1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002-2006 Rice University 5 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Alan L. Cox, 9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Superpage reservation management module 36 * 37 * Any external functions defined by this module are only to be used by the 38 * virtual memory system. 39 */ 40 41 #include <sys/cdefs.h> 42 #include "opt_vm.h" 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/queue.h> 50 #include <sys/rwlock.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/bitstring.h> 55 #include <sys/counter.h> 56 #include <sys/ktr.h> 57 #include <sys/vmmeter.h> 58 #include <sys/smp.h> 59 60 #include <vm/vm.h> 61 #include <vm/vm_extern.h> 62 #include <vm/vm_param.h> 63 #include <vm/vm_object.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_pageout.h> 66 #include <vm/vm_pagequeue.h> 67 #include <vm/vm_phys.h> 68 #include <vm/vm_radix.h> 69 #include <vm/vm_reserv.h> 70 71 /* 72 * The reservation system supports the speculative allocation of large physical 73 * pages ("superpages"). Speculative allocation enables the fully automatic 74 * utilization of superpages by the virtual memory system. In other words, no 75 * programmatic directives are required to use superpages. 76 */ 77 78 #if VM_NRESERVLEVEL > 0 79 80 /* 81 * Temporarily simulate two-level reservations. Effectively, VM_LEVEL_0_* is 82 * level 1, and VM_SUBLEVEL_0_* is level 0. 83 */ 84 #if VM_NRESERVLEVEL == 2 85 #undef VM_NRESERVLEVEL 86 #define VM_NRESERVLEVEL 1 87 #if VM_LEVEL_0_ORDER == 4 88 #undef VM_LEVEL_0_ORDER 89 #define VM_LEVEL_0_ORDER (4 + VM_LEVEL_1_ORDER) 90 #define VM_SUBLEVEL_0_NPAGES (1 << 4) 91 #elif VM_LEVEL_0_ORDER == 7 92 #undef VM_LEVEL_0_ORDER 93 #define VM_LEVEL_0_ORDER (7 + VM_LEVEL_1_ORDER) 94 #define VM_SUBLEVEL_0_NPAGES (1 << 7) 95 #else 96 #error "Unsupported level 0 reservation size" 97 #endif 98 #define VM_LEVEL_0_PSIND 2 99 #else 100 #define VM_LEVEL_0_PSIND 1 101 #endif 102 103 #ifndef VM_LEVEL_0_ORDER_MAX 104 #define VM_LEVEL_0_ORDER_MAX VM_LEVEL_0_ORDER 105 #endif 106 107 /* 108 * The number of small pages that are contained in a level 0 reservation 109 */ 110 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 111 #define VM_LEVEL_0_NPAGES_MAX (1 << VM_LEVEL_0_ORDER_MAX) 112 113 /* 114 * The number of bits by which a physical address is shifted to obtain the 115 * reservation number 116 */ 117 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 118 119 /* 120 * The size of a level 0 reservation in bytes 121 */ 122 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 123 124 /* 125 * Computes the index of the small page underlying the given (object, pindex) 126 * within the reservation's array of small pages. 127 */ 128 #define VM_RESERV_INDEX(object, pindex) \ 129 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 130 131 /* 132 * Number of elapsed ticks before we update the LRU queue position. Used 133 * to reduce contention and churn on the list. 134 */ 135 #define PARTPOPSLOP 1 136 137 /* 138 * The reservation structure 139 * 140 * A reservation structure is constructed whenever a large physical page is 141 * speculatively allocated to an object. The reservation provides the small 142 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 143 * within that object. The reservation's "popcnt" tracks the number of these 144 * small physical pages that are in use at any given time. When and if the 145 * reservation is not fully utilized, it appears in the queue of partially 146 * populated reservations. The reservation always appears on the containing 147 * object's list of reservations. 148 * 149 * A partially populated reservation can be broken and reclaimed at any time. 150 * 151 * c - constant after boot 152 * d - vm_reserv_domain_lock 153 * o - vm_reserv_object_lock 154 * r - vm_reserv_lock 155 * s - vm_reserv_domain_scan_lock 156 */ 157 struct vm_reserv { 158 struct mtx lock; /* reservation lock. */ 159 TAILQ_ENTRY(vm_reserv) partpopq; /* (d, r) per-domain queue. */ 160 LIST_ENTRY(vm_reserv) objq; /* (o, r) object queue */ 161 vm_object_t object; /* (o, r) containing object */ 162 vm_pindex_t pindex; /* (o, r) offset in object */ 163 vm_page_t pages; /* (c) first page */ 164 uint16_t popcnt; /* (r) # of pages in use */ 165 uint8_t domain; /* (c) NUMA domain. */ 166 char inpartpopq; /* (d, r) */ 167 int lasttick; /* (r) last pop update tick. */ 168 bitstr_t bit_decl(popmap, VM_LEVEL_0_NPAGES_MAX); 169 /* (r) bit vector, used pages */ 170 }; 171 172 TAILQ_HEAD(vm_reserv_queue, vm_reserv); 173 174 #define vm_reserv_lockptr(rv) (&(rv)->lock) 175 #define vm_reserv_assert_locked(rv) \ 176 mtx_assert(vm_reserv_lockptr(rv), MA_OWNED) 177 #define vm_reserv_lock(rv) mtx_lock(vm_reserv_lockptr(rv)) 178 #define vm_reserv_trylock(rv) mtx_trylock(vm_reserv_lockptr(rv)) 179 #define vm_reserv_unlock(rv) mtx_unlock(vm_reserv_lockptr(rv)) 180 181 /* 182 * The reservation array 183 * 184 * This array is analoguous in function to vm_page_array. It differs in the 185 * respect that it may contain a greater number of useful reservation 186 * structures than there are (physical) superpages. These "invalid" 187 * reservation structures exist to trade-off space for time in the 188 * implementation of vm_reserv_from_page(). Invalid reservation structures are 189 * distinguishable from "valid" reservation structures by inspecting the 190 * reservation's "pages" field. Invalid reservation structures have a NULL 191 * "pages" field. 192 * 193 * vm_reserv_from_page() maps a small (physical) page to an element of this 194 * array by computing a physical reservation number from the page's physical 195 * address. The physical reservation number is used as the array index. 196 * 197 * An "active" reservation is a valid reservation structure that has a non-NULL 198 * "object" field and a non-zero "popcnt" field. In other words, every active 199 * reservation belongs to a particular object. Moreover, every active 200 * reservation has an entry in the containing object's list of reservations. 