xref: /freebsd/sys/vm/vm_reserv.c (revision 2dd94b045e8c069c1a748d40d30d979e30e02fc9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  *	Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_vm.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_phys.h>
67 #include <vm/vm_pagequeue.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70 
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77 
78 #if VM_NRESERVLEVEL > 0
79 
80 #ifndef VM_LEVEL_0_ORDER_MAX
81 #define	VM_LEVEL_0_ORDER_MAX	VM_LEVEL_0_ORDER
82 #endif
83 
84 /*
85  * The number of small pages that are contained in a level 0 reservation
86  */
87 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
88 #define	VM_LEVEL_0_NPAGES_MAX	(1 << VM_LEVEL_0_ORDER_MAX)
89 
90 /*
91  * The number of bits by which a physical address is shifted to obtain the
92  * reservation number
93  */
94 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
95 
96 /*
97  * The size of a level 0 reservation in bytes
98  */
99 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
100 
101 /*
102  * Computes the index of the small page underlying the given (object, pindex)
103  * within the reservation's array of small pages.
104  */
105 #define	VM_RESERV_INDEX(object, pindex)	\
106     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
107 
108 /*
109  * The size of a population map entry
110  */
111 typedef	u_long		popmap_t;
112 
113 /*
114  * The number of bits in a population map entry
115  */
116 #define	NBPOPMAP	(NBBY * sizeof(popmap_t))
117 
118 /*
119  * The number of population map entries in a reservation
120  */
121 #define	NPOPMAP		howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
122 #define	NPOPMAP_MAX	howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP)
123 
124 /*
125  * Number of elapsed ticks before we update the LRU queue position.  Used
126  * to reduce contention and churn on the list.
127  */
128 #define	PARTPOPSLOP	1
129 
130 /*
131  * Clear a bit in the population map.
132  */
133 static __inline void
134 popmap_clear(popmap_t popmap[], int i)
135 {
136 
137 	popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
138 }
139 
140 /*
141  * Set a bit in the population map.
142  */
143 static __inline void
144 popmap_set(popmap_t popmap[], int i)
145 {
146 
147 	popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
148 }
149 
150 /*
151  * Is a bit in the population map clear?
152  */
153 static __inline boolean_t
154 popmap_is_clear(popmap_t popmap[], int i)
155 {
156 
157 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
158 }
159 
160 /*
161  * Is a bit in the population map set?
162  */
163 static __inline boolean_t
164 popmap_is_set(popmap_t popmap[], int i)
165 {
166 
167 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
168 }
169 
170 /*
171  * The reservation structure
172  *
173  * A reservation structure is constructed whenever a large physical page is
174  * speculatively allocated to an object.  The reservation provides the small
175  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
176  * within that object.  The reservation's "popcnt" tracks the number of these
177  * small physical pages that are in use at any given time.  When and if the
178  * reservation is not fully utilized, it appears in the queue of partially
179  * populated reservations.  The reservation always appears on the containing
180  * object's list of reservations.
181  *
182  * A partially populated reservation can be broken and reclaimed at any time.
183  *
184  * c - constant after boot
185  * d - vm_reserv_domain_lock
186  * o - vm_reserv_object_lock
187  * r - vm_reserv_lock
188  * s - vm_reserv_domain_scan_lock
189  */
190 struct vm_reserv {
191 	struct mtx	lock;			/* reservation lock. */
192 	TAILQ_ENTRY(vm_reserv) partpopq;	/* (d, r) per-domain queue. */
193 	LIST_ENTRY(vm_reserv) objq;		/* (o, r) object queue */
194 	vm_object_t	object;			/* (o, r) containing object */
195 	vm_pindex_t	pindex;			/* (o, r) offset in object */
196 	vm_page_t	pages;			/* (c) first page  */
197 	uint16_t	popcnt;			/* (r) # of pages in use */
198 	uint8_t		domain;			/* (c) NUMA domain. */
199 	char		inpartpopq;		/* (d, r) */
200 	int		lasttick;		/* (r) last pop update tick. */
201 	popmap_t	popmap[NPOPMAP_MAX];	/* (r) bit vector, used pages */
202 };
203 
204 TAILQ_HEAD(vm_reserv_queue, vm_reserv);
205 
206 #define	vm_reserv_lockptr(rv)		(&(rv)->lock)
207 #define	vm_reserv_assert_locked(rv)					\
208 	    mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
209 #define	vm_reserv_lock(rv)		mtx_lock(vm_reserv_lockptr(rv))
210 #define	vm_reserv_trylock(rv)		mtx_trylock(vm_reserv_lockptr(rv))
211 #define	vm_reserv_unlock(rv)		mtx_unlock(vm_reserv_lockptr(rv))
212 
213 /*
214  * The reservation array
215  *
216  * This array is analoguous in function to vm_page_array.  It differs in the
217  * respect that it may contain a greater number of useful reservation
218  * structures than there are (physical) superpages.  These "invalid"
219  * reservation structures exist to trade-off space for time in the
220  * implementation of vm_reserv_from_page().  Invalid reservation structures are
221  * distinguishable from "valid" reservation structures by inspecting the
222  * reservation's "pages" field.  Invalid reservation structures have a NULL
223  * "pages" field.
224  *
225  * vm_reserv_from_page() maps a small (physical) page to an element of this
226  * array by computing a physical reservation number from the page's physical
227  * address.  The physical reservation number is used as the array index.
228  *
229  * An "active" reservation is a valid reservation structure that has a non-NULL
230  * "object" field and a non-zero "popcnt" field.  In other words, every active
231  * reservation belongs to a particular object.  Moreover, every active
232  * reservation has an entry in the containing object's list of reservations.
233  */
234 static vm_reserv_t vm_reserv_array;
235 
236 /*
237  * The per-domain partially populated reservation queues
238  *
239  * These queues enable the fast recovery of an unused free small page from a
240  * partially populated reservation.  The reservation at the head of a queue
241  * is the least recently changed, partially populated reservation.
242  *
243  * Access to this queue is synchronized by the per-domain reservation lock.
244  * Threads reclaiming free pages from the queue must hold the per-domain scan
245  * lock.
