xref: /freebsd/sys/vm/vm_reserv.c (revision 23f6875a43f7ce365f2d52cf857da010c47fb03b)
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *	Superpage reservation management module
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_vm.h"
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mutex.h>
49 #include <sys/queue.h>
50 #include <sys/rwlock.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_page.h>
59 #include <vm/vm_phys.h>
60 #include <vm/vm_radix.h>
61 #include <vm/vm_reserv.h>
62 
63 /*
64  * The reservation system supports the speculative allocation of large physical
65  * pages ("superpages").  Speculative allocation enables the fully automatic
66  * utilization of superpages by the virtual memory system.  In other words, no
67  * programmatic directives are required to use superpages.
68  */
69 
70 #if VM_NRESERVLEVEL > 0
71 
72 /*
73  * The number of small pages that are contained in a level 0 reservation
74  */
75 #define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
76 
77 /*
78  * The number of bits by which a physical address is shifted to obtain the
79  * reservation number
80  */
81 #define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
82 
83 /*
84  * The size of a level 0 reservation in bytes
85  */
86 #define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
87 
88 /*
89  * Computes the index of the small page underlying the given (object, pindex)
90  * within the reservation's array of small pages.
91  */
92 #define	VM_RESERV_INDEX(object, pindex)	\
93     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
94 
95 /*
96  * The size of a population map entry
97  */
98 typedef	u_long		popmap_t;
99 
100 /*
101  * The number of bits in a population map entry
102  */
103 #define	NBPOPMAP	(NBBY * sizeof(popmap_t))
104 
105 /*
106  * The number of population map entries in a reservation
107  */
108 #define	NPOPMAP		howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
109 
110 /*
111  * Clear a bit in the population map.
112  */
113 static __inline void
114 popmap_clear(popmap_t popmap[], int i)
115 {
116 
117 	popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
118 }
119 
120 /*
121  * Set a bit in the population map.
122  */
123 static __inline void
124 popmap_set(popmap_t popmap[], int i)
125 {
126 
127 	popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
128 }
129 
130 /*
131  * Is a bit in the population map clear?
132  */
133 static __inline boolean_t
134 popmap_is_clear(popmap_t popmap[], int i)
135 {
136 
137 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
138 }
139 
140 /*
141  * Is a bit in the population map set?
142  */
143 static __inline boolean_t
144 popmap_is_set(popmap_t popmap[], int i)
145 {
146 
147 	return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
148 }
149 
150 /*
151  * The reservation structure
152  *
153  * A reservation structure is constructed whenever a large physical page is
154  * speculatively allocated to an object.  The reservation provides the small
155  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
156  * within that object.  The reservation's "popcnt" tracks the number of these
157  * small physical pages that are in use at any given time.  When and if the
158  * reservation is not fully utilized, it appears in the queue of partially
159  * populated reservations.  The reservation always appears on the containing
160  * object's list of reservations.
161  *
162  * A partially populated reservation can be broken and reclaimed at any time.
163  */
164 struct vm_reserv {
165 	TAILQ_ENTRY(vm_reserv) partpopq;
166 	LIST_ENTRY(vm_reserv) objq;
167 	vm_object_t	object;			/* containing object */
168 	vm_pindex_t	pindex;			/* offset within object */
169 	vm_page_t	pages;			/* first page of a superpage */
170 	int		popcnt;			/* # of pages in use */
171 	char		inpartpopq;
172 	popmap_t	popmap[NPOPMAP];	/* bit vector of used pages */
173 };
174 
175 /*
176  * The reservation array
177  *
178  * This array is analoguous in function to vm_page_array.  It differs in the
179  * respect that it may contain a greater number of useful reservation
180  * structures than there are (physical) superpages.  These "invalid"
181  * reservation structures exist to trade-off space for time in the
182  * implementation of vm_reserv_from_page().  Invalid reservation structures are
183  * distinguishable from "valid" reservation structures by inspecting the
184  * reservation's "pages" field.  Invalid reservation structures have a NULL
185  * "pages" field.
186  *
187  * vm_reserv_from_page() maps a small (physical) page to an element of this
188  * array by computing a physical reservation number from the page's physical
189  * address.  The physical reservation number is used as the array index.
190  *
191  * An "active" reservation is a valid reservation structure that has a non-NULL
192  * "object" field and a non-zero "popcnt" field.  In other words, every active
193  * reservation belongs to a particular object.  Moreover, every active
194  * reservation has an entry in the containing object's list of reservations.
