1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002-2006 Rice University 5 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Alan L. Cox, 9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Superpage reservation management module 36 * 37 * Any external functions defined by this module are only to be used by the 38 * virtual memory system. 39 */ 40 41 #include <sys/cdefs.h> 42 #include "opt_vm.h" 43 44 #include <sys/param.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/queue.h> 50 #include <sys/rwlock.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 #include <sys/bitstring.h> 55 #include <sys/counter.h> 56 #include <sys/ktr.h> 57 #include <sys/vmmeter.h> 58 #include <sys/smp.h> 59 60 #include <vm/vm.h> 61 #include <vm/vm_extern.h> 62 #include <vm/vm_param.h> 63 #include <vm/vm_object.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_pageout.h> 66 #include <vm/vm_pagequeue.h> 67 #include <vm/vm_phys.h> 68 #include <vm/vm_radix.h> 69 #include <vm/vm_reserv.h> 70 71 /* 72 * The reservation system supports the speculative allocation of large physical 73 * pages ("superpages"). Speculative allocation enables the fully automatic 74 * utilization of superpages by the virtual memory system. In other words, no 75 * programmatic directives are required to use superpages. 76 */ 77 78 #if VM_NRESERVLEVEL > 0 79 80 /* 81 * Temporarily simulate two-level reservations. Effectively, VM_LEVEL_0_* is 82 * level 1, and VM_SUBLEVEL_0_* is level 0. 83 */ 84 #if VM_NRESERVLEVEL == 2 85 #undef VM_NRESERVLEVEL 86 #define VM_NRESERVLEVEL 1 87 #if VM_LEVEL_0_ORDER == 4 88 #undef VM_LEVEL_0_ORDER 89 #define VM_LEVEL_0_ORDER (4 + VM_LEVEL_1_ORDER) 90 #define VM_SUBLEVEL_0_NPAGES (1 << 4) 91 #elif VM_LEVEL_0_ORDER == 7 92 #undef VM_LEVEL_0_ORDER 93 #define VM_LEVEL_0_ORDER (7 + VM_LEVEL_1_ORDER) 94 #define VM_SUBLEVEL_0_NPAGES (1 << 7) 95 #else 96 #error "Unsupported level 0 reservation size" 97 #endif 98 #define VM_LEVEL_0_PSIND 2 99 #else 100 #define VM_LEVEL_0_PSIND 1 101 #endif 102 103 #ifndef VM_LEVEL_0_ORDER_MAX 104 #define VM_LEVEL_0_ORDER_MAX VM_LEVEL_0_ORDER 105 #endif 106 107 /* 108 * The number of small pages that are contained in a level 0 reservation 109 */ 110 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 111 #define VM_LEVEL_0_NPAGES_MAX (1 << VM_LEVEL_0_ORDER_MAX) 112 113 /* 114 * The number of bits by which a physical address is shifted to obtain the 115 * reservation number 116 */ 117 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 118 119 /* 120 * The size of a level 0 reservation in bytes 121 */ 122 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 123 124 /* 125 * Computes the index of the small page underlying the given (object, pindex) 126 * within the reservation's array of small pages. 127 */ 128 #define VM_RESERV_INDEX(object, pindex) \ 129 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 130 131 /* 132 * Number of elapsed ticks before we update the LRU queue position. Used 133 * to reduce contention and churn on the list. 134 */ 135 #define PARTPOPSLOP 1 136 137 /* 138 * The reservation structure 139 * 140 * A reservation structure is constructed whenever a large physical page is 141 * speculatively allocated to an object. The reservation provides the small 142 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 143 * within that object. The reservation's "popcnt" tracks the number of these 144 * small physical pages that are in use at any given time. When and if the 145 * reservation is not fully utilized, it appears in the queue of partially 146 * populated reservations. The reservation always appears on the containing 147 * object's list of reservations. 