201 */ 202 static vm_reserv_t vm_reserv_array; 203 204 /* 205 * The per-domain partially populated reservation queues 206 * 207 * These queues enable the fast recovery of an unused free small page from a 208 * partially populated reservation. The reservation at the head of a queue 209 * is the least recently changed, partially populated reservation. 210 * 211 * Access to this queue is synchronized by the per-domain reservation lock. 212 * Threads reclaiming free pages from the queue must hold the per-domain scan 213 * lock. 214 */ 215 struct vm_reserv_domain { 216 struct mtx lock; 217 struct vm_reserv_queue partpop; /* (d) */ 218 struct vm_reserv marker; /* (d, s) scan marker/lock */ 219 } __aligned(CACHE_LINE_SIZE); 220 221 static struct vm_reserv_domain vm_rvd[MAXMEMDOM]; 222 223 #define vm_reserv_domain_lockptr(d) (&vm_rvd[(d)].lock) 224 #define vm_reserv_domain_assert_locked(d) \ 225 mtx_assert(vm_reserv_domain_lockptr(d), MA_OWNED) 226 #define vm_reserv_domain_lock(d) mtx_lock(vm_reserv_domain_lockptr(d)) 227 #define vm_reserv_domain_unlock(d) mtx_unlock(vm_reserv_domain_lockptr(d)) 228 229 #define vm_reserv_domain_scan_lock(d) mtx_lock(&vm_rvd[(d)].marker.lock) 230 #define vm_reserv_domain_scan_unlock(d) mtx_unlock(&vm_rvd[(d)].marker.lock) 231 232 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 233 "Reservation Info"); 234 235 static COUNTER_U64_DEFINE_EARLY(vm_reserv_broken); 236 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 237 &vm_reserv_broken, "Cumulative number of broken reservations"); 238 239 static COUNTER_U64_DEFINE_EARLY(vm_reserv_freed); 240 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 241 &vm_reserv_freed, "Cumulative number of freed reservations"); 242 243 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); 244 245 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, 246 NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); 247 248 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 249 250 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, 251 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 252 sysctl_vm_reserv_partpopq, "A", 253 "Partially populated reservation queues"); 254 255 static COUNTER_U64_DEFINE_EARLY(vm_reserv_reclaimed); 256 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 257 &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations"); 258 259 /* 260 * The object lock pool is used to synchronize the rvq. We can not use a 261 * pool mutex because it is required before malloc works. 262 * 263 * The "hash" function could be made faster without divide and modulo. 264 */ 265 #define VM_RESERV_OBJ_LOCK_COUNT MAXCPU 266 267 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT]; 268 269 #define vm_reserv_object_lock_idx(object) \ 270 (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT) 271 #define vm_reserv_object_lock_ptr(object) \ 272 &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))] 273 #define vm_reserv_object_lock(object) \ 274 mtx_lock(vm_reserv_object_lock_ptr((object))) 275 #define vm_reserv_object_unlock(object) \ 276 mtx_unlock(vm_reserv_object_lock_ptr((object))) 277 278 static void vm_reserv_break(vm_reserv_t rv); 279 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 280 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 281 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 282 vm_pindex_t pindex); 283 static void vm_reserv_populate(vm_reserv_t rv, int index); 284 static void vm_reserv_reclaim(vm_reserv_t rv); 285 286 /* 287 * Returns the current number of full reservations. 288 * 289 * Since the number of full reservations is computed without acquiring any 290 * locks, the returned value is inexact. 291 */ 292 static int 293 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) 294 { 295 vm_paddr_t paddr; 296 struct vm_phys_seg *seg; 297 vm_reserv_t rv; 298 int fullpop, segind; 299 300 fullpop = 0; 301 for (segind = 0; segind < vm_phys_nsegs; segind++) { 302 seg = &vm_phys_segs[segind]; 303 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 304 #ifdef VM_PHYSSEG_SPARSE 305 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) - 306 (seg->start >> VM_LEVEL_0_SHIFT); 307 #else 308 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; 309 #endif 310 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr + 311 VM_LEVEL_0_SIZE <= seg->end) { 312 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; 313 paddr += VM_LEVEL_0_SIZE; 314 rv++; 315 } 316 } 317 return (sysctl_handle_int(oidp, &fullpop, 0, req)); 318 } 319 320 /* 321 * Describes the current state of the partially populated reservation queue. 322 */ 323 static int 324 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 325 { 326 struct sbuf sbuf; 327 vm_reserv_t rv; 328 int counter, error, domain, level, unused_pages; 329 330 error = sysctl_wire_old_buffer(req, 0); 331 if (error != 0) 332 return (error); 333 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 334 sbuf_printf(&sbuf, "\nDOMAIN LEVEL SIZE NUMBER\n\n"); 335 for (domain = 0; domain < vm_ndomains; domain++) { 336 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 337 counter = 0; 338 unused_pages = 0; 339 vm_reserv_domain_lock(domain); 340 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) { 341 if (rv == &vm_rvd[domain].marker) 342 continue; 343 counter++; 344 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 345 } 346 vm_reserv_domain_unlock(domain); 347 sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n", 348 domain, level, 349 unused_pages * ((int)PAGE_SIZE / 1024), counter); 350 } 351 } 352 error = sbuf_finish(&sbuf); 353 sbuf_delete(&sbuf); 354 return (error); 355 } 356 357 /* 358 * Remove a reservation from the object's objq. 359 */ 360 static void 361 vm_reserv_remove(vm_reserv_t rv) 362 { 363 vm_object_t object; 364 365 vm_reserv_assert_locked(rv); 366 