246  */
247 struct vm_reserv_domain {
248 	struct mtx 		lock;
249 	struct vm_reserv_queue	partpop;	/* (d) */
250 	struct vm_reserv	marker;		/* (d, s) scan marker/lock */
251 } __aligned(CACHE_LINE_SIZE);
252 
253 static struct vm_reserv_domain vm_rvd[MAXMEMDOM];
254 
255 #define	vm_reserv_domain_lockptr(d)	(&vm_rvd[(d)].lock)
256 #define	vm_reserv_domain_assert_locked(d)	\
257 	mtx_assert(vm_reserv_domain_lockptr(d), MA_OWNED)
258 #define	vm_reserv_domain_lock(d)	mtx_lock(vm_reserv_domain_lockptr(d))
259 #define	vm_reserv_domain_unlock(d)	mtx_unlock(vm_reserv_domain_lockptr(d))
260 
261 #define	vm_reserv_domain_scan_lock(d)	mtx_lock(&vm_rvd[(d)].marker.lock)
262 #define	vm_reserv_domain_scan_unlock(d)	mtx_unlock(&vm_rvd[(d)].marker.lock)
263 
264 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
265 
266 static counter_u64_t vm_reserv_broken = EARLY_COUNTER;
267 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
268     &vm_reserv_broken, "Cumulative number of broken reservations");
269 
270 static counter_u64_t vm_reserv_freed = EARLY_COUNTER;
271 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
272     &vm_reserv_freed, "Cumulative number of freed reservations");
273 
274 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
275 
276 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD,
277     NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
278 
279 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
280 
281 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
282     sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
283 
284 static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER;
285 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
286     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
287 
288 /*
289  * The object lock pool is used to synchronize the rvq.  We can not use a
290  * pool mutex because it is required before malloc works.
291  *
292  * The "hash" function could be made faster without divide and modulo.
293  */
294 #define	VM_RESERV_OBJ_LOCK_COUNT	MAXCPU
295 
296 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
297 
298 #define	vm_reserv_object_lock_idx(object)			\
299 	    (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
300 #define	vm_reserv_object_lock_ptr(object)			\
301 	    &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
302 #define	vm_reserv_object_lock(object)				\
303 	    mtx_lock(vm_reserv_object_lock_ptr((object)))
304 #define	vm_reserv_object_unlock(object)				\
305 	    mtx_unlock(vm_reserv_object_lock_ptr((object)))
306 
307 static void		vm_reserv_break(vm_reserv_t rv);
308 static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
309 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
310 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
311 			    vm_pindex_t pindex);
312 static void		vm_reserv_populate(vm_reserv_t rv, int index);
313 static void		vm_reserv_reclaim(vm_reserv_t rv);
314 
315 /*
316  * Returns the current number of full reservations.
317  *
318  * Since the number of full reservations is computed without acquiring any
319  * locks, the returned value is inexact.
320  */
321 static int
322 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
323 {
324 	vm_paddr_t paddr;
325 	struct vm_phys_seg *seg;
326 	vm_reserv_t rv;
327 	int fullpop, segind;
328 
329 	fullpop = 0;
330 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
331 		seg = &vm_phys_segs[segind];
332 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
333 		while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
334 		    VM_LEVEL_0_SIZE <= seg->end) {
335 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
336 			fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
337 			paddr += VM_LEVEL_0_SIZE;
338 		}
339 	}
340 	return (sysctl_handle_int(oidp, &fullpop, 0, req));
341 }
342 
343 /*
344  * Describes the current state of the partially populated reservation queue.
345  */
346 static int
347 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
348 {
349 	struct sbuf sbuf;
350 	vm_reserv_t rv;
351 	int counter, error, domain, level, unused_pages;
352 
353 	error = sysctl_wire_old_buffer(req, 0);
354 	if (error != 0)
355 		return (error);
356 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
357 	sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
358 	for (domain = 0; domain < vm_ndomains; domain++) {
359 		for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
360 			counter = 0;
361 			unused_pages = 0;
362 			vm_reserv_domain_lock(domain);
363 			TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
364 				if (rv == &vm_rvd[domain].marker)
365 					continue;
366 				counter++;
367 				unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
368 			}
369 			vm_reserv_domain_unlock(domain);
370 			sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
371 			    domain, level,
372 			    unused_pages * ((int)PAGE_SIZE / 1024), counter);
373 		}
374 	}
375 	error = sbuf_finish(&sbuf);
376 	sbuf_delete(&sbuf);
377 	return (error);
378 }
379 
380 /*
381  * Remove a reservation from the object's objq.
382  */
383 static void
384 vm_reserv_remove(vm_reserv_t rv)
385 {
386 	vm_object_t object;
387 
388 	vm_reserv_assert_locked(rv);
389 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
390 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
391 	KASSERT(rv->object != NULL,
392 	    ("vm_reserv_remove: reserv %p is free", rv));
393 	KASSERT(!rv->inpartpopq,
394 	    ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
395 	object = rv->object;
396 	vm_reserv_object_lock(object);
397 	LIST_REMOVE(rv, objq);
398 	rv->object = NULL;
399 	vm_reserv_object_unlock(object);
400 }
401 
402 /*
403  * Insert a new reservation into the object's objq.
404  */
405 static void
406 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
407 {
408 	int i;
409 
410 	vm_reserv_assert_locked(rv);
411 	CTR6(KTR_VM,
412 	    "%s: rv %p(%p) object %p new %p popcnt %d",
413 	    __FUNCTION__, rv, rv->pages, rv->object, object,
414 	   rv->popcnt);
415 	KASSERT(rv->object == NULL,
416 	    ("vm_reserv_insert: reserv %p isn't free", rv));
417 	KASSERT(rv->popcnt == 0,
418 	    ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
419 	KASSERT(!rv->inpartpopq,
420 	    ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
421 	for (i = 0; i < NPOPMAP; i++)
422 		KASSERT(rv->popmap[i] == 0,
423 		    ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
424 	vm_reserv_object_lock(object);
425 	rv->pindex = pindex;
426 	rv->object = object;
427 	rv->lasttick = ticks;
428 	LIST_INSERT_HEAD(&object->rvq, rv, objq);
429 	vm_reserv_object_unlock(object);
430 }
431 
432 /*
433  * Reduces the given reservation's population count.  If the population count
434  * becomes zero, the reservation is destroyed.  Additionally, moves the
435  * reservation to the tail of the partially populated reservation queue if the
436  * population count is non-zero.