195  */
196 static vm_reserv_t vm_reserv_array;
197 
198 /*
199  * The partially populated reservation queue
200  *
201  * This queue enables the fast recovery of an unused free small page from a
202  * partially populated reservation.  The reservation at the head of this queue
203  * is the least recently changed, partially populated reservation.
204  *
205  * Access to this queue is synchronized by the free page queue lock.
206  */
207 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
208 			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
209 
210 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
211 
212 static long vm_reserv_broken;
213 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
214     &vm_reserv_broken, 0, "Cumulative number of broken reservations");
215 
216 static long vm_reserv_freed;
217 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
218     &vm_reserv_freed, 0, "Cumulative number of freed reservations");
219 
220 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
221 
222 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
223     sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
224 
225 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
226 
227 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
228     sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
229 
230 static long vm_reserv_reclaimed;
231 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
232     &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
233 
234 static void		vm_reserv_break(vm_reserv_t rv, vm_page_t m);
235 static void		vm_reserv_depopulate(vm_reserv_t rv, int index);
236 static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
237 static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
238 			    vm_pindex_t pindex);
239 static void		vm_reserv_populate(vm_reserv_t rv, int index);
240 static void		vm_reserv_reclaim(vm_reserv_t rv);
241 
242 /*
243  * Returns the current number of full reservations.
244  *
245  * Since the number of full reservations is computed without acquiring the
246  * free page queue lock, the returned value may be inexact.
247  */
248 static int
249 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
250 {
251 	vm_paddr_t paddr;
252 	struct vm_phys_seg *seg;
253 	vm_reserv_t rv;
254 	int fullpop, segind;
255 
256 	fullpop = 0;
257 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
258 		seg = &vm_phys_segs[segind];
259 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
260 		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
261 			rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
262 			fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
263 			paddr += VM_LEVEL_0_SIZE;
264 		}
265 	}
266 	return (sysctl_handle_int(oidp, &fullpop, 0, req));
267 }
268 
269 /*
270  * Describes the current state of the partially populated reservation queue.
271  */
272 static int
273 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
274 {
275 	struct sbuf sbuf;
276 	vm_reserv_t rv;
277 	int counter, error, level, unused_pages;
278 
279 	error = sysctl_wire_old_buffer(req, 0);
280 	if (error != 0)
281 		return (error);
282 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
283 	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
284 	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
285 		counter = 0;
286 		unused_pages = 0;
287 		mtx_lock(&vm_page_queue_free_mtx);
288 		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
289 			counter++;
290 			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
291 		}
292 		mtx_unlock(&vm_page_queue_free_mtx);
293 		sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
294 		    unused_pages * ((int)PAGE_SIZE / 1024), counter);
295 	}
296 	error = sbuf_finish(&sbuf);
297 	sbuf_delete(&sbuf);
298 	return (error);
299 }
300 
301 /*
302  * Reduces the given reservation's population count.  If the population count
303  * becomes zero, the reservation is destroyed.  Additionally, moves the
304  * reservation to the tail of the partially populated reservation queue if the
305  * population count is non-zero.
306  *
307  * The free page queue lock must be held.
308  */
309 static void
310 vm_reserv_depopulate(vm_reserv_t rv, int index)
311 {
312 
313 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
314 	KASSERT(rv->object != NULL,
315 	    ("vm_reserv_depopulate: reserv %p is free", rv));
316 	KASSERT(popmap_is_set(rv->popmap, index),
317 	    ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
318 	    index));
319 	KASSERT(rv->popcnt > 0,
320 	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
321 	if (rv->inpartpopq) {
322 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
323 		rv->inpartpopq = FALSE;
324 	} else {
325 		KASSERT(rv->pages->psind == 1,
326 		    ("vm_reserv_depopulate: reserv %p is already demoted",
327 		    rv));
328 		rv->pages->psind = 0;
329 	}
330 	popmap_clear(rv->popmap, index);
331 	rv->popcnt--;
332 	if (rv->popcnt == 0) {
333 		LIST_REMOVE(rv, objq);
334 		rv->object = NULL;
335 		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
336 		vm_reserv_freed++;
337 	} else {
338 		rv->inpartpopq = TRUE;
339 		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
340 	}
341 }
342 
343 /*
344  * Returns the reservation to which the given page might belong.