148 * 149 * A partially populated reservation can be broken and reclaimed at any time. 150 * 151 * c - constant after boot 152 * d - vm_reserv_domain_lock 153 * o - vm_reserv_object_lock 154 * r - vm_reserv_lock 155 * s - vm_reserv_domain_scan_lock 156 */ 157 struct vm_reserv { 158 struct mtx lock; /* reservation lock. */ 159 TAILQ_ENTRY(vm_reserv) partpopq; /* (d, r) per-domain queue. */ 160 LIST_ENTRY(vm_reserv) objq; /* (o, r) object queue */ 161 vm_object_t object; /* (o, r) containing object */ 162 vm_pindex_t pindex; /* (o, r) offset in object */ 163 vm_page_t pages; /* (c) first page */ 164 uint16_t popcnt; /* (r) # of pages in use */ 165 uint8_t domain; /* (c) NUMA domain. */ 166 char inpartpopq; /* (d, r) */ 167 int lasttick; /* (r) last pop update tick. */ 168 bitstr_t bit_decl(popmap, VM_LEVEL_0_NPAGES_MAX); 169 /* (r) bit vector, used pages */ 170 }; 171 172 TAILQ_HEAD(vm_reserv_queue, vm_reserv); 173 174 #define vm_reserv_lockptr(rv) (&(rv)->lock) 175 #define vm_reserv_assert_locked(rv) \ 176 mtx_assert(vm_reserv_lockptr(rv), MA_OWNED) 177 #define vm_reserv_lock(rv) mtx_lock(vm_reserv_lockptr(rv)) 178 #define vm_reserv_trylock(rv) mtx_trylock(vm_reserv_lockptr(rv)) 179 #define vm_reserv_unlock(rv) mtx_unlock(vm_reserv_lockptr(rv)) 180 181 /* 182 * The reservation array 183 * 184 * This array is analoguous in function to vm_page_array. It differs in the 185 * respect that it may contain a greater number of useful reservation 186 * structures than there are (physical) superpages. These "invalid" 187 * reservation structures exist to trade-off space for time in the 188 * implementation of vm_reserv_from_page(). Invalid reservation structures are 189 * distinguishable from "valid" reservation structures by inspecting the 190 * reservation's "pages" field. Invalid reservation structures have a NULL 191 * "pages" field. 192 * 193 * vm_reserv_from_page() maps a small (physical) page to an element of this 194 * array by computing a physical reservation number from the page's physical 195 * address. The physical reservation number is used as the array index. 196 * 197 * An "active" reservation is a valid reservation structure that has a non-NULL 198 * "object" field and a non-zero "popcnt" field. In other words, every active 199 * reservation belongs to a particular object. Moreover, every active 200 * reservation has an entry in the containing object's list of reservations. 201 */ 202 static vm_reserv_t vm_reserv_array; 203 204 /* 205 * The per-domain partially populated reservation queues 206 * 207 * These queues enable the fast recovery of an unused free small page from a 208 * partially populated reservation. The reservation at the head of a queue 209 * is the least recently changed, partially populated reservation. 210 * 211 * Access to this queue is synchronized by the per-domain reservation lock. 212 * Threads reclaiming free pages from the queue must hold the per-domain scan 213 * lock. 214 */ 215 struct vm_reserv_domain { 216 struct mtx lock; 217 struct vm_reserv_queue partpop; /* (d) */ 218 struct vm_reserv marker; /* (d, s) scan marker/lock */ 219 } __aligned(CACHE_LINE_SIZE); 220 221 static struct vm_reserv_domain vm_rvd[MAXMEMDOM]; 222 223 #define vm_reserv_domain_lockptr(d) (&vm_rvd[(d)].lock) 224 #define vm_reserv_domain_assert_locked(d) \ 225 mtx_assert(vm_reserv_domain_lockptr(d), MA_OWNED) 226 #define vm_reserv_domain_lock(d) mtx_lock(vm_reserv_domain_lockptr(d)) 227 #define vm_reserv_domain_unlock(d) mtx_unlock(vm_reserv_domain_lockptr(d)) 228 229 #define vm_reserv_domain_scan_lock(d) mtx_lock(&vm_rvd[(d)].marker.lock) 230 #define vm_reserv_domain_scan_unlock(d) mtx_unlock(&vm_rvd[(d)].marker.lock) 231 232 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 233 "Reservation Info"); 234 235 static COUNTER_U64_DEFINE_EARLY(vm_reserv_broken); 236 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 237 &vm_reserv_broken, "Cumulative number of broken reservations"); 238 239 static COUNTER_U64_DEFINE_EARLY(vm_reserv_freed); 240 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 241 &vm_reserv_freed, "Cumulative number of freed reservations"); 242 243 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); 244 245 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, 246 NULL, 0, sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); 247 248 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 249 250 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, 251 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 252 sysctl_vm_reserv_partpopq, "A", 253 "Partially populated reservation queues"); 254 255 static COUNTER_U64_DEFINE_EARLY(vm_reserv_reclaimed); 256 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 257 &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations"); 258 259 /* 260 * The object lock pool is used to synchronize the rvq. We can not use a 261 * pool mutex because it is required before malloc works. 