437  */
438 static void
439 vm_reserv_depopulate(vm_reserv_t rv, int index)
440 {
441 	struct vm_domain *vmd;
442 
443 	vm_reserv_assert_locked(rv);
444 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
445 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
446 	KASSERT(rv->object != NULL,
447 	    ("vm_reserv_depopulate: reserv %p is free", rv));
448 	KASSERT(popmap_is_set(rv->popmap, index),
449 	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
450 	    index));
451 	KASSERT(rv->popcnt > 0,
452 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
453 	KASSERT(rv->domain < vm_ndomains,
454 	    ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
455 	    rv, rv->domain));
456 	if (rv->popcnt == VM_LEVEL_0_NPAGES) {
457 		KASSERT(rv->pages->psind == 1,
458 		    ("vm_reserv_depopulate: reserv %p is already demoted",
459 		    rv));
460 		rv->pages->psind = 0;
461 	}
462 	popmap_clear(rv->popmap, index);
463 	rv->popcnt--;
464 	if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
465 	    rv->popcnt == 0) {
466 		vm_reserv_domain_lock(rv->domain);
467 		if (rv->inpartpopq) {
468 			TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
469 			rv->inpartpopq = FALSE;
470 		}
471 		if (rv->popcnt != 0) {
472 			rv->inpartpopq = TRUE;
473 			TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv,
474 			    partpopq);
475 		}
476 		vm_reserv_domain_unlock(rv->domain);
477 		rv->lasttick = ticks;
478 	}
479 	vmd = VM_DOMAIN(rv->domain);
480 	if (rv->popcnt == 0) {
481 		vm_reserv_remove(rv);
482 		vm_domain_free_lock(vmd);
483 		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
484 		vm_domain_free_unlock(vmd);
485 		counter_u64_add(vm_reserv_freed, 1);
486 	}
487 	vm_domain_freecnt_inc(vmd, 1);
488 }
489 
490 /*
491  * Returns the reservation to which the given page might belong.
492  */
493 static __inline vm_reserv_t
494 vm_reserv_from_page(vm_page_t m)
495 {
496 
497 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
498 }
499 
500 /*
501  * Returns an existing reservation or NULL and initialized successor pointer.
502  */
503 static vm_reserv_t
504 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
505     vm_page_t mpred, vm_page_t *msuccp)
506 {
507 	vm_reserv_t rv;
508 	vm_page_t msucc;
509 
510 	msucc = NULL;
511 	if (mpred != NULL) {
512 		KASSERT(mpred->object == object,
513 		    ("vm_reserv_from_object: object doesn't contain mpred"));
514 		KASSERT(mpred->pindex < pindex,
515 		    ("vm_reserv_from_object: mpred doesn't precede pindex"));
516 		rv = vm_reserv_from_page(mpred);
517 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
518 			goto found;
519 		msucc = TAILQ_NEXT(mpred, listq);
520 	} else
521 		msucc = TAILQ_FIRST(&object->memq);
522 	if (msucc != NULL) {
523 		KASSERT(msucc->pindex > pindex,
524 		    ("vm_reserv_from_object: msucc doesn't succeed pindex"));
525 		rv = vm_reserv_from_page(msucc);
526 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
527 			goto found;
528 	}
529 	rv = NULL;
530 
531 found:
532 	*msuccp = msucc;
533 
534 	return (rv);
535 }
536 
537 /*
538  * Returns TRUE if the given reservation contains the given page index and
539  * FALSE otherwise.
540  */
541 static __inline boolean_t
542 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
543 {
544 
545 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
546 }
547 
548 /*
549  * Increases the given reservation's population count.  Moves the reservation
550  * to the tail of the partially populated reservation queue.
551  */
552 static void
553 vm_reserv_populate(vm_reserv_t rv, int index)
554 {
555 
556 	vm_reserv_assert_locked(rv);
557 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
558 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
559 	KASSERT(rv->object != NULL,
560 	    ("vm_reserv_populate: reserv %p is free", rv));
561 	KASSERT(popmap_is_clear(rv->popmap, index),
562 	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
563 	    index));
564 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
565 	    ("vm_reserv_populate: reserv %p is already full", rv));
566 	KASSERT(rv->pages->psind == 0,
567 	    ("vm_reserv_populate: reserv %p is already promoted", rv));
568 	KASSERT(rv->domain < vm_ndomains,
569 	    ("vm_reserv_populate: reserv %p's domain is corrupted %d",
570 	    rv, rv->domain));
571 	popmap_set(rv->popmap, index);
572 	rv->popcnt++;
573 	if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
574 	    rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
575 		return;
576 	rv->lasttick = ticks;
577 	vm_reserv_domain_lock(rv->domain);
578 	if (rv->inpartpopq) {
579 		TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
580 		rv->inpartpopq = FALSE;
581 	}
582 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
583 		rv->inpartpopq = TRUE;
584 		TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq);
585 	} else {
586 		KASSERT(rv->pages->psind == 0,
587 		    ("vm_reserv_populate: reserv %p is already promoted",
588 		    rv));
589 		rv->pages->psind = 1;
590 	}
591 	vm_reserv_domain_unlock(rv->domain);
592 }
593 
594 /*
595  * Allocates a contiguous set of physical pages of the given size "npages"
596  * from existing or newly created reservations.  All of the physical pages
597  * must be at or above the given physical address "low" and below the given
598  * physical address "high".  The given value "alignment" determines the
599  * alignment of the first physical page in the set.  If the given value
600  * "boundary" is non-zero, then the set of physical pages cannot cross any
601  * physical address boundary that is a multiple of that value.  Both
602  * "alignment" and "boundary" must be a power of two.
603  *
604  * The page "mpred" must immediately precede the offset "pindex" within the
605  * specified object.
606  *
607  * The object must be locked.