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 367 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 368 KASSERT(rv->object != NULL, 369 ("vm_reserv_remove: reserv %p is free", rv)); 370 KASSERT(!rv->inpartpopq, 371 ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv)); 372 object = rv->object; 373 vm_reserv_object_lock(object); 374 LIST_REMOVE(rv, objq); 375 rv->object = NULL; 376 vm_reserv_object_unlock(object); 377 } 378 379 /* 380 * Insert a new reservation into the object's objq. 381 */ 382 static void 383 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex) 384 { 385 386 vm_reserv_assert_locked(rv); 387 CTR6(KTR_VM, 388 "%s: rv %p(%p) object %p new %p popcnt %d", 389 __FUNCTION__, rv, rv->pages, rv->object, object, 390 rv->popcnt); 391 KASSERT(rv->object == NULL, 392 ("vm_reserv_insert: reserv %p isn't free", rv)); 393 KASSERT(rv->popcnt == 0, 394 ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv)); 395 KASSERT(!rv->inpartpopq, 396 ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv)); 397 KASSERT(bit_ntest(rv->popmap, 0, VM_LEVEL_0_NPAGES - 1, 0), 398 ("vm_reserv_insert: reserv %p's popmap is corrupted", rv)); 399 vm_reserv_object_lock(object); 400 rv->pindex = pindex; 401 rv->object = object; 402 rv->lasttick = ticks; 403 LIST_INSERT_HEAD(&object->rvq, rv, objq); 404 vm_reserv_object_unlock(object); 405 } 406 407 #ifdef VM_SUBLEVEL_0_NPAGES 408 static inline bool 409 vm_reserv_is_sublevel_full(vm_reserv_t rv, int index) 410 { 411 _Static_assert(VM_SUBLEVEL_0_NPAGES == 16 || 412 VM_SUBLEVEL_0_NPAGES == 128, 413 "vm_reserv_is_sublevel_full: unsupported VM_SUBLEVEL_0_NPAGES"); 414 /* An equivalent bit_ntest() compiles to more instructions. */ 415 switch (VM_SUBLEVEL_0_NPAGES) { 416 case 16: 417 return (((uint16_t *)rv->popmap)[index / 16] == UINT16_MAX); 418 case 128: 419 index = rounddown2(index, 128) / 64; 420 return (((uint64_t *)rv->popmap)[index] == UINT64_MAX && 421 ((uint64_t *)rv->popmap)[index + 1] == UINT64_MAX); 422 default: 423 __unreachable(); 424 } 425 } 426 #endif 427 428 /* 429 * Reduces the given reservation's population count. If the population count 430 * becomes zero, the reservation is destroyed. Additionally, moves the 431 * reservation to the tail of the partially populated reservation queue if the 432 * population count is non-zero. 433 */ 434 static void 435 vm_reserv_depopulate(vm_reserv_t rv, int index) 436 { 437 struct vm_domain *vmd; 438 439 vm_reserv_assert_locked(rv); 440 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 441 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 442 KASSERT(rv->object != NULL, 443 ("vm_reserv_depopulate: reserv %p is free", rv)); 444 KASSERT(bit_test(rv->popmap, index), 445 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 446 index)); 447 KASSERT(rv->popcnt > 0, 448 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 449 KASSERT(rv->domain < vm_ndomains, 450 ("vm_reserv_depopulate: reserv %p's domain is corrupted %d", 451 rv, rv->domain)); 452 if (rv->popcnt == VM_LEVEL_0_NPAGES) { 453 KASSERT(rv->pages->psind == VM_LEVEL_0_PSIND, 454 ("vm_reserv_depopulate: reserv %p is already demoted", 455 rv)); 456 rv->pages->psind = VM_LEVEL_0_PSIND - 1; 457 } 458 #ifdef VM_SUBLEVEL_0_NPAGES 459 if (vm_reserv_is_sublevel_full(rv, index)) 460 rv->pages[rounddown2(index, VM_SUBLEVEL_0_NPAGES)].psind = 0; 461 #endif 462 bit_clear(rv->popmap, index); 463 rv->popcnt--; 464 if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP || 465 rv->popcnt == 0) { 466 vm_reserv_domain_lock(rv->domain); 467 if (rv->inpartpopq) { 468 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 469 rv->inpartpopq = FALSE; 470 } 471 if (rv->popcnt != 0) { 472 rv->inpartpopq = TRUE; 473 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, 474 partpopq); 475 } 476 vm_reserv_domain_unlock(rv->domain); 477 rv->lasttick = ticks; 478 } 479 vmd = VM_DOMAIN(rv->domain); 480 if (rv->popcnt == 0) { 481 vm_reserv_remove(rv); 482 vm_domain_free_lock(vmd); 483 vm_phys_free_pages(rv->pages, VM_FREEPOOL_DEFAULT, 484 VM_LEVEL_0_ORDER); 485 vm_domain_free_unlock(vmd); 486 counter_u64_add(vm_reserv_freed, 1); 487 } 488 vm_domain_freecnt_inc(vmd, 1); 489 } 490 491 /* 492 * Returns the reservation to which the given page might belong. 493 */ 494 static __inline vm_reserv_t 495 vm_reserv_from_page(vm_page_t m) 496 { 497 #ifdef VM_PHYSSEG_SPARSE 498 struct vm_phys_seg *seg; 499 500 seg = &vm_phys_segs[m->segind]; 501 return (seg->first_reserv + (VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT) - 502 (seg->start >> VM_LEVEL_0_SHIFT)); 503 #else 504 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 505 #endif 506 } 507 508 /* 509 * Either returns an existing reservation or returns NULL and initializes 510 * successor pointer. 511 */ 512 static vm_reserv_t 513 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex, 514 vm_page_t *mpredp, vm_page_t *msuccp, struct pctrie_iter *pages) 515 { 516 vm_reserv_t rv; 517 vm_page_t mpred, msucc; 518 519 mpred = vm_radix_iter_lookup_lt(pages, pindex); 520 if (mpred != NULL) { 521 KASSERT(mpred->object == object, 522 ("vm_reserv_from_object: object doesn't contain mpred")); 523 KASSERT(mpred->pindex < pindex, 524 ("vm_reserv_from_object: mpred doesn't precede pindex")); 525 rv = vm_reserv_from_page(mpred); 526 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 527 return (rv); 528 } 529 530 msucc = vm_radix_iter_lookup_ge(pages, pindex); 531 if (msucc != NULL) { 532 KASSERT(msucc->pindex > pindex, 533 ("vm_reserv_from_object: msucc doesn't succeed pindex")); 534 rv = vm_reserv_from_page(msucc); 535 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 536 return (rv); 537 } 538 *mpredp = mpred; 539 *msuccp = msucc; 540 return (NULL); 541 } 542 543 /* 544 * Returns TRUE if the given reservation contains the given page index and 545 * FALSE otherwise. 