345  */
346 static __inline vm_reserv_t
347 vm_reserv_from_page(vm_page_t m)
348 {
349 
350 	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
351 }
352 
353 /*
354  * Returns TRUE if the given reservation contains the given page index and
355  * FALSE otherwise.
356  */
357 static __inline boolean_t
358 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
359 {
360 
361 	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
362 }
363 
364 /*
365  * Increases the given reservation's population count.  Moves the reservation
366  * to the tail of the partially populated reservation queue.
367  *
368  * The free page queue must be locked.
369  */
370 static void
371 vm_reserv_populate(vm_reserv_t rv, int index)
372 {
373 
374 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
375 	KASSERT(rv->object != NULL,
376 	    ("vm_reserv_populate: reserv %p is free", rv));
377 	KASSERT(popmap_is_clear(rv->popmap, index),
378 	    ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
379 	    index));
380 	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
381 	    ("vm_reserv_populate: reserv %p is already full", rv));
382 	KASSERT(rv->pages->psind == 0,
383 	    ("vm_reserv_populate: reserv %p is already promoted", rv));
384 	if (rv->inpartpopq) {
385 		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
386 		rv->inpartpopq = FALSE;
387 	}
388 	popmap_set(rv->popmap, index);
389 	rv->popcnt++;
390 	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
391 		rv->inpartpopq = TRUE;
392 		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
393 	} else
394 		rv->pages->psind = 1;
395 }
396 
397 /*
398  * Allocates a contiguous set of physical pages of the given size "npages"
399  * from existing or newly created reservations.  All of the physical pages
400  * must be at or above the given physical address "low" and below the given
401  * physical address "high".  The given value "alignment" determines the
402  * alignment of the first physical page in the set.  If the given value
403  * "boundary" is non-zero, then the set of physical pages cannot cross any
404  * physical address boundary that is a multiple of that value.  Both
405  * "alignment" and "boundary" must be a power of two.
406  *
407  * The page "mpred" must immediately precede the offset "pindex" within the
408  * specified object.
409  *
410  * The object and free page queue must be locked.
411  */
412 vm_page_t
413 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages,
414     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
415     vm_page_t mpred)
416 {
417 	vm_paddr_t pa, size;
418 	vm_page_t m, m_ret, msucc;
419 	vm_pindex_t first, leftcap, rightcap;
420 	vm_reserv_t rv;
421 	u_long allocpages, maxpages, minpages;
422 	int i, index, n;
423 
424 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
425 	VM_OBJECT_ASSERT_WLOCKED(object);
426 	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
427 
428 	/*
429 	 * Is a reservation fundamentally impossible?
430 	 */
431 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
432 	    pindex + npages > object->size)
433 		return (NULL);
434 
435 	/*
436 	 * All reservations of a particular size have the same alignment.
437 	 * Assuming that the first page is allocated from a reservation, the
438 	 * least significant bits of its physical address can be determined
439 	 * from its offset from the beginning of the reservation and the size
440 	 * of the reservation.
441 	 *
442 	 * Could the specified index within a reservation of the smallest
443 	 * possible size satisfy the alignment and boundary requirements?
444 	 */
445 	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
446 	if ((pa & (alignment - 1)) != 0)
447 		return (NULL);
448 	size = npages << PAGE_SHIFT;
449 	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
450 		return (NULL);
451 
452 	/*
453 	 * Look for an existing reservation.
454 	 */
455 	if (mpred != NULL) {
456 		KASSERT(mpred->object == object,
457 		    ("vm_reserv_alloc_contig: object doesn't contain mpred"));
458 		KASSERT(mpred->pindex < pindex,
459 		    ("vm_reserv_alloc_contig: mpred doesn't precede pindex"));
460 		rv = vm_reserv_from_page(mpred);
461 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
462 			goto found;
463 		msucc = TAILQ_NEXT(mpred, listq);
464 	} else
465 		msucc = TAILQ_FIRST(&object->memq);
466 	if (msucc != NULL) {
467 		KASSERT(msucc->pindex > pindex,
468 		    ("vm_reserv_alloc_contig: msucc doesn't succeed pindex"));
469 		rv = vm_reserv_from_page(msucc);
470 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
471 			goto found;
472 	}
473 
474 	/*
475 	 * Could at least one reservation fit between the first index to the
476 	 * left that can be used ("leftcap") and the first index to the right
477 	 * that cannot be used ("rightcap")?