608  */
609 vm_page_t
610 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain,
611     int req, vm_page_t mpred, u_long npages, vm_paddr_t low, vm_paddr_t high,
612     u_long alignment, vm_paddr_t boundary)
613 {
614 	struct vm_domain *vmd;
615 	vm_paddr_t pa, size;
616 	vm_page_t m, m_ret, msucc;
617 	vm_pindex_t first, leftcap, rightcap;
618 	vm_reserv_t rv;
619 	u_long allocpages, maxpages, minpages;
620 	int i, index, n;
621 
622 	VM_OBJECT_ASSERT_WLOCKED(object);
623 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
624 
625 	/*
626 	 * Is a reservation fundamentally impossible?
627 	 */
628 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
629 	    pindex + npages > object->size)
630 		return (NULL);
631 
632 	/*
633 	 * All reservations of a particular size have the same alignment.
634 	 * Assuming that the first page is allocated from a reservation, the
635 	 * least significant bits of its physical address can be determined
636 	 * from its offset from the beginning of the reservation and the size
637 	 * of the reservation.
638 	 *
639 	 * Could the specified index within a reservation of the smallest
640 	 * possible size satisfy the alignment and boundary requirements?
641 	 */
642 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
643 	if ((pa & (alignment - 1)) != 0)
644 		return (NULL);
645 	size = npages << PAGE_SHIFT;
646 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
647 		return (NULL);
648 
649 	/*
650 	 * Look for an existing reservation.
651 	 */
652 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
653 	if (rv != NULL) {
654 		KASSERT(object != kernel_object || rv->domain == domain,
655 		    ("vm_reserv_alloc_contig: domain mismatch"));
656 		index = VM_RESERV_INDEX(object, pindex);
657 		/* Does the allocation fit within the reservation? */
658 		if (index + npages > VM_LEVEL_0_NPAGES)
659 			return (NULL);
660 		domain = rv->domain;
661 		vmd = VM_DOMAIN(domain);
662 		vm_reserv_lock(rv);
663 		/* Handle reclaim race. */
664 		if (rv->object != object)
665 			goto out;
666 		m = &rv->pages[index];
667 		pa = VM_PAGE_TO_PHYS(m);
668 		if (pa < low || pa + size > high ||
669 		    (pa & (alignment - 1)) != 0 ||
670 		    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
671 			goto out;
672 		/* Handle vm_page_rename(m, new_object, ...). */
673 		for (i = 0; i < npages; i++)
674 			if (popmap_is_set(rv->popmap, index + i))
675 				goto out;
676 		if (!vm_domain_allocate(vmd, req, npages))
677 			goto out;
678 		for (i = 0; i < npages; i++)
679 			vm_reserv_populate(rv, index + i);
680 		vm_reserv_unlock(rv);
681 		return (m);
682 out:
683 		vm_reserv_unlock(rv);
684 		return (NULL);
685 	}
686 
687 	/*
688 	 * Could at least one reservation fit between the first index to the
689 	 * left that can be used ("leftcap") and the first index to the right
690 	 * that cannot be used ("rightcap")?
691 	 *
692 	 * We must synchronize with the reserv object lock to protect the
693 	 * pindex/object of the resulting reservations against rename while
694 	 * we are inspecting.
695 	 */
696 	first = pindex - VM_RESERV_INDEX(object, pindex);
697 	minpages = VM_RESERV_INDEX(object, pindex) + npages;
698 	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
699 	allocpages = maxpages;
700 	vm_reserv_object_lock(object);
701 	if (mpred != NULL) {
702 		if ((rv = vm_reserv_from_page(mpred))->object != object)
703 			leftcap = mpred->pindex + 1;
704 		else
705 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
706 		if (leftcap > first) {
707 			vm_reserv_object_unlock(object);
708 			return (NULL);
709 		}
710 	}
711 	if (msucc != NULL) {
712 		if ((rv = vm_reserv_from_page(msucc))->object != object)
713 			rightcap = msucc->pindex;
714 		else
715 			rightcap = rv->pindex;
716 		if (first + maxpages > rightcap) {
717 			if (maxpages == VM_LEVEL_0_NPAGES) {
718 				vm_reserv_object_unlock(object);
719 				return (NULL);
720 			}
721 
722 			/*
723 			 * At least one reservation will fit between "leftcap"
724 			 * and "rightcap".  However, a reservation for the
725 			 * last of the requested pages will not fit.  Reduce
726 			 * the size of the upcoming allocation accordingly.
727 			 */
728 			allocpages = minpages;
729 		}
730 	}
731 	vm_reserv_object_unlock(object);
732 
733 	/*
734 	 * Would the last new reservation extend past the end of the object?
735 	 *
736 	 * If the object is unlikely to grow don't allocate a reservation for
737 	 * the tail.
738 	 */
739 	if ((object->flags & OBJ_ANON) == 0 &&
740 	    first + maxpages > object->size) {
741 		if (maxpages == VM_LEVEL_0_NPAGES)
742 			return (NULL);
743 		allocpages = minpages;
744 	}
745 
746 	/*
747 	 * Allocate the physical pages.  The alignment and boundary specified
748 	 * for this allocation may be different from the alignment and
749 	 * boundary specified for the requested pages.  For instance, the
750 	 * specified index may not be the first page within the first new
751 	 * reservation.
752 	 */
753 	m = NULL;
754 	vmd = VM_DOMAIN(domain);
755 	if (vm_domain_allocate(vmd, req, npages)) {
756 		vm_domain_free_lock(vmd);
757 		m = vm_phys_alloc_contig(domain, allocpages, low, high,
758 		    ulmax(alignment, VM_LEVEL_0_SIZE),
759 		    boundary > VM_LEVEL_0_SIZE ? boundary : 0);
760 		vm_domain_free_unlock(vmd);
761 		if (m == NULL) {
762 			vm_domain_freecnt_inc(vmd, npages);
763 			return (NULL);
764 		}
765 	} else
766 		return (NULL);
767 	KASSERT(vm_phys_domain(m) == domain,
768 	    ("vm_reserv_alloc_contig: Page domain does not match requested."));
769 
770 	/*
771 	 * The allocated physical pages always begin at a reservation
772 	 * boundary, but they do not always end at a reservation boundary.
773 	 * Initialize every reservation that is completely covered by the
774 	 * allocated physical pages.