262 * 263 * The "hash" function could be made faster without divide and modulo. 264 */ 265 #define VM_RESERV_OBJ_LOCK_COUNT MAXCPU 266 267 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT]; 268 269 #define vm_reserv_object_lock_idx(object) \ 270 (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT) 271 #define vm_reserv_object_lock_ptr(object) \ 272 &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))] 273 #define vm_reserv_object_lock(object) \ 274 mtx_lock(vm_reserv_object_lock_ptr((object))) 275 #define vm_reserv_object_unlock(object) \ 276 mtx_unlock(vm_reserv_object_lock_ptr((object))) 277 278 static void vm_reserv_break(vm_reserv_t rv); 279 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 280 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 281 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 282 vm_pindex_t pindex); 283 static void vm_reserv_populate(vm_reserv_t rv, int index); 284 static void vm_reserv_reclaim(vm_reserv_t rv); 285 286 /* 287 * Returns the current number of full reservations. 288 * 289 * Since the number of full reservations is computed without acquiring any 290 * locks, the returned value is inexact. 291 */ 292 static int 293 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) 294 { 295 vm_paddr_t paddr; 296 struct vm_phys_seg *seg; 297 vm_reserv_t rv; 298 int fullpop, segind; 299 300 fullpop = 0; 301 for (segind = 0; segind < vm_phys_nsegs; segind++) { 302 seg = &vm_phys_segs[segind]; 303 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 304 #ifdef VM_PHYSSEG_SPARSE 305 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) - 306 (seg->start >> VM_LEVEL_0_SHIFT); 307 #else 308 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; 309 #endif 310 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr + 311 VM_LEVEL_0_SIZE <= seg->end) { 312 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; 313 paddr += VM_LEVEL_0_SIZE; 314 rv++; 315 } 316 } 317 return (sysctl_handle_int(oidp, &fullpop, 0, req)); 318 } 319 320 /* 321 * Describes the current state of the partially populated reservation queue. 322 */ 323 static int 324 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 325 { 326 struct sbuf sbuf; 327 vm_reserv_t rv; 328 int counter, error, domain, level, unused_pages; 329 330 error = sysctl_wire_old_buffer(req, 0); 331 if (error != 0) 332 return (error); 333 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 334 sbuf_printf(&sbuf, "\nDOMAIN LEVEL SIZE NUMBER\n\n"); 335 for (domain = 0; domain < vm_ndomains; domain++) { 336 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 337 counter = 0; 338 unused_pages = 0; 339 vm_reserv_domain_lock(domain); 340 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) { 341 if (rv == &vm_rvd[domain].marker) 342 continue; 343 counter++; 344 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 345 } 346 vm_reserv_domain_unlock(domain); 347 sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n", 348 domain, level, 349 unused_pages * ((int)PAGE_SIZE / 1024), counter); 350 } 351 } 352 error = sbuf_finish(&sbuf); 353 sbuf_delete(&sbuf); 354 return (error); 355 } 356 357 /* 358 * Remove a reservation from the object's objq. 359 */ 360 static void 361 vm_reserv_remove(vm_reserv_t rv) 362 { 363 vm_object_t object; 364 365 vm_reserv_assert_locked(rv); 366 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 367 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 368 KASSERT(rv->object != NULL, 369 ("vm_reserv_remove: reserv %p is free", rv)); 370 KASSERT(!rv->inpartpopq, 371 ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv)); 372 object = rv->object; 373 vm_reserv_object_lock(object); 374 LIST_REMOVE(rv, objq); 375 rv->object = NULL; 376 vm_reserv_object_unlock(object); 377 } 378 379 /* 380 * Insert a new reservation