478 	 */
479 	first = pindex - VM_RESERV_INDEX(object, pindex);
480 	if (mpred != NULL) {
481 		if ((rv = vm_reserv_from_page(mpred))->object != object)
482 			leftcap = mpred->pindex + 1;
483 		else
484 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
485 		if (leftcap > first)
486 			return (NULL);
487 	}
488 	minpages = VM_RESERV_INDEX(object, pindex) + npages;
489 	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
490 	allocpages = maxpages;
491 	if (msucc != NULL) {
492 		if ((rv = vm_reserv_from_page(msucc))->object != object)
493 			rightcap = msucc->pindex;
494 		else
495 			rightcap = rv->pindex;
496 		if (first + maxpages > rightcap) {
497 			if (maxpages == VM_LEVEL_0_NPAGES)
498 				return (NULL);
499 
500 			/*
501 			 * At least one reservation will fit between "leftcap"
502 			 * and "rightcap".  However, a reservation for the
503 			 * last of the requested pages will not fit.  Reduce
504 			 * the size of the upcoming allocation accordingly.
505 			 */
506 			allocpages = minpages;
507 		}
508 	}
509 
510 	/*
511 	 * Would the last new reservation extend past the end of the object?
512 	 */
513 	if (first + maxpages > object->size) {
514 		/*
515 		 * Don't allocate the last new reservation if the object is a
516 		 * vnode or backed by another object that is a vnode.
517 		 */
518 		if (object->type == OBJT_VNODE ||
519 		    (object->backing_object != NULL &&
520 		    object->backing_object->type == OBJT_VNODE)) {
521 			if (maxpages == VM_LEVEL_0_NPAGES)
522 				return (NULL);
523 			allocpages = minpages;
524 		}
525 		/* Speculate that the object may grow. */
526 	}
527 
528 	/*
529 	 * Allocate the physical pages.  The alignment and boundary specified
530 	 * for this allocation may be different from the alignment and
531 	 * boundary specified for the requested pages.  For instance, the
532 	 * specified index may not be the first page within the first new
533 	 * reservation.
534 	 */
535 	m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment,
536 	    VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0);
537 	if (m == NULL)
538 		return (NULL);
539 
540 	/*
541 	 * The allocated physical pages always begin at a reservation
542 	 * boundary, but they do not always end at a reservation boundary.
543 	 * Initialize every reservation that is completely covered by the
544 	 * allocated physical pages.
545 	 */
546 	m_ret = NULL;
547 	index = VM_RESERV_INDEX(object, pindex);
548 	do {
549 		rv = vm_reserv_from_page(m);
550 		KASSERT(rv->pages == m,
551 		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
552 		    rv));
553 		KASSERT(rv->object == NULL,
554 		    ("vm_reserv_alloc_contig: reserv %p isn't free", rv));
555 		LIST_INSERT_HEAD(&object->rvq, rv, objq);
556 		rv->object = object;
557 		rv->pindex = first;
558 		KASSERT(rv->popcnt == 0,
559 		    ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted",
560 		    rv));
561 		KASSERT(!rv->inpartpopq,
562 		    ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE",
563 		    rv));
564 		for (i = 0; i < NPOPMAP; i++)
565 			KASSERT(rv->popmap[i] == 0,
566 		    ("vm_reserv_alloc_contig: reserv %p's popmap is corrupted",
567 			    rv));
568 		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
569 		for (i = 0; i < n; i++)
570 			vm_reserv_populate(rv, index + i);
571 		npages -= n;
572 		if (m_ret == NULL) {
573 			m_ret = &rv->pages[index];
574 			index = 0;
575 		}
576 		m += VM_LEVEL_0_NPAGES;
577 		first += VM_LEVEL_0_NPAGES;
578 		allocpages -= VM_LEVEL_0_NPAGES;
579 	} while (allocpages >= VM_LEVEL_0_NPAGES);
580 	return (m_ret);
581 
582 	/*
583 	 * Found a matching reservation.
584 	 */
585 found:
586 	index = VM_RESERV_INDEX(object, pindex);
587 	/* Does the allocation fit within the reservation? */
588 	if (index + npages > VM_LEVEL_0_NPAGES)
589 		return (NULL);
590 	m = &rv->pages[index];
591 	pa = VM_PAGE_TO_PHYS(m);
592 	if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
593 	    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
594 		return (NULL);
595 	/* Handle vm_page_rename(m, new_object, ...). */
596 	for (i = 0; i < npages; i++)
597 		if (popmap_is_set(rv->popmap, index + i))
598 			return (NULL);
599 	for (i = 0; i < npages; i++)
600 		vm_reserv_populate(rv, index + i);
601 	return (m);
602 }
603 
604 /*
605  * Allocates a page from an existing or newly created reservation.