546 */ 547 static __inline boolean_t 548 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 549 { 550 551 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 552 } 553 554 /* 555 * How many pages should be in a new allocation that starts at the first page of 556 * the reservation superpage that contains 'first', fits between the allocations 557 * that include 'mpred' and 'msucc', fits within 'object', includes at least 558 * 'minpages' pages, and tries to include every allocated page in a superpage? 559 * 560 * We must synchronize with the reserv object lock to protect the pindex/object 561 * of the resulting reservations against rename while we are inspecting. 562 */ 563 static u_long 564 vm_reserv_num_alloc_pages(vm_object_t object, vm_pindex_t first, 565 u_long minpages, vm_page_t mpred, vm_page_t msucc) 566 { 567 vm_pindex_t leftcap, rightcap; 568 vm_reserv_t rv; 569 u_int allocpages; 570 571 allocpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 572 573 vm_reserv_object_lock(object); 574 if (mpred != NULL) { 575 if ((rv = vm_reserv_from_page(mpred))->object != object) 576 leftcap = mpred->pindex + 1; 577 else 578 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 579 if (leftcap > first) 580 allocpages = 0; 581 } 582 if (minpages < allocpages) { 583 if (msucc == NULL) { 584 /* 585 * Would the last new reservation extend past the end of 586 * the object? 587 * 588 * If the object is unlikely to grow don't allocate a 589 * reservation for the tail. 590 */ 591 if ((object->flags & OBJ_ANON) == 0) 592 rightcap = object->size; 593 else 594 rightcap = OBJ_MAX_SIZE; 595 } else { 596 /* 597 * Would the last new reservation extend past the start 598 * of another page or reservation? 599 * 600 * If the object would, don't allocate a reservation for 601 * the tail. 602 */ 603 if ((rv = vm_reserv_from_page(msucc))->object != object) 604 rightcap = msucc->pindex; 605 else 606 rightcap = rv->pindex; 607 } 608 if (first + allocpages > rightcap) { 609 /* 610 * A reservation for the last of the requested pages 611 * will not fit. Reduce the size of the upcoming 612 * allocation accordingly. 613 */ 614 allocpages = minpages; 615 } 616 } 617 vm_reserv_object_unlock(object); 618 return (allocpages); 619 } 620 621 /* 622 * Increases the given reservation's population count. Moves the reservation 623 * to the tail of the partially populated reservation queue. 624 */ 625 static void 626 vm_reserv_populate(vm_reserv_t rv, int index) 627 { 628 629 vm_reserv_assert_locked(rv); 630 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 631 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 632 KASSERT(rv->object != NULL, 633 ("vm_reserv_populate: reserv %p is free", rv)); 634 KASSERT(!bit_test(rv->popmap, index), 635 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 636 index)); 637 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 638 ("vm_reserv_populate: reserv %p is already full", rv)); 639 KASSERT(rv->pages->psind >= 0 && 640 rv->pages->psind < VM_LEVEL_0_PSIND, 641 ("vm_reserv_populate: reserv %p is already promoted", rv)); 642 KASSERT(rv->domain < vm_ndomains, 643 ("vm_reserv_populate: reserv %p's domain is corrupted %d", 644 rv, rv->domain)); 645 bit_set(rv->popmap, index); 646 #ifdef VM_SUBLEVEL_0_NPAGES 647 if (vm_reserv_is_sublevel_full(rv, index)) 648 rv->pages[rounddown2(index, VM_SUBLEVEL_0_NPAGES)].psind = 1; 649 #endif 650 rv->popcnt++; 651 if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP && 652 rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES) 653 return; 654 rv->lasttick = ticks; 655 vm_reserv_domain_lock(rv->domain); 656 if (rv->inpartpopq) { 657 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 658 rv->inpartpopq = FALSE; 659 } 660 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 661 rv->inpartpopq = TRUE; 662 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq); 663 } else { 664 KASSERT(rv->pages->psind == VM_LEVEL_0_PSIND - 1, 665 ("vm_reserv_populate: reserv %p is already promoted", 666 rv)); 667 rv->pages->psind = VM_LEVEL_0_PSIND; 668 } 669 vm_reserv_domain_unlock(rv->domain); 670 } 671 672 /* 673 * Allocates a contiguous set of physical pages of the given size "npages" 674 * from existing or newly created reservations. All of the physical pages 675 * must be at or above the given physical address "low" and below the given 676 * physical address "high". The given value "alignment" determines the 677 * alignment of the first physical page in the set. If the given value 678 * "boundary" is non-zero, then the set of physical pages cannot cross any 679 * physical address boundary that is a multiple of that value. Both 680 * "alignment" and "boundary" must be a power of two. 681 * 682 * The page "mpred" must immediately precede the offset "pindex" within the 683 * specified object. 684 * 685 * The object must be locked. 686 */ 687 vm_page_t 688 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain, 689 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 690 vm_paddr_t boundary, struct pctrie_iter *pages) 691 { 692 struct vm_domain *vmd; 693 vm_paddr_t pa, size; 694 vm_page_t m, m_ret, mpred, msucc; 695 vm_pindex_t first; 696 vm_reserv_t rv; 697 u_long allocpages; 698 int i, index, n; 699 700 VM_OBJECT_ASSERT_WLOCKED(object); 701 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 702 703 /* 704 * Is a reservation fundamentally impossible? 705 */ 706 if (pindex < VM_RESERV_INDEX(object, pindex) || 707 pindex + npages > object->size) 708 return (NULL); 709 710 /* 711 * All reservations of a particular size have the same alignment. 712 * Assuming that the first page is allocated from a reservation, the 713 * least significant bits of its physical address can be determined 714 * from its offset from the beginning of the reservation and the size 715 * of the reservation. 716 * 717 * Could the specified index within a reservation of the smallest 718 * possible size satisfy the alignment and boundary requirements? 