775 	 */
776 	m_ret = NULL;
777 	index = VM_RESERV_INDEX(object, pindex);
778 	do {
779 		rv = vm_reserv_from_page(m);
780 		KASSERT(rv->pages == m,
781 		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
782 		    rv));
783 		vm_reserv_lock(rv);
784 		vm_reserv_insert(rv, object, first);
785 		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
786 		for (i = 0; i < n; i++)
787 			vm_reserv_populate(rv, index + i);
788 		npages -= n;
789 		if (m_ret == NULL) {
790 			m_ret = &rv->pages[index];
791 			index = 0;
792 		}
793 		vm_reserv_unlock(rv);
794 		m += VM_LEVEL_0_NPAGES;
795 		first += VM_LEVEL_0_NPAGES;
796 		allocpages -= VM_LEVEL_0_NPAGES;
797 	} while (allocpages >= VM_LEVEL_0_NPAGES);
798 	return (m_ret);
799 }
800 
801 /*
802  * Allocate a physical page from an existing or newly created reservation.
803  *
804  * The page "mpred" must immediately precede the offset "pindex" within the
805  * specified object.
806  *
807  * The object must be locked.
808  */
809 vm_page_t
810 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain,
811     int req, vm_page_t mpred)
812 {
813 	struct vm_domain *vmd;
814 	vm_page_t m, msucc;
815 	vm_pindex_t first, leftcap, rightcap;
816 	vm_reserv_t rv;
817 	int index;
818 
819 	VM_OBJECT_ASSERT_WLOCKED(object);
820 
821 	/*
822 	 * Is a reservation fundamentally impossible?
823 	 */
824 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
825 	    pindex >= object->size)
826 		return (NULL);
827 
828 	/*
829 	 * Look for an existing reservation.
830 	 */
831 	rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
832 	if (rv != NULL) {
833 		KASSERT(object != kernel_object || rv->domain == domain,
834 		    ("vm_reserv_alloc_page: domain mismatch"));
835 		domain = rv->domain;
836 		vmd = VM_DOMAIN(domain);
837 		index = VM_RESERV_INDEX(object, pindex);
838 		m = &rv->pages[index];
839 		vm_reserv_lock(rv);
840 		/* Handle reclaim race. */
841 		if (rv->object != object ||
842 		    /* Handle vm_page_rename(m, new_object, ...). */
843 		    popmap_is_set(rv->popmap, index)) {
844 			m = NULL;
845 			goto out;
846 		}
847 		if (vm_domain_allocate(vmd, req, 1) == 0)
848 			m = NULL;
849 		else
850 			vm_reserv_populate(rv, index);
851 out:
852 		vm_reserv_unlock(rv);
853 		return (m);
854 	}
855 
856 	/*
857 	 * Could a reservation fit between the first index to the left that
858 	 * can be used and the first index to the right that cannot be used?
859 	 *
860 	 * We must synchronize with the reserv object lock to protect the
861 	 * pindex/object of the resulting reservations against rename while
862 	 * we are inspecting.
863 	 */
864 	first = pindex - VM_RESERV_INDEX(object, pindex);
865 	vm_reserv_object_lock(object);
866 	if (mpred != NULL) {
867 		if ((rv = vm_reserv_from_page(mpred))->object != object)
868 			leftcap = mpred->pindex + 1;
869 		else
870 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
871 		if (leftcap > first) {
872 			vm_reserv_object_unlock(object);
873 			return (NULL);
874 		}
875 	}
876 	if (msucc != NULL) {
877 		if ((rv = vm_reserv_from_page(msucc))->object != object)
878 			rightcap = msucc->pindex;
879 		else
880 			rightcap = rv->pindex;
881 		if (first + VM_LEVEL_0_NPAGES > rightcap) {
882 			vm_reserv_object_unlock(object);
883 			return (NULL);
884 		}
885 	}
886 	vm_reserv_object_unlock(object);
887 
888 	/*
889 	 * Would the last new reservation extend past the end of the object?
890 	 *
891 	 * If the object is unlikely to grow don't allocate a reservation for
892 	 * the tail.
893 	 */
894 	if ((object->flags & OBJ_ANON) == 0 &&
895 	    first + VM_LEVEL_0_NPAGES > object->size)
896 		return (NULL);
897 
898 	/*
899 	 * Allocate and populate the new reservation.
900 	 */
901 	m = NULL;
902 	vmd = VM_DOMAIN(domain);
903 	if (vm_domain_allocate(vmd, req, 1)) {
904 		vm_domain_free_lock(vmd);
905 		m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
906 		    VM_LEVEL_0_ORDER);
907 		vm_domain_free_unlock(vmd);
908 		if (m == NULL) {
909 			vm_domain_freecnt_inc(vmd, 1);
910 			return (NULL);
911 		}
912 	} else
913 		return (NULL);
914 	rv = vm_reserv_from_page(m);
915 	vm_reserv_lock(rv);
916 	KASSERT(rv->pages == m,
917 	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
918 	vm_reserv_insert(rv, object, first);
919 	index = VM_RESERV_INDEX(object, pindex);
920 	vm_reserv_populate(rv, index);
921 	vm_reserv_unlock(rv);
922 
923 	return (&rv->pages[index]);
924 }
925 
926 /*
927  * Breaks the given reservation.  All free pages in the reservation
928  * are returned to the physical memory allocator.  The reservation's
929  * population count and map are reset to their initial state.
930  *
931  * The given reservation must not be in the partially populated reservation
932  * queue.
933  */
934 static void
935 vm_reserv_break(vm_reserv_t rv)
936 {
937 	u_long changes;
938 	int bitpos, hi, i, lo;
939 
940 	vm_reserv_assert_locked(rv);
941 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
942 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
943 	vm_reserv_remove(rv);
944 	rv->pages->psind = 0;
945 	hi = lo = -1;
946 	for (i = 0; i <= NPOPMAP; i++) {
947 		/*
948 		 * "changes" is a bitmask that marks where a new sequence of
949 		 * 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
950 		 * considered to be 1 if and only if lo == hi.  The bits of
951 		 * popmap[-1] and popmap[NPOPMAP] are considered all 1s.