into the object's objq. 381 */ 382 static void 383 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex) 384 { 385 386 vm_reserv_assert_locked(rv); 387 CTR6(KTR_VM, 388 "%s: rv %p(%p) object %p new %p popcnt %d", 389 __FUNCTION__, rv, rv->pages, rv->object, object, 390 rv->popcnt); 391 KASSERT(rv->object == NULL, 392 ("vm_reserv_insert: reserv %p isn't free", rv)); 393 KASSERT(rv->popcnt == 0, 394 ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv)); 395 KASSERT(!rv->inpartpopq, 396 ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv)); 397 KASSERT(bit_ntest(rv->popmap, 0, VM_LEVEL_0_NPAGES - 1, 0), 398 ("vm_reserv_insert: reserv %p's popmap is corrupted", rv)); 399 vm_reserv_object_lock(object); 400 rv->pindex = pindex; 401 rv->object = object; 402 rv->lasttick = ticks; 403 LIST_INSERT_HEAD(&object->rvq, rv, objq); 404 vm_reserv_object_unlock(object); 405 } 406 407 #ifdef VM_SUBLEVEL_0_NPAGES 408 static inline bool 409 vm_reserv_is_sublevel_full(vm_reserv_t rv, int index) 410 { 411 _Static_assert(VM_SUBLEVEL_0_NPAGES == 16 || 412 VM_SUBLEVEL_0_NPAGES == 128, 413 "vm_reserv_is_sublevel_full: unsupported VM_SUBLEVEL_0_NPAGES"); 414 /* An equivalent bit_ntest() compiles to more instructions. */ 415 switch (VM_SUBLEVEL_0_NPAGES) { 416 case 16: 417 return (((uint16_t *)rv->popmap)[index / 16] == UINT16_MAX); 418 case 128: 419 index = rounddown2(index, 128) / 64; 420 return (((uint64_t *)rv->popmap)[index] == UINT64_MAX && 421 ((uint64_t *)rv->popmap)[index + 1] == UINT64_MAX); 422 default: 423 __unreachable(); 424 } 425 } 426 #endif 427 428 /* 429 * Reduces the given reservation's population count. If the population count 430 * becomes zero, the reservation is destroyed. Additionally, moves the 431 * reservation to the tail of the partially populated reservation queue if the 432 * population count is non-zero. 433 */ 434 static void 435 vm_reserv_depopulate(vm_reserv_t rv, int index) 436 { 437 struct vm_domain *vmd; 438 439 vm_reserv_assert_locked(rv); 440 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 441 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 442 KASSERT(rv->object != NULL, 443 ("vm_reserv_depopulate: reserv %p is free", rv)); 444 KASSERT(bit_test(rv->popmap, index), 445 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 446 index)); 447 KASSERT(rv->popcnt > 0, 448 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 449 KASSERT(rv->domain < vm_ndomains, 450 ("vm_reserv_depopulate: reserv %p's domain is corrupted %d", 451 rv, rv->domain)); 452 if (rv->popcnt == VM_LEVEL_0_NPAGES) { 453 KASSERT(rv->pages->psind == VM_LEVEL_0_PSIND, 454 ("vm_reserv_depopulate: reserv %p is already demoted", 455 rv)); 456 rv->pages->psind = VM_LEVEL_0_PSIND - 1; 457 } 458 #ifdef VM_SUBLEVEL_0_NPAGES 459 if (vm_reserv_is_sublevel_full(rv, index)) 460 rv->pages[rounddown2(index, VM_SUBLEVEL_0_NPAGES)].psind = 0; 461 #endif 462 bit_clear(rv->popmap, index); 463 rv->popcnt--; 464 if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP || 465 rv->popcnt == 0) { 466 vm_reserv_domain_lock(rv->domain); 467 if (rv->inpartpopq) { 468 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 469 rv->inpartpopq = FALSE; 470 } 471 if (rv->popcnt != 0) { 472 rv->inpartpopq = TRUE; 473 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, 474 partpopq); 475 } 476 vm_reserv_domain_unlock(rv->domain); 477 rv->lasttick = ticks; 478 } 479 vmd = VM_DOMAIN(rv->domain); 480 if (rv->popcnt == 0) { 481 vm_reserv_remove(rv); 482 vm_domain_free_lock(vmd); 483 vm_phys_free_pages(rv->pages, VM_FREEPOOL_DEFAULT, 484 VM_LEVEL_0_ORDER); 485 vm_domain_free_unlock(vmd); 486 counter_u64_add(vm_reserv_freed, 1); 487 } 488 vm_domain_freecnt_inc(vmd, 1); 489 } 490 491 /* 492 * Returns the reservation to which the given page might belong. 493 */ 494 static __inline vm_reserv_t 495 vm_reserv_from_page(vm_page_t m) 496 { 497 #ifdef VM_PHYSSEG_SPARSE 498 struct vm_phys_seg *seg; 499 500 seg = &vm_phys_segs[m->segind]; 501 return (seg->first_reserv + (VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT) - 502 (seg->start >> VM_LEVEL_0_SHIFT)); 503 #else 504 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 505 #endif 506 } 507 508 /* 509 * Either returns an existing reservation or returns NULL and initializes 510 * successor pointer. 