719 */ 720 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 721 size = npages << PAGE_SHIFT; 722 if (!vm_addr_ok(pa, size, alignment, boundary)) 723 return (NULL); 724 725 /* 726 * Look for an existing reservation. 727 */ 728 rv = vm_reserv_from_object(object, pindex, &mpred, &msucc, pages); 729 if (rv != NULL) { 730 KASSERT(object != kernel_object || rv->domain == domain, 731 ("vm_reserv_alloc_contig: domain mismatch")); 732 index = VM_RESERV_INDEX(object, pindex); 733 /* Does the allocation fit within the reservation? */ 734 if (index + npages > VM_LEVEL_0_NPAGES) 735 return (NULL); 736 domain = rv->domain; 737 vmd = VM_DOMAIN(domain); 738 vm_reserv_lock(rv); 739 /* Handle reclaim race. */ 740 if (rv->object != object) 741 goto out; 742 m = &rv->pages[index]; 743 pa = VM_PAGE_TO_PHYS(m); 744 if (pa < low || pa + size > high || 745 !vm_addr_ok(pa, size, alignment, boundary)) 746 goto out; 747 /* Handle vm_page_iter_rename(..., m, new_object, ...). */ 748 if (!bit_ntest(rv->popmap, index, index + npages - 1, 0)) 749 goto out; 750 if (!vm_domain_allocate(vmd, req, npages)) 751 goto out; 752 for (i = 0; i < npages; i++) 753 vm_reserv_populate(rv, index + i); 754 vm_reserv_unlock(rv); 755 return (m); 756 out: 757 vm_reserv_unlock(rv); 758 return (NULL); 759 } 760 761 /* 762 * Check whether an allocation including at least one reservation can 763 * fit between mpred and msucc. 764 */ 765 first = pindex - VM_RESERV_INDEX(object, pindex); 766 allocpages = vm_reserv_num_alloc_pages(object, first, 767 VM_RESERV_INDEX(object, pindex) + npages, mpred, msucc); 768 if (allocpages < VM_LEVEL_0_NPAGES) 769 return (NULL); 770 771 /* 772 * Allocate the physical pages. The alignment and boundary specified 773 * for this allocation may be different from the alignment and 774 * boundary specified for the requested pages. For instance, the 775 * specified index may not be the first page within the first new 776 * reservation. 777 */ 778 m = NULL; 779 vmd = VM_DOMAIN(domain); 780 if (vm_domain_allocate(vmd, req, npages)) { 781 vm_domain_free_lock(vmd); 782 m = vm_phys_alloc_contig(domain, allocpages, low, high, 783 ulmax(alignment, VM_LEVEL_0_SIZE), 784 boundary > VM_LEVEL_0_SIZE ? boundary : 0); 785 vm_domain_free_unlock(vmd); 786 if (m == NULL) { 787 vm_domain_freecnt_inc(vmd, npages); 788 return (NULL); 789 } 790 } else 791 return (NULL); 792 KASSERT(vm_page_domain(m) == domain, 793 ("vm_reserv_alloc_contig: Page domain does not match requested.")); 794 795 /* 796 * The allocated physical pages always begin at a reservation 797 * boundary, but they do not always end at a reservation boundary. 798 * Initialize every reservation that is completely covered by the 799 * allocated physical pages. 800 */ 801 m_ret = NULL; 802 index = VM_RESERV_INDEX(object, pindex); 803 do { 804 rv = vm_reserv_from_page(m); 805 KASSERT(rv->pages == m, 806 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 807 rv)); 808 vm_reserv_lock(rv); 809 vm_reserv_insert(rv, object, first); 810 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 811 for (i = 0; i < n; i++) 812 vm_reserv_populate(rv, index + i); 813 npages -= n; 814 if (m_ret == NULL) { 815 m_ret = &rv->pages[index]; 816 index = 0; 817 } 818 vm_reserv_unlock(rv); 819 m += VM_LEVEL_0_NPAGES; 820 first += VM_LEVEL_0_NPAGES; 821 allocpages -= VM_LEVEL_0_NPAGES; 822 } while (allocpages >= VM_LEVEL_0_NPAGES); 823 return (m_ret); 824 } 825 826 /* 827 * Allocate a physical page from an existing or newly created reservation. 828 * 829 * The page "mpred" must immediately precede the offset "pindex" within the 830 * specified object. 831 * 832 * The object must be locked. 833 */ 834 vm_page_t 835 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain, 836 int req, struct pctrie_iter *pages) 837 { 838 struct vm_domain *vmd; 839 vm_page_t m, mpred, msucc; 840 vm_pindex_t first; 841 vm_reserv_t rv; 842 int index; 843 844 VM_OBJECT_ASSERT_WLOCKED(object); 845 846 /* 847 * Is a reservation fundamentally impossible? 848 */ 849 if (pindex < VM_RESERV_INDEX(object, pindex) || 850 pindex >= object->size) 851 return (NULL); 852 853 /* 854 * Look for an existing reservation. 855 */ 856 rv = vm_reserv_from_object(object, pindex, &mpred, &msucc, pages); 857 if (rv != NULL) { 858 KASSERT(object != kernel_object || rv->domain == domain, 859 ("vm_reserv_alloc_page: domain mismatch")); 860 domain = rv->domain; 861 vmd = VM_DOMAIN(domain); 862 index = VM_RESERV_INDEX(object, pindex); 863 m = &rv->pages[index]; 864 vm_reserv_lock(rv); 865 /* Handle reclaim race. */ 866 if (rv->object != object || 867 /* Handle vm_page_iter_rename(..., m, new_object, ...). */ 868 bit_test(rv->popmap, index)) { 869 m = NULL; 870 goto out; 871 } 872 if (vm_domain_allocate(vmd, req, 1) == 0) 873 m = NULL; 874 else 875 vm_reserv_populate(rv, index); 876 out: 877 vm_reserv_unlock(rv); 878 return (m); 879 } 880 881 /* 882 * Check whether an allocation including reservations can fit 883 * between mpred and msucc. 884 */ 885 first = pindex - VM_RESERV_INDEX(object, pindex); 886 if (vm_reserv_num_alloc_pages(object, first, 1, mpred, msucc) < 887 VM_LEVEL_0_NPAGES) 888 return (NULL); 889 890 /* 891 * Allocate and populate the new reservation. 892 */ 893 m = NULL; 894 vmd = VM_DOMAIN(domain); 895 if (vm_domain_allocate(vmd, req, 1)) { 896 vm_domain_free_lock(vmd); 897 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 898 VM_LEVEL_0_ORDER); 899 vm_domain_free_unlock(vmd); 900 if (m == NULL) { 901 vm_domain_freecnt_inc(vmd, 1); 902 return (NULL); 903 } 904 } else 905 return (NULL); 906 rv = vm_reserv_from_page(m); 907 vm_reserv_lock(rv); 908 KASSERT(rv->pages == m, 909 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 910 vm_reserv_insert(rv, object, first); 911 index = VM_RESERV_INDEX(object, pindex); 912 vm_reserv_populate(rv, index); 913 vm_reserv_unlock(rv); 914 915 return (&rv->pages[index]); 916 } 917 918 /* 919 * Breaks the given reservation. All free pages in the reservation 920 * are returned to the physical memory allocator. The reservation's 921 * population count and map are reset to their initial state. 