952 		 */
953 		if (i == NPOPMAP)
954 			changes = lo != hi;
955 		else {
956 			changes = rv->popmap[i];
957 			changes ^= (changes << 1) | (lo == hi);
958 			rv->popmap[i] = 0;
959 		}
960 		while (changes != 0) {
961 			/*
962 			 * If the next change marked begins a run of 0s, set
963 			 * lo to mark that position.  Otherwise set hi and
964 			 * free pages from lo up to hi.
965 			 */
966 			bitpos = ffsl(changes) - 1;
967 			changes ^= 1UL << bitpos;
968 			if (lo == hi)
969 				lo = NBPOPMAP * i + bitpos;
970 			else {
971 				hi = NBPOPMAP * i + bitpos;
972 				vm_domain_free_lock(VM_DOMAIN(rv->domain));
973 				vm_phys_enqueue_contig(&rv->pages[lo], hi - lo);
974 				vm_domain_free_unlock(VM_DOMAIN(rv->domain));
975 				lo = hi;
976 			}
977 		}
978 	}
979 	rv->popcnt = 0;
980 	counter_u64_add(vm_reserv_broken, 1);
981 }
982 
983 /*
984  * Breaks all reservations belonging to the given object.
985  */
986 void
987 vm_reserv_break_all(vm_object_t object)
988 {
989 	vm_reserv_t rv;
990 
991 	/*
992 	 * This access of object->rvq is unsynchronized so that the
993 	 * object rvq lock can nest after the domain_free lock.  We
994 	 * must check for races in the results.  However, the object
995 	 * lock prevents new additions, so we are guaranteed that when
996 	 * it returns NULL the object is properly empty.
997 	 */
998 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
999 		vm_reserv_lock(rv);
1000 		/* Reclaim race. */
1001 		if (rv->object != object) {
1002 			vm_reserv_unlock(rv);
1003 			continue;
1004 		}
1005 		vm_reserv_domain_lock(rv->domain);
1006 		if (rv->inpartpopq) {
1007 			TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1008 			rv->inpartpopq = FALSE;
1009 		}
1010 		vm_reserv_domain_unlock(rv->domain);
1011 		vm_reserv_break(rv);
1012 		vm_reserv_unlock(rv);
1013 	}
1014 }
1015 
1016 /*
1017  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1018  * page is freed and FALSE otherwise.
1019  */
1020 boolean_t
1021 vm_reserv_free_page(vm_page_t m)
1022 {
1023 	vm_reserv_t rv;
1024 	boolean_t ret;
1025 
1026 	rv = vm_reserv_from_page(m);
1027 	if (rv->object == NULL)
1028 		return (FALSE);
1029 	vm_reserv_lock(rv);
1030 	/* Re-validate after lock. */
1031 	if (rv->object != NULL) {
1032 		vm_reserv_depopulate(rv, m - rv->pages);
1033 		ret = TRUE;
1034 	} else
1035 		ret = FALSE;
1036 	vm_reserv_unlock(rv);
1037 
1038 	return (ret);
1039 }
1040 
1041 /*
1042  * Initializes the reservation management system.  Specifically, initializes
1043  * the reservation array.
1044  *
1045  * Requires that vm_page_array and first_page are initialized!
1046  */
1047 void
1048 vm_reserv_init(void)
1049 {
1050 	vm_paddr_t paddr;
1051 	struct vm_phys_seg *seg;
1052 	struct vm_reserv *rv;
1053 	struct vm_reserv_domain *rvd;
1054 	int i, j, segind;
1055 
1056 	/*
1057 	 * Initialize the reservation array.  Specifically, initialize the
1058 	 * "pages" field for every element that has an underlying superpage.
1059 	 */
1060 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
1061 		seg = &vm_phys_segs[segind];
1062 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1063 		while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
1064 		    VM_LEVEL_0_SIZE <= seg->end) {
1065 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
1066 			rv->pages = PHYS_TO_VM_PAGE(paddr);
1067 			rv->domain = seg->domain;
1068 			mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1069 			paddr += VM_LEVEL_0_SIZE;
1070 		}
1071 	}
1072 	for (i = 0; i < MAXMEMDOM; i++) {
1073 		rvd = &vm_rvd[i];
1074 		mtx_init(&rvd->lock, "vm reserv domain", NULL, MTX_DEF);
1075 		TAILQ_INIT(&rvd->partpop);
1076 		mtx_init(&rvd->marker.lock, "vm reserv marker", NULL, MTX_DEF);
1077 
1078 		/*
1079 		 * Fully populated reservations should never be present in the
1080 		 * partially populated reservation queues.
1081 		 */
1082 		rvd->marker.popcnt = VM_LEVEL_0_NPAGES;
1083 		for (j = 0; j < NBPOPMAP; j++)
1084 			popmap_set(rvd->marker.popmap, j);
1085 	}
1086 
1087 	for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1088 		mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1089 		    MTX_DEF);
1090 }
1091 
1092 /*
1093  * Returns true if the given page belongs to a reservation and that page is
1094  * free.  Otherwise, returns false.
1095  */
1096 bool
1097 vm_reserv_is_page_free(vm_page_t m)
1098 {
1099 	vm_reserv_t rv;
1100 
1101 	rv = vm_reserv_from_page(m);
1102 	if (rv->object == NULL)
1103 		return (false);
1104 	return (popmap_is_clear(rv->popmap, m - rv->pages));
1105 }
1106 
1107 /*
1108  * If the given page belongs to a reservation, returns the level of that
1109  * reservation.  Otherwise, returns -1.
1110  */
1111 int
1112 vm_reserv_level(vm_page_t m)
1113 {
1114 	vm_reserv_t rv;
1115 
1116 	rv = vm_reserv_from_page(m);
1117 	return (rv->object != NULL ? 0 : -1);
1118 }
1119 
1120 /*
1121  * Returns a reservation level if the given page belongs to a fully populated
1122  * reservation and -1 otherwise.
1123  */
1124 int
1125 vm_reserv_level_iffullpop(vm_page_t m)
1126 {
1127 	vm_reserv_t rv;
1128 
1129 	rv = vm_reserv_from_page(m);
1130 	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1131 }
1132 
1133 /*
1134  * Remove a partially populated reservation from the queue.