606  *
607  * The page "mpred" must immediately precede the offset "pindex" within the
608  * specified object.
609  *
610  * The object and free page queue must be locked.
611  */
612 vm_page_t
613 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred)
614 {
615 	vm_page_t m, msucc;
616 	vm_pindex_t first, leftcap, rightcap;
617 	vm_reserv_t rv;
618 	int i, index;
619 
620 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
621 	VM_OBJECT_ASSERT_WLOCKED(object);
622 
623 	/*
624 	 * Is a reservation fundamentally impossible?
625 	 */
626 	if (pindex < VM_RESERV_INDEX(object, pindex) ||
627 	    pindex >= object->size)
628 		return (NULL);
629 
630 	/*
631 	 * Look for an existing reservation.
632 	 */
633 	if (mpred != NULL) {
634 		KASSERT(mpred->object == object,
635 		    ("vm_reserv_alloc_page: object doesn't contain mpred"));
636 		KASSERT(mpred->pindex < pindex,
637 		    ("vm_reserv_alloc_page: mpred doesn't precede pindex"));
638 		rv = vm_reserv_from_page(mpred);
639 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
640 			goto found;
641 		msucc = TAILQ_NEXT(mpred, listq);
642 	} else
643 		msucc = TAILQ_FIRST(&object->memq);
644 	if (msucc != NULL) {
645 		KASSERT(msucc->pindex > pindex,
646 		    ("vm_reserv_alloc_page: msucc doesn't succeed pindex"));
647 		rv = vm_reserv_from_page(msucc);
648 		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
649 			goto found;
650 	}
651 
652 	/*
653 	 * Could a reservation fit between the first index to the left that
654 	 * can be used and the first index to the right that cannot be used?
655 	 */
656 	first = pindex - VM_RESERV_INDEX(object, pindex);
657 	if (mpred != NULL) {
658 		if ((rv = vm_reserv_from_page(mpred))->object != object)
659 			leftcap = mpred->pindex + 1;
660 		else
661 			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
662 		if (leftcap > first)
663 			return (NULL);
664 	}
665 	if (msucc != NULL) {
666 		if ((rv = vm_reserv_from_page(msucc))->object != object)
667 			rightcap = msucc->pindex;
668 		else
669 			rightcap = rv->pindex;
670 		if (first + VM_LEVEL_0_NPAGES > rightcap)
671 			return (NULL);
672 	}
673 
674 	/*
675 	 * Would a new reservation extend past the end of the object?
676 	 */
677 	if (first + VM_LEVEL_0_NPAGES > object->size) {
678 		/*
679 		 * Don't allocate a new reservation if the object is a vnode or
680 		 * backed by another object that is a vnode.
681 		 */
682 		if (object->type == OBJT_VNODE ||
683 		    (object->backing_object != NULL &&
684 		    object->backing_object->type == OBJT_VNODE))
685 			return (NULL);
686 		/* Speculate that the object may grow. */
687 	}
688 
689 	/*
690 	 * Allocate and populate the new reservation.
691 	 */
692 	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
693 	if (m == NULL)
694 		return (NULL);
695 	rv = vm_reserv_from_page(m);
696 	KASSERT(rv->pages == m,
697 	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
698 	KASSERT(rv->object == NULL,
699 	    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
700 	LIST_INSERT_HEAD(&object->rvq, rv, objq);
701 	rv->object = object;
702 	rv->pindex = first;
703 	KASSERT(rv->popcnt == 0,
704 	    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv));
705 	KASSERT(!rv->inpartpopq,
706 	    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv));
707 	for (i = 0; i < NPOPMAP; i++)
708 		KASSERT(rv->popmap[i] == 0,
709 		    ("vm_reserv_alloc_page: reserv %p's popmap is corrupted",
710 		    rv));
711 	index = VM_RESERV_INDEX(object, pindex);
712 	vm_reserv_populate(rv, index);
713 	return (&rv->pages[index]);
714 
715 	/*
716 	 * Found a matching reservation.