922 * 923 * The given reservation must not be in the partially populated reservation 924 * queue. 925 */ 926 static void 927 vm_reserv_break(vm_reserv_t rv) 928 { 929 vm_page_t m; 930 int pos, pos0, pos1; 931 932 vm_reserv_assert_locked(rv); 933 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 934 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 935 vm_reserv_remove(rv); 936 m = rv->pages; 937 #ifdef VM_SUBLEVEL_0_NPAGES 938 for (; m < rv->pages + VM_LEVEL_0_NPAGES; m += VM_SUBLEVEL_0_NPAGES) 939 #endif 940 m->psind = 0; 941 pos0 = bit_test(rv->popmap, 0) ? -1 : 0; 942 pos1 = -1 - pos0; 943 for (pos = 0; pos < VM_LEVEL_0_NPAGES; ) { 944 /* Find the first different bit after pos. */ 945 bit_ff_at(rv->popmap, pos + 1, VM_LEVEL_0_NPAGES, 946 pos1 < pos0, &pos); 947 if (pos == -1) 948 pos = VM_LEVEL_0_NPAGES; 949 if (pos0 < pos1) { 950 pos0 = pos; 951 continue; 952 } 953 /* Free unused pages from pos0 to pos. */ 954 pos1 = pos; 955 vm_domain_free_lock(VM_DOMAIN(rv->domain)); 956 vm_phys_enqueue_contig(&rv->pages[pos0], VM_FREEPOOL_DEFAULT, 957 pos1 - pos0); 958 vm_domain_free_unlock(VM_DOMAIN(rv->domain)); 959 } 960 bit_nclear(rv->popmap, 0, VM_LEVEL_0_NPAGES - 1); 961 rv->popcnt = 0; 962 counter_u64_add(vm_reserv_broken, 1); 963 } 964 965 /* 966 * Breaks all reservations belonging to the given object. 967 */ 968 void 969 vm_reserv_break_all(vm_object_t object) 970 { 971 vm_reserv_t rv; 972 973 /* 974 * This access of object->rvq is unsynchronized so that the 975 * object rvq lock can nest after the domain_free lock. We 976 * must check for races in the results. However, the object 977 * lock prevents new additions, so we are guaranteed that when 978 * it returns NULL the object is properly empty. 979 */ 980 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 981 vm_reserv_lock(rv); 982 /* Reclaim race. */ 983 if (rv->object != object) { 984 vm_reserv_unlock(rv); 985 continue; 986 } 987 vm_reserv_domain_lock(rv->domain); 988 if (rv->inpartpopq) { 989 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 990 rv->inpartpopq = FALSE; 991 } 992 vm_reserv_domain_unlock(rv->domain); 993 vm_reserv_break(rv); 994 vm_reserv_unlock(rv); 995 } 996 } 997 998 /* 999 * Frees the given page if it belongs to a reservation. Returns TRUE if the 1000 * page is freed and FALSE otherwise. 1001 */ 1002 boolean_t 1003 vm_reserv_free_page(vm_page_t m) 1004 { 1005 vm_reserv_t rv; 1006 boolean_t ret; 1007 1008 rv = vm_reserv_from_page(m); 1009 if (rv->object == NULL) 1010 return (FALSE); 1011 vm_reserv_lock(rv); 1012 /* Re-validate after lock. */ 1013 if (rv->object != NULL) { 1014 vm_reserv_depopulate(rv, m - rv->pages); 1015 ret = TRUE; 1016 } else 1017 ret = FALSE; 1018 vm_reserv_unlock(rv); 1019 1020 return (ret); 1021 } 1022 1023 /* 1024 * Initializes the reservation management system. Specifically, initializes 1025 * the reservation array. 1026 * 1027 * Requires that vm_page_array and first_page are initialized! 1028 */ 1029 void 1030 vm_reserv_init(void) 1031 { 1032 vm_paddr_t paddr; 1033 struct vm_phys_seg *seg; 1034 struct vm_reserv *rv; 1035 struct vm_reserv_domain *rvd; 1036 #ifdef VM_PHYSSEG_SPARSE 1037 vm_pindex_t used; 1038 #endif 1039 int i, segind; 1040 1041 /* 1042 * Initialize the reservation array. Specifically, initialize the 1043 * "pages" field for every element that has an underlying superpage. 1044 */ 1045 #ifdef VM_PHYSSEG_SPARSE 1046 used = 0; 1047 #endif 1048 for (segind = 0; segind < vm_phys_nsegs; segind++) { 1049 seg = &vm_phys_segs[segind]; 1050 #ifdef VM_PHYSSEG_SPARSE 1051 seg->first_reserv = &vm_reserv_array[used]; 1052 used += howmany(seg->end, VM_LEVEL_0_SIZE) - 1053 seg->start / VM_LEVEL_0_SIZE; 1054 #else 1055 seg->first_reserv = 1056 &vm_reserv_array[seg->start >> VM_LEVEL_0_SHIFT]; 1057 #endif 1058 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 1059 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) - 1060 (seg->start >> VM_LEVEL_0_SHIFT); 1061 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr + 1062 VM_LEVEL_0_SIZE <= seg->end) { 1063 rv->pages = PHYS_TO_VM_PAGE(paddr); 1064 rv->domain = seg->domain; 1065 mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF); 1066 paddr += VM_LEVEL_0_SIZE; 1067 rv++; 1068 } 1069 } 1070 for (i = 0; i < MAXMEMDOM; i++) { 1071 rvd = &vm_rvd[i]; 1072 mtx_init(&rvd->lock, "vm reserv domain", NULL, MTX_DEF); 1073 TAILQ_INIT(&rvd->partpop); 1074 mtx_init(&rvd->marker.lock, "vm reserv marker", NULL, MTX_DEF); 1075 1076 /* 1077 * Fully populated reservations should never be present in the 1078 * partially populated reservation queues. 1079 */ 1080 rvd->marker.popcnt = VM_LEVEL_0_NPAGES; 1081 bit_nset(rvd->marker.popmap, 0, VM_LEVEL_0_NPAGES - 1); 1082 } 1083 1084 for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++) 1085 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL, 1086 MTX_DEF); 1087 } 1088 1089 /* 1090 * Returns true if the given page belongs to a reservation and that page is 1091 * free. Otherwise, returns false. 1092 */ 1093 bool 1094 vm_reserv_is_page_free(vm_page_t m) 1095 { 1096 vm_reserv_t rv; 1097 1098 rv = vm_reserv_from_page(m); 1099 if (rv->object == NULL) 1100 return (false); 1101 return (!bit_test(rv->popmap, m - rv->pages)); 1102 } 1103 1104 /* 1105 * Returns true if the given page is part of a block of npages, starting at a 1106 * multiple of npages, that are all allocated. Otherwise, returns false. 1107 */ 1108 bool 1109 vm_reserv_is_populated(vm_page_t m, int npages) 1110 { 1111 vm_reserv_t rv; 1112 int index; 1113 1114 KASSERT(npages <= VM_LEVEL_0_NPAGES, 1115 ("%s: npages %d exceeds VM_LEVEL_0_NPAGES", __func__, npages)); 1116 KASSERT(powerof2(npages), 1117 ("%s: npages %d is not a power of 2", __func__, npages)); 1118 rv = vm_reserv_from_page(m); 1119 if (rv->object == NULL) 1120 return (false); 1121 index = rounddown2(m - rv->pages, npages); 1122 return (bit_ntest(rv->popmap, index, index + npages - 1, 1)); 1123 } 1124 1125 /* 1126 * If the given page belongs to a reservation, returns the level of that 1127 * reservation. Otherwise, returns -1. 