1135  */
1136 static void
1137 vm_reserv_dequeue(vm_reserv_t rv)
1138 {
1139 
1140 	vm_reserv_domain_assert_locked(rv->domain);
1141 	vm_reserv_assert_locked(rv);
1142 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1143 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1144 	KASSERT(rv->inpartpopq,
1145 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1146 
1147 	TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq);
1148 	rv->inpartpopq = FALSE;
1149 }
1150 
1151 /*
1152  * Breaks the given partially populated reservation, releasing its free pages
1153  * to the physical memory allocator.
1154  */
1155 static void
1156 vm_reserv_reclaim(vm_reserv_t rv)
1157 {
1158 
1159 	vm_reserv_assert_locked(rv);
1160 	CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1161 	    __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1162 	if (rv->inpartpopq) {
1163 		vm_reserv_domain_lock(rv->domain);
1164 		vm_reserv_dequeue(rv);
1165 		vm_reserv_domain_unlock(rv->domain);
1166 	}
1167 	vm_reserv_break(rv);
1168 	counter_u64_add(vm_reserv_reclaimed, 1);
1169 }
1170 
1171 /*
1172  * Breaks a reservation near the head of the partially populated reservation
1173  * queue, releasing its free pages to the physical memory allocator.  Returns
1174  * TRUE if a reservation is broken and FALSE otherwise.
1175  */
1176 bool
1177 vm_reserv_reclaim_inactive(int domain)
1178 {
1179 	vm_reserv_t rv;
1180 
1181 	vm_reserv_domain_lock(domain);
1182 	TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) {
1183 		/*
1184 		 * A locked reservation is likely being updated or reclaimed,
1185 		 * so just skip ahead.
1186 		 */
1187 		if (rv != &vm_rvd[domain].marker && vm_reserv_trylock(rv)) {
1188 			vm_reserv_dequeue(rv);
1189 			break;
1190 		}
1191 	}
1192 	vm_reserv_domain_unlock(domain);
1193 	if (rv != NULL) {
1194 		vm_reserv_reclaim(rv);
1195 		vm_reserv_unlock(rv);
1196 		return (true);
1197 	}
1198 	return (false);
1199 }
1200 
1201 /*
1202  * Determine whether this reservation has free pages that satisfy the given
1203  * request for contiguous physical memory.  Start searching from the lower
1204  * bound, defined by low_index.
1205  */
1206 static bool
1207 vm_reserv_test_contig(vm_reserv_t rv, u_long npages, vm_paddr_t low,
1208     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1209 {
1210 	vm_paddr_t pa, size;
1211 	u_long changes;
1212 	int bitpos, bits_left, i, hi, lo, n;
1213 
1214 	vm_reserv_assert_locked(rv);
1215 	size = npages << PAGE_SHIFT;
1216 	pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1217 	lo = (pa < low) ?
1218 	    ((low + PAGE_MASK - pa) >> PAGE_SHIFT) : 0;
1219 	i = lo / NBPOPMAP;
1220 	changes = rv->popmap[i] | ((1UL << (lo % NBPOPMAP)) - 1);
1221 	hi = (pa + VM_LEVEL_0_SIZE > high) ?
1222 	    ((high + PAGE_MASK - pa) >> PAGE_SHIFT) : VM_LEVEL_0_NPAGES;
1223 	n = hi / NBPOPMAP;
1224 	bits_left = hi % NBPOPMAP;
1225 	hi = lo = -1;
1226 	for (;;) {
1227 		/*
1228 		 * "changes" is a bitmask that marks where a new sequence of
1229 		 * 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
1230 		 * considered to be 1 if and only if lo == hi.  The bits of
1231 		 * popmap[-1] and popmap[NPOPMAP] are considered all 1s.
1232 		 */
1233 		changes ^= (changes << 1) | (lo == hi);
1234 		while (changes != 0) {
1235 			/*
1236 			 * If the next change marked begins a run of 0s, set
1237 			 * lo to mark that position.  Otherwise set hi and
1238 			 * look for a satisfactory first page from lo up to hi.
1239 			 */
1240 			bitpos = ffsl(changes) - 1;
1241 			changes ^= 1UL << bitpos;
1242 			if (lo == hi) {
1243 				lo = NBPOPMAP * i + bitpos;
1244 				continue;
1245 			}
1246 			hi = NBPOPMAP * i + bitpos;
1247 			pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1248 			if ((pa & (alignment - 1)) != 0) {
1249 				/* Skip to next aligned page. */
1250 				lo += (((pa - 1) | (alignment - 1)) + 1) >>
1251 				    PAGE_SHIFT;
1252 				if (lo >= VM_LEVEL_0_NPAGES)
1253 					return (false);
1254 				pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1255 			}
1256 			if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1257 				/* Skip to next boundary-matching page. */
1258 				lo += (((pa - 1) | (boundary - 1)) + 1) >>
1259 				    PAGE_SHIFT;
1260 				if (lo >= VM_LEVEL_0_NPAGES)
1261 					return (false);
1262 				pa = VM_PAGE_TO_PHYS(&rv->pages[lo]);
1263 			}
1264 			if (lo * PAGE_SIZE + size <= hi * PAGE_SIZE)
1265 				return (true);
1266 			lo = hi;
1267 		}
1268 		if (++i < n)
1269 			changes = rv->popmap[i];
1270 		else if (i == n)
1271 			changes = bits_left == 0 ? -1UL :
1272 			    (rv->popmap[n] | (-1UL << bits_left));
1273 		else
1274 			return (false);
1275 	}
1276 }
1277 
1278 /*
1279  * Searches the partially populated reservation queue for the least recently
1280  * changed reservation with free pages that satisfy the given request for
1281  * contiguous physical memory.  If a satisfactory reservation is found, it is
1282  * broken.  Returns true if a reservation is broken and false otherwise.