717 	 */
718 found:
719 	index = VM_RESERV_INDEX(object, pindex);
720 	m = &rv->pages[index];
721 	/* Handle vm_page_rename(m, new_object, ...). */
722 	if (popmap_is_set(rv->popmap, index))
723 		return (NULL);
724 	vm_reserv_populate(rv, index);
725 	return (m);
726 }
727 
728 /*
729  * Breaks the given reservation.  Except for the specified free page, all free
730  * pages in the reservation are returned to the physical memory allocator.
731  * The reservation's population count and map are reset to their initial
732  * state.
733  *
734  * The given reservation must not be in the partially populated reservation
735  * queue.  The free page queue lock must be held.
736  */
737 static void
738 vm_reserv_break(vm_reserv_t rv, vm_page_t m)
739 {
740 	int begin_zeroes, hi, i, lo;
741 
742 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
743 	KASSERT(rv->object != NULL,
744 	    ("vm_reserv_break: reserv %p is free", rv));
745 	KASSERT(!rv->inpartpopq,
746 	    ("vm_reserv_break: reserv %p's inpartpopq is TRUE", rv));
747 	LIST_REMOVE(rv, objq);
748 	rv->object = NULL;
749 	if (m != NULL) {
750 		/*
751 		 * Since the reservation is being broken, there is no harm in
752 		 * abusing the population map to stop "m" from being returned
753 		 * to the physical memory allocator.
754 		 */
755 		i = m - rv->pages;
756 		KASSERT(popmap_is_clear(rv->popmap, i),
757 		    ("vm_reserv_break: reserv %p's popmap is corrupted", rv));
758 		popmap_set(rv->popmap, i);
759 		rv->popcnt++;
760 	}
761 	i = hi = 0;
762 	do {
763 		/* Find the next 0 bit.  Any previous 0 bits are < "hi". */
764 		lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
765 		if (lo == 0) {
766 			/* Redundantly clears bits < "hi". */
767 			rv->popmap[i] = 0;
768 			rv->popcnt -= NBPOPMAP - hi;
769 			while (++i < NPOPMAP) {
770 				lo = ffsl(~rv->popmap[i]);
771 				if (lo == 0) {
772 					rv->popmap[i] = 0;
773 					rv->popcnt -= NBPOPMAP;
774 				} else
775 					break;
776 			}
777 			if (i == NPOPMAP)
778 				break;
779 			hi = 0;
780 		}
781 		KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo));
782 		/* Convert from ffsl() to ordinary bit numbering. */
783 		lo--;
784 		if (lo > 0) {
785 			/* Redundantly clears bits < "hi". */
786 			rv->popmap[i] &= ~((1UL << lo) - 1);
787 			rv->popcnt -= lo - hi;
788 		}
789 		begin_zeroes = NBPOPMAP * i + lo;
790 		/* Find the next 1 bit. */
791 		do
792 			hi = ffsl(rv->popmap[i]);
793 		while (hi == 0 && ++i < NPOPMAP);
794 		if (i != NPOPMAP)
795 			/* Convert from ffsl() to ordinary bit numbering. */
796 			hi--;
797 		vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i +
798 		    hi - begin_zeroes);
799 	} while (i < NPOPMAP);
800 	KASSERT(rv->popcnt == 0,
801 	    ("vm_reserv_break: reserv %p's popcnt is corrupted", rv));
802 	vm_reserv_broken++;
803 }
804 
805 /*
806  * Breaks all reservations belonging to the given object.
807  */
808 void
809 vm_reserv_break_all(vm_object_t object)
810 {
811 	vm_reserv_t rv;
812 
813 	mtx_lock(&vm_page_queue_free_mtx);
814 	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
815 		KASSERT(rv->object == object,
816 		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
817 		if (rv->inpartpopq) {
818 			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
819 			rv->inpartpopq = FALSE;
820 		}
821 		vm_reserv_break(rv, NULL);
822 	}
823 	mtx_unlock(&vm_page_queue_free_mtx);
824 }
825 
826 /*
827  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
828  * page is freed and FALSE otherwise.
829  *
830  * The free page queue lock must be held.
831  */
832 boolean_t
833 vm_reserv_free_page(vm_page_t m)
834 {
835 	vm_reserv_t rv;
836 
837 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
838 	rv = vm_reserv_from_page(m);
839 	if (rv->object == NULL)
840 		return (FALSE);
841 	vm_reserv_depopulate(rv, m - rv->pages);
842 	return (TRUE);
843 }
844 
845 /*
846  * Initializes the reservation management system.  Specifically, initializes
847  * the reservation array.