1128 */ 1129 int 1130 vm_reserv_level(vm_page_t m) 1131 { 1132 vm_reserv_t rv; 1133 1134 rv = vm_reserv_from_page(m); 1135 #ifdef VM_SUBLEVEL_0_NPAGES 1136 return (rv->object != NULL ? 1 : -1); 1137 #else 1138 return (rv->object != NULL ? 0 : -1); 1139 #endif 1140 } 1141 1142 /* 1143 * Returns a reservation level if the given page belongs to a fully populated 1144 * reservation and -1 otherwise. 1145 */ 1146 int 1147 vm_reserv_level_iffullpop(vm_page_t m) 1148 { 1149 vm_reserv_t rv; 1150 1151 rv = vm_reserv_from_page(m); 1152 if (rv->popcnt == VM_LEVEL_0_NPAGES) { 1153 #ifdef VM_SUBLEVEL_0_NPAGES 1154 return (1); 1155 } else if (rv->pages != NULL && 1156 vm_reserv_is_sublevel_full(rv, m - rv->pages)) { 1157 #endif 1158 return (0); 1159 } 1160 return (-1); 1161 } 1162 1163 /* 1164 * Remove a partially populated reservation from the queue. 1165 */ 1166 static void 1167 vm_reserv_dequeue(vm_reserv_t rv) 1168 { 1169 1170 vm_reserv_domain_assert_locked(rv->domain); 1171 vm_reserv_assert_locked(rv); 1172 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 1173 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 1174 KASSERT(rv->inpartpopq, 1175 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 1176 1177 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 1178 rv->inpartpopq = FALSE; 1179 } 1180 1181 /* 1182 * Breaks the given partially populated reservation, releasing its free pages 1183 * to the physical memory allocator. 1184 */ 1185 static void 1186 vm_reserv_reclaim(vm_reserv_t rv) 1187 { 1188 1189 vm_reserv_assert_locked(rv); 1190 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 1191 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 1192 if (rv->inpartpopq) { 1193 vm_reserv_domain_lock(rv->domain); 1194 vm_reserv_dequeue(rv); 1195 vm_reserv_domain_unlock(rv->domain); 1196 } 1197 vm_reserv_break(rv); 1198 counter_u64_add(vm_reserv_reclaimed, 1); 1199 } 1200 1201 /* 1202 * Breaks a reservation near the head of the partially populated reservation 1203 * queue, releasing its free pages to the physical memory allocator. Returns 1204 * TRUE if a reservation is broken and FALSE otherwise. 1205 */ 1206 bool 1207 vm_reserv_reclaim_inactive(int domain) 1208 { 1209 vm_reserv_t rv; 1210 1211 vm_reserv_domain_lock(domain); 1212 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) { 1213 /* 1214 * A locked reservation is likely being updated or reclaimed, 1215 * so just skip ahead. 1216 */ 1217 if (rv != &vm_rvd[domain].marker && vm_reserv_trylock(rv)) { 1218 vm_reserv_dequeue(rv); 1219 break; 1220 } 1221 } 1222 vm_reserv_domain_unlock(domain); 1223 if (rv != NULL) { 1224 vm_reserv_reclaim(rv); 1225 vm_reserv_unlock(rv); 1226 return (true); 1227 } 1228 return (false); 1229 } 1230 1231 /* 1232 * Determine whether this reservation has free pages that satisfy the given 1233 * request for contiguous physical memory. Start searching from the lower 1234 * bound, defined by lo, and stop at the upper bound, hi. Return the index 1235 * of the first satisfactory free page, or -1 if none is found. 1236 */ 1237 static int 1238 vm_reserv_find_contig(vm_reserv_t rv, int npages, int lo, 1239 int hi, int ppn_align, int ppn_bound) 1240 { 1241 1242 vm_reserv_assert_locked(rv); 1243 KASSERT(npages <= VM_LEVEL_0_NPAGES - 1, 1244 ("%s: Too many pages", __func__)); 1245 KASSERT(ppn_bound <= VM_LEVEL_0_NPAGES, 1246 ("%s: Too big a boundary for reservation size", __func__)); 1247 KASSERT(npages <= ppn_bound, 1248 ("%s: Too many pages for given boundary", __func__)); 1249 KASSERT(ppn_align != 0 && powerof2(ppn_align), 1250 ("ppn_align is not a positive power of 2")); 1251 KASSERT(ppn_bound != 0 && powerof2(ppn_bound), 1252 ("ppn_bound is not a positive power of 2")); 1253 while (bit_ffc_area_at(rv->popmap, lo, hi, npages, &lo), lo != -1) { 1254 if (lo < roundup2(lo, ppn_align)) { 1255 /* Skip to next aligned page. */ 1256 lo = roundup2(lo, ppn_align); 1257 } else if (roundup2(lo + 1, ppn_bound) >= lo + npages) 1258 return (lo); 1259 if (roundup2(lo + 1, ppn_bound) < lo + npages) { 1260 /* Skip to next boundary-matching page. */ 1261 lo = roundup2(lo + 1, ppn_bound); 1262 } 1263 } 1264 return (-1); 1265 } 1266 1267 /* 1268 * Searches the partially populated reservation queue for the least recently 1269 * changed reservation with free pages that satisfy the given request for 1270 * contiguous physical memory. If a satisfactory reservation is found, it is 1271 * broken. Returns a page if a reservation is broken and NULL otherwise. 1272 */ 1273 vm_page_t 1274 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low, 1275 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 1276 { 1277 struct vm_reserv_queue *queue; 1278 vm_paddr_t pa, size; 1279 vm_page_t m_ret; 1280 vm_reserv_t marker, rv, rvn; 1281 int hi, lo, posn, ppn_align, ppn_bound; 1282 1283 KASSERT(npages > 0, ("npages is 0")); 1284 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1285 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1286 if (npages > VM_LEVEL_0_NPAGES - 1) 1287 return (NULL); 1288 size = npages << PAGE_SHIFT; 1289 /* 1290 * Ensure that a free range starting at a boundary-multiple 1291 * doesn't include a boundary-multiple within it. Otherwise, 1292 * no boundary-constrained allocation is possible. 1293 */ 1294 if (!vm_addr_bound_ok(0, size, boundary)) 1295 return (NULL); 1296 marker = &vm_rvd[domain].marker; 1297 queue = &vm_rvd[domain].partpop; 1298 /* 1299 * Compute shifted alignment, boundary values for page-based 1300 * calculations. Constrain to range [1, VM_LEVEL_0_NPAGES] to 1301 * avoid overflow. 