1283  */
1284 bool
1285 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1286     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1287 {
1288 	struct vm_reserv_queue *queue;
1289 	vm_paddr_t pa, size;
1290 	vm_reserv_t marker, rv, rvn;
1291 
1292 	if (npages > VM_LEVEL_0_NPAGES - 1)
1293 		return (false);
1294 	marker = &vm_rvd[domain].marker;
1295 	queue = &vm_rvd[domain].partpop;
1296 	size = npages << PAGE_SHIFT;
1297 
1298 	vm_reserv_domain_scan_lock(domain);
1299 	vm_reserv_domain_lock(domain);
1300 	TAILQ_FOREACH_SAFE(rv, queue, partpopq, rvn) {
1301 		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1302 		if (pa + VM_LEVEL_0_SIZE - size < low) {
1303 			/* This entire reservation is too low; go to next. */
1304 			continue;
1305 		}
1306 		if (pa + size > high) {
1307 			/* This entire reservation is too high; go to next. */
1308 			continue;
1309 		}
1310 
1311 		if (vm_reserv_trylock(rv) == 0) {
1312 			TAILQ_INSERT_AFTER(queue, rv, marker, partpopq);
1313 			vm_reserv_domain_unlock(domain);
1314 			vm_reserv_lock(rv);
1315 			if (!rv->inpartpopq ||
1316 			    TAILQ_NEXT(rv, partpopq) != marker) {
1317 				vm_reserv_unlock(rv);
1318 				vm_reserv_domain_lock(domain);
1319 				rvn = TAILQ_NEXT(marker, partpopq);
1320 				TAILQ_REMOVE(queue, marker, partpopq);
1321 				continue;
1322 			}
1323 			vm_reserv_domain_lock(domain);
1324 			TAILQ_REMOVE(queue, marker, partpopq);
1325 		}
1326 		vm_reserv_domain_unlock(domain);
1327 		if (vm_reserv_test_contig(rv, npages, low, high,
1328 		    alignment, boundary)) {
1329 			vm_reserv_domain_scan_unlock(domain);
1330 			vm_reserv_reclaim(rv);
1331 			vm_reserv_unlock(rv);
1332 			return (true);
1333 		}
1334 		vm_reserv_unlock(rv);
1335 		vm_reserv_domain_lock(domain);
1336 	}
1337 	vm_reserv_domain_unlock(domain);
1338 	vm_reserv_domain_scan_unlock(domain);
1339 	return (false);
1340 }
1341 
1342 /*
1343  * Transfers the reservation underlying the given page to a new object.
1344  *
1345  * The object must be locked.
1346  */
1347 void
1348 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1349     vm_pindex_t old_object_offset)
1350 {
1351 	vm_reserv_t rv;
1352 
1353 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1354 	rv = vm_reserv_from_page(m);
1355 	if (rv->object == old_object) {
1356 		vm_reserv_lock(rv);
1357 		CTR6(KTR_VM,
1358 		    "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1359 		    __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1360 		    rv->inpartpopq);
1361 		if (rv->object == old_object) {
1362 			vm_reserv_object_lock(old_object);
1363 			rv->object = NULL;
1364 			LIST_REMOVE(rv, objq);
1365 			vm_reserv_object_unlock(old_object);
1366 			vm_reserv_object_lock(new_object);
1367 			rv->object = new_object;
1368 			rv->pindex -= old_object_offset;
1369 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1370 			vm_reserv_object_unlock(new_object);
1371 		}
1372 		vm_reserv_unlock(rv);
1373 	}
1374 }
1375 
1376 /*
1377  * Returns the size (in bytes) of a reservation of the specified level.
1378  */
1379 int
1380 vm_reserv_size(int level)
1381 {
1382 
1383 	switch (level) {
1384 	case 0:
1385 		return (VM_LEVEL_0_SIZE);
1386 	case -1:
1387 		return (PAGE_SIZE);
1388 	default:
1389 		return (0);
1390 	}
1391 }
1392 
1393 /*
1394  * Allocates the virtual and physical memory required by the reservation
1395  * management system's data structures, in particular, the reservation array.
1396  */
1397 vm_paddr_t
1398 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end)
1399 {
1400 	vm_paddr_t new_end, high_water;
1401 	size_t size;
1402 	int i;
1403 
1404 	high_water = phys_avail[1];
1405 	for (i = 0; i < vm_phys_nsegs; i++) {
1406 		if (vm_phys_segs[i].end > high_water)
1407 			high_water = vm_phys_segs[i].end;
1408 	}
1409 
1410 	/* Skip the first chunk.  It is already accounted for. */
1411 	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
1412 		if (phys_avail[i + 1] > high_water)
1413 			high_water = phys_avail[i + 1];
1414 	}
1415 
1416 	/*
1417 	 * Calculate the size (in bytes) of the reservation array.  Round up
1418 	 * from "high_water" because every small page is mapped to an element
1419 	 * in the reservation array based on its physical address.  Thus, the
1420 	 * number of elements in the reservation array can be greater than the
1421 	 * number of superpages.
1422 	 */
1423 	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1424 
1425 	/*
1426 	 * Allocate and map the physical memory for the reservation array.  The
1427 	 * next available virtual address is returned by reference.
1428 	 */
1429 	new_end = end - round_page(size);
1430 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1431 	    VM_PROT_READ | VM_PROT_WRITE);
1432 	bzero(vm_reserv_array, size);
1433 
1434 	/*
1435 	 * Return the next available physical address.
1436 	 */
1437 	return (new_end);
1438 }
1439 
1440 /*
1441  * Initializes the reservation management system.  Specifically, initializes
1442  * the reservation counters.
1443  */
1444 static void
1445 vm_reserv_counter_init(void *unused)
1446 {
1447 
1448 	vm_reserv_freed = counter_u64_alloc(M_WAITOK);
1449 	vm_reserv_broken = counter_u64_alloc(M_WAITOK);
1450 	vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK);
1451 }
1452 SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY,
1453     vm_reserv_counter_init, NULL);
1454 
1455 /*
1456  * Returns the superpage containing the given page.
1457  */
1458 vm_page_t
1459 vm_reserv_to_superpage(vm_page_t m)
1460 {
1461 	vm_reserv_t rv;
1462 
1463 	VM_OBJECT_ASSERT_LOCKED(m->object);
1464 	rv = vm_reserv_from_page(m);
1465 	if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1466 		m = rv->pages;
1467 	else
1468 		m = NULL;
1469 
1470 	return (m);
1471 }
1472 
1473 #endif	/* VM_NRESERVLEVEL > 0 */
1474