848  *
849  * Requires that vm_page_array and first_page are initialized!
850  */
851 void
852 vm_reserv_init(void)
853 {
854 	vm_paddr_t paddr;
855 	struct vm_phys_seg *seg;
856 	int segind;
857 
858 	/*
859 	 * Initialize the reservation array.  Specifically, initialize the
860 	 * "pages" field for every element that has an underlying superpage.
861 	 */
862 	for (segind = 0; segind < vm_phys_nsegs; segind++) {
863 		seg = &vm_phys_segs[segind];
864 		paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
865 		while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
866 			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
867 			    PHYS_TO_VM_PAGE(paddr);
868 			paddr += VM_LEVEL_0_SIZE;
869 		}
870 	}
871 }
872 
873 /*
874  * Returns true if the given page belongs to a reservation and that page is
875  * free.  Otherwise, returns false.
876  */
877 bool
878 vm_reserv_is_page_free(vm_page_t m)
879 {
880 	vm_reserv_t rv;
881 
882 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
883 	rv = vm_reserv_from_page(m);
884 	if (rv->object == NULL)
885 		return (false);
886 	return (popmap_is_clear(rv->popmap, m - rv->pages));
887 }
888 
889 /*
890  * If the given page belongs to a reservation, returns the level of that
891  * reservation.  Otherwise, returns -1.
892  */
893 int
894 vm_reserv_level(vm_page_t m)
895 {
896 	vm_reserv_t rv;
897 
898 	rv = vm_reserv_from_page(m);
899 	return (rv->object != NULL ? 0 : -1);
900 }
901 
902 /*
903  * Returns a reservation level if the given page belongs to a fully populated
904  * reservation and -1 otherwise.
905  */
906 int
907 vm_reserv_level_iffullpop(vm_page_t m)
908 {
909 	vm_reserv_t rv;
910 
911 	rv = vm_reserv_from_page(m);
912 	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
913 }
914 
915 /*
916  * Breaks the given partially populated reservation, releasing its free pages
917  * to the physical memory allocator.
918  *
919  * The free page queue lock must be held.
920  */
921 static void
922 vm_reserv_reclaim(vm_reserv_t rv)
923 {
924 
925 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
926 	KASSERT(rv->inpartpopq,
927 	    ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
928 	TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
929 	rv->inpartpopq = FALSE;
930 	vm_reserv_break(rv, NULL);
931 	vm_reserv_reclaimed++;
932 }
933 
934 /*
935  * Breaks the reservation at the head of the partially populated reservation
936  * queue, releasing its free pages to the physical memory allocator.  Returns
937  * TRUE if a reservation is broken and FALSE otherwise.
938  *
939  * The free page queue lock must be held.
940  */
941 boolean_t
942 vm_reserv_reclaim_inactive(void)
943 {
944 	vm_reserv_t rv;
945 
946 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
947 	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
948 		vm_reserv_reclaim(rv);
949 		return (TRUE);
950 	}
951 	return (FALSE);
952 }
953 
954 /*
955  * Searches the partially populated reservation queue for the least recently
956  * changed reservation with free pages that satisfy the given request for
957  * contiguous physical memory.  If a satisfactory reservation is found, it is
958  * broken.  Returns TRUE if a reservation is broken and FALSE otherwise.
959  *
960  * The free page queue lock must be held.
