. */ 891 continue; 892 } 893 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 894 if (pa + size > high) { 895 /* This entire reservation is too high; go to next. */ 896 continue; 897 } 898 if (pa < low) { 899 /* Start the search for free pages at "low". */ 900 i = (low - pa) / NBPOPMAP; 901 hi = (low - pa) % NBPOPMAP; 902 } else 903 i = hi = 0; 904 do { 905 /* Find the next free page. */ 906 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 907 while (lo == 0 && ++i < NPOPMAP) 908 lo = ffsl(~rv->popmap[i]); 909 if (i == NPOPMAP) 910 break; 911 /* Convert from ffsl() to ordinary bit numbering. */ 912 lo--; 913 next_free = NBPOPMAP * i + lo; 914 pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]); 915 KASSERT(pa >= low, 916 ("vm_reserv_reclaim_contig: pa is too low")); 917 if (pa + size > high) { 918 /* The rest of this reservation is too high. */ 919 break; 920 } else if ((pa & (alignment - 1)) != 0 || 921 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) { 922 /* Continue with this reservation. */ 923 hi = lo; 924 continue; 925 } 926 /* Find the next used page. */ 927 hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1)); 928 while (hi == 0 && ++i < NPOPMAP) { 929 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >= 930 size) { 931 vm_reserv_reclaim(rv); 932 return (TRUE); 933 } 934 hi = ffsl(rv->popmap[i]); 935 } 936 /* Convert from ffsl() to ordinary bit numbering. */ 937 if (i != NPOPMAP) 938 hi--; 939 if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >= 940 size) { 941 vm_reserv_reclaim(rv); 942 return (TRUE); 943 } 944 } while (i < NPOPMAP); 945 } 946 return (FALSE); 947 } 948 949 /* 950 * Transfers the reservation underlying the given page to a new object. 951 * 952 * The object must be locked. 953 */ 954 void 955 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 956 vm_pindex_t old_object_offset) 957 { 958 vm_reserv_t rv; 959 960 VM_OBJECT_ASSERT_WLOCKED(new_object); 961 rv = vm_reserv_from_page(m); 962 if (rv->object == old_object) { 963 mtx_lock(&vm_page_queue_free_mtx); 964 if (rv->object == old_object) { 965 LIST_REMOVE(rv, objq); 966 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 967 rv->object = new_object; 968 rv->pindex -= old_object_offset; 969 } 970 mtx_unlock(&vm_page_queue_free_mtx); 971 } 972 } 973 974 /* 975 * Allocates the virtual and physical memory required by the reservation 976 * management system's data structures, in particular, the reservation array. 977 */ 978 vm_paddr_t 979 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) 980 { 981 vm_paddr_t new_end; 982 size_t size; 983 984 /* 985 * Calculate the size (in bytes) of the reservation array. Round up 986 * from "high_water" because every small page is mapped to an element 987 * in the reservation array based on its physical address. Thus, the 988 * number of elements in the reservation array can be greater than the 989 * number of superpages. 990 */ 991 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); 992 993 /* 994 * Allocate and map the physical memory for the reservation array. The 995 * next available virtual address is returned by reference. 996 */ 997 new_end = end - round_page(size); 998 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 999 VM_PROT_READ | VM_PROT_WRITE); 1000 bzero(vm_reserv_array, size); 1001 1002 /* 1003 * Return the next available physical address. 1004 */ 1005 return (new_end); 1006 } 1007 1008 #endif /* VM_NRESERVLEVEL > 0 */ 1009