1302 */ 1303 ppn_align = (int)(ulmin(ulmax(PAGE_SIZE, alignment), 1304 VM_LEVEL_0_SIZE) >> PAGE_SHIFT); 1305 ppn_bound = boundary == 0 ? VM_LEVEL_0_NPAGES : 1306 (int)(MIN(MAX(PAGE_SIZE, boundary), 1307 VM_LEVEL_0_SIZE) >> PAGE_SHIFT); 1308 1309 vm_reserv_domain_scan_lock(domain); 1310 vm_reserv_domain_lock(domain); 1311 TAILQ_FOREACH_SAFE(rv, queue, partpopq, rvn) { 1312 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 1313 if (pa + VM_LEVEL_0_SIZE - size < low) { 1314 /* This entire reservation is too low; go to next. */ 1315 continue; 1316 } 1317 if (pa + size > high) { 1318 /* This entire reservation is too high; go to next. */ 1319 continue; 1320 } 1321 if (!vm_addr_align_ok(pa, alignment)) { 1322 /* This entire reservation is unaligned; go to next. */ 1323 continue; 1324 } 1325 1326 if (vm_reserv_trylock(rv) == 0) { 1327 TAILQ_INSERT_AFTER(queue, rv, marker, partpopq); 1328 vm_reserv_domain_unlock(domain); 1329 vm_reserv_lock(rv); 1330 if (TAILQ_PREV(marker, vm_reserv_queue, partpopq) != 1331 rv) { 1332 vm_reserv_unlock(rv); 1333 vm_reserv_domain_lock(domain); 1334 rvn = TAILQ_NEXT(marker, partpopq); 1335 TAILQ_REMOVE(queue, marker, partpopq); 1336 continue; 1337 } 1338 vm_reserv_domain_lock(domain); 1339 TAILQ_REMOVE(queue, marker, partpopq); 1340 } 1341 vm_reserv_domain_unlock(domain); 1342 lo = (pa >= low) ? 0 : 1343 (int)((low + PAGE_MASK - pa) >> PAGE_SHIFT); 1344 hi = (pa + VM_LEVEL_0_SIZE <= high) ? VM_LEVEL_0_NPAGES : 1345 (int)((high - pa) >> PAGE_SHIFT); 1346 posn = vm_reserv_find_contig(rv, (int)npages, lo, hi, 1347 ppn_align, ppn_bound); 1348 if (posn >= 0) { 1349 vm_reserv_domain_scan_unlock(domain); 1350 /* Allocate requested space */ 1351 rv->popcnt += npages; 1352 bit_nset(rv->popmap, posn, posn + npages - 1); 1353 vm_reserv_reclaim(rv); 1354 vm_reserv_unlock(rv); 1355 m_ret = &rv->pages[posn]; 1356 pa = VM_PAGE_TO_PHYS(m_ret); 1357 KASSERT(vm_addr_ok(pa, size, alignment, boundary), 1358 ("%s: adjusted address not aligned/bounded to " 1359 "%lx/%jx", 1360 __func__, alignment, (uintmax_t)boundary)); 1361 return (m_ret); 1362 } 1363 vm_reserv_domain_lock(domain); 1364 rvn = TAILQ_NEXT(rv, partpopq); 1365 vm_reserv_unlock(rv); 1366 } 1367 vm_reserv_domain_unlock(domain); 1368 vm_reserv_domain_scan_unlock(domain); 1369 return (NULL); 1370 } 1371 1372 /* 1373 * Transfers the reservation underlying the given page to a new object. 1374 * 1375 * The object must be locked. 1376 */ 1377 void 1378 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 1379 vm_pindex_t old_object_offset) 1380 { 1381 vm_reserv_t rv; 1382 1383 VM_OBJECT_ASSERT_WLOCKED(new_object); 1384 rv = vm_reserv_from_page(m); 1385 if (rv->object == old_object) { 1386 vm_reserv_lock(rv); 1387 CTR6(KTR_VM, 1388 "%s: rv %p object %p new %p popcnt %d inpartpop %d", 1389 __FUNCTION__, rv, rv->object, new_object, rv->popcnt, 1390 rv->inpartpopq); 1391 if (rv->object == old_object) { 1392 vm_reserv_object_lock(old_object); 1393 rv->object = NULL; 1394 LIST_REMOVE(rv, objq); 1395 vm_reserv_object_unlock(old_object); 1396 vm_reserv_object_lock(new_object); 1397 rv->object = new_object; 1398 rv->pindex -= old_object_offset; 1399 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 1400 vm_reserv_object_unlock(new_object); 1401 } 1402 vm_reserv_unlock(rv); 1403 } 1404 } 1405 1406 /* 1407 * Returns the size (in bytes) of a reservation of the specified level. 1408 */ 1409 int 1410 vm_reserv_size(int level) 1411 { 1412 1413 switch (level) { 1414 case 0: 1415 #ifdef VM_SUBLEVEL_0_NPAGES 1416 return (VM_SUBLEVEL_0_NPAGES * PAGE_SIZE); 1417 case 1: 1418 #endif 1419 return (VM_LEVEL_0_SIZE); 1420 case -1: 1421 return (PAGE_SIZE); 1422 default: 1423 return (0); 1424 } 1425 } 1426 1427 /* 1428 * Allocates the virtual and physical memory required by the reservation 1429 * management system's data structures, in particular, the reservation array. 1430 */ 1431 vm_paddr_t 1432 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end) 1433 { 1434 vm_paddr_t new_end; 1435 vm_pindex_t count; 1436 size_t size; 1437 int i; 1438 1439 count = 0; 1440 for (i = 0; i < vm_phys_nsegs; i++) { 1441 #ifdef VM_PHYSSEG_SPARSE 1442 count += howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE) - 1443 vm_phys_segs[i].start / VM_LEVEL_0_SIZE; 1444 #else 1445 count = MAX(count, 1446 howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE)); 1447 #endif 1448 } 1449 1450 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 1451 #ifdef VM_PHYSSEG_SPARSE 1452 count += howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE) - 1453 phys_avail[i] / VM_LEVEL_0_SIZE; 1454 #else 1455 count = MAX(count, 1456 howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE)); 1457 #endif 1458 } 1459 1460 /* 1461 * Calculate the size (in bytes) of the reservation array. Rounding up 1462 * for partial superpages at boundaries, as every small page is mapped 1463 * to an element in the reservation array based on its physical address. 1464 * Thus, the number of elements in the reservation array can be greater 1465 * than the number of superpages. 1466 */ 1467 size = count * sizeof(struct vm_reserv); 1468 1469 /* 1470 * Allocate and map the physical memory for the reservation array. The 1471 * next available virtual address is returned by reference. 1472 */ 1473 new_end = end - round_page(size); 1474 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 1475 VM_PROT_READ | VM_PROT_WRITE); 1476 bzero(vm_reserv_array, size); 1477 1478 /* 1479 * Return the next available physical address. 1480 */ 1481 return (new_end); 1482 } 1483 1484 /* 1485 * Returns the superpage containing the given page. 1486 */ 1487 vm_page_t 1488 vm_reserv_to_superpage(vm_page_t m) 1489 { 1490 vm_reserv_t rv; 1491 1492 VM_OBJECT_ASSERT_LOCKED(m->object); 1493 rv = vm_reserv_from_page(m); 1494 if (rv->object == m->object) { 1495 if (rv->popcnt == VM_LEVEL_0_NPAGES) 1496 return (rv->pages); 1497 #ifdef VM_SUBLEVEL_0_NPAGES 1498 if (vm_reserv_is_sublevel_full(rv, m - rv->pages)) 1499 return (rv->pages + rounddown2(m - rv->pages, 1500 VM_SUBLEVEL_0_NPAGES)); 1501 #endif 1502 } 1503 return (NULL); 1504 } 1505 1506 #endif /* VM_NRESERVLEVEL > 0 */ 1507