961  */
962 boolean_t
963 vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
964     u_long alignment, vm_paddr_t boundary)
965 {
966 	vm_paddr_t pa, size;
967 	vm_reserv_t rv;
968 	int hi, i, lo, low_index, next_free;
969 
970 	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
971 	if (npages > VM_LEVEL_0_NPAGES - 1)
972 		return (FALSE);
973 	size = npages << PAGE_SHIFT;
974 	TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
975 		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
976 		if (pa + PAGE_SIZE - size < low) {
977 			/* This entire reservation is too low; go to next. */
978 			continue;
979 		}
980 		pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
981 		if (pa + size > high) {
982 			/* This entire reservation is too high; go to next. */
983 			continue;
984 		}
985 		if (pa < low) {
986 			/* Start the search for free pages at "low". */
987 			low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT;
988 			i = low_index / NBPOPMAP;
989 			hi = low_index % NBPOPMAP;
990 		} else
991 			i = hi = 0;
992 		do {
993 			/* Find the next free page. */
994 			lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
995 			while (lo == 0 && ++i < NPOPMAP)
996 				lo = ffsl(~rv->popmap[i]);
997 			if (i == NPOPMAP)
998 				break;
999 			/* Convert from ffsl() to ordinary bit numbering. */
1000 			lo--;
1001 			next_free = NBPOPMAP * i + lo;
1002 			pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
1003 			KASSERT(pa >= low,
1004 			    ("vm_reserv_reclaim_contig: pa is too low"));
1005 			if (pa + size > high) {
1006 				/* The rest of this reservation is too high. */
1007 				break;
1008 			} else if ((pa & (alignment - 1)) != 0 ||
1009 			    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1010 				/*
1011 				 * The current page doesn't meet the alignment
1012 				 * and/or boundary requirements.  Continue
1013 				 * searching this reservation until the rest
1014 				 * of its free pages are either excluded or
1015 				 * exhausted.
1016 				 */
1017 				hi = lo + 1;
1018 				if (hi >= NBPOPMAP) {
1019 					hi = 0;
1020 					i++;
1021 				}
1022 				continue;
1023 			}
1024 			/* Find the next used page. */
1025 			hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
1026 			while (hi == 0 && ++i < NPOPMAP) {
1027 				if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
1028 				    size) {
1029 					vm_reserv_reclaim(rv);
1030 					return (TRUE);
1031 				}
1032 				hi = ffsl(rv->popmap[i]);
1033 			}
1034 			/* Convert from ffsl() to ordinary bit numbering. */
1035 			if (i != NPOPMAP)
1036 				hi--;
1037 			if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
1038 			    size) {
1039 				vm_reserv_reclaim(rv);
1040 				return (TRUE);
1041 			}
1042 		} while (i < NPOPMAP);
1043 	}
1044 	return (FALSE);
1045 }
1046 
1047 /*
1048  * Transfers the reservation underlying the given page to a new object.
1049  *
1050  * The object must be locked.
1051  */
1052 void
1053 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1054     vm_pindex_t old_object_offset)
1055 {
1056 	vm_reserv_t rv;
1057 
1058 	VM_OBJECT_ASSERT_WLOCKED(new_object);
1059 	rv = vm_reserv_from_page(m);
1060 	if (rv->object == old_object) {
1061 		mtx_lock(&vm_page_queue_free_mtx);
1062 		if (rv->object == old_object) {
1063 			LIST_REMOVE(rv, objq);
1064 			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1065 			rv->object = new_object;
1066 			rv->pindex -= old_object_offset;
1067 		}
1068 		mtx_unlock(&vm_page_queue_free_mtx);
1069 	}
1070 }
1071 
1072 /*
1073  * Returns the size (in bytes) of a reservation of the specified level.
1074  */
1075 int
1076 vm_reserv_size(int level)
1077 {
1078 
1079 	switch (level) {
1080 	case 0:
1081 		return (VM_LEVEL_0_SIZE);
1082 	case -1:
1083 		return (PAGE_SIZE);
1084 	default:
1085 		return (0);
1086 	}
1087 }
1088 
1089 /*
1090  * Allocates the virtual and physical memory required by the reservation
1091  * management system's data structures, in particular, the reservation array.
1092  */
1093 vm_paddr_t
1094 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
1095 {
1096 	vm_paddr_t new_end;
1097 	size_t size;
1098 
1099 	/*
1100 	 * Calculate the size (in bytes) of the reservation array.  Round up
1101 	 * from "high_water" because every small page is mapped to an element
1102 	 * in the reservation array based on its physical address.  Thus, the
1103 	 * number of elements in the reservation array can be greater than the
1104 	 * number of superpages.
1105 	 */
1106 	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1107 
1108 	/*
1109 	 * Allocate and map the physical memory for the reservation array.  The
1110 	 * next available virtual address is returned by reference.
1111 	 */
1112 	new_end = end - round_page(size);
1113 	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1114 	    VM_PROT_READ | VM_PROT_WRITE);
1115 	bzero(vm_reserv_array, size);
1116 
1117 	/*
1118 	 * Return the next available physical address.
1119 	 */
1120 	return (new_end);
1121 }
1122 
1123 #endif	/* VM_NRESERVLEVEL > 0 */
1124