511 */ 512 static vm_reserv_t 513 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex, 514 vm_page_t mpred, vm_page_t *msuccp) 515 { 516 vm_reserv_t rv; 517 vm_page_t msucc; 518 519 if (mpred != NULL) { 520 KASSERT(mpred->object == object, 521 ("vm_reserv_from_object: object doesn't contain mpred")); 522 KASSERT(mpred->pindex < pindex, 523 ("vm_reserv_from_object: mpred doesn't precede pindex")); 524 rv = vm_reserv_from_page(mpred); 525 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 526 return (rv); 527 msucc = TAILQ_NEXT(mpred, listq); 528 } else 529 msucc = TAILQ_FIRST(&object->memq); 530 if (msucc != NULL) { 531 KASSERT(msucc->pindex > pindex, 532 ("vm_reserv_from_object: msucc doesn't succeed pindex")); 533 rv = vm_reserv_from_page(msucc); 534 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 535 return (rv); 536 } 537 *msuccp = msucc; 538 return (NULL); 539 } 540 541 /* 542 * Returns TRUE if the given reservation contains the given page index and 543 * FALSE otherwise. 544 */ 545 static __inline boolean_t 546 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 547 { 548 549 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 550 } 551 552 /* 553 * How many pages should be in a new allocation that starts at the first page of 554 * the reservation superpage that contains 'first', fits between the allocations 555 * that include 'mpred' and 'msucc', fits within 'object', includes at least 556 * 'minpages' pages, and tries to include every allocated page in a superpage? 557 * 558 * We must synchronize with the reserv object lock to protect the pindex/object 559 * of the resulting reservations against rename while we are inspecting. 560 */ 561 static u_long 562 vm_reserv_num_alloc_pages(vm_object_t object, vm_pindex_t first, 563 u_long minpages, vm_page_t mpred, vm_page_t msucc) 564 { 565 vm_pindex_t leftcap, rightcap; 566 vm_reserv_t rv; 567 u_int allocpages; 568 569 allocpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 570 571 vm_reserv_object_lock(object); 572 if (mpred != NULL) { 573 if ((rv = vm_reserv_from_page(mpred))->object != object) 574 leftcap = mpred->pindex + 1; 575 else 576 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 577 if (leftcap > first) 578 allocpages = 0; 579 } 580 if (minpages < allocpages) { 581 if (msucc == NULL) { 582 /* 583 * Would the last new reservation extend past the end of 584 * the object? 585 * 586 * If the object is unlikely to grow don't allocate a 587 * reservation for the tail. 588 */ 589 if ((object->flags & OBJ_ANON) == 0) 590 rightcap = object->size; 591 else 592 rightcap = OBJ_MAX_SIZE; 593 } else { 594 /* 595 * Would the last new reservation extend past the start 596 * of another page or reservation? 597 * 598 * If the object would, don't allocate a reservation for 599 * the tail. 600 */ 601 if ((rv = vm_reserv_from_page(msucc))->object != object) 602 rightcap = msucc->pindex; 603 else 604 rightcap = rv->pindex; 605 } 606 if (first + allocpages > rightcap) { 607 /* 608 * A reservation for the last of the requested pages 609 * will not fit. Reduce the size of the upcoming 610 * allocation accordingly. 611 */ 612 allocpages = minpages; 613 } 614 } 615 vm_reserv_object_unlock(object); 616 return (allocpages); 617 } 618 619 /* 620 * Increases the given reservation's population count. Moves the reservation 621 * to the tail of the partially populated reservation queue. 622 */ 623 static void 624 vm_reserv_populate(vm_reserv_t rv, int index) 625 { 626 627 vm_reserv_assert_locked(rv); 628 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 629 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 630 KASSERT(rv->object != NULL, 631 ("vm_reserv_populate: reserv %p is free", rv)); 632 KASSERT(!bit_test(rv->popmap, index), 633 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 634 index)); 635 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 636 ("vm_reserv_populate: reserv %p is already full", rv)); 637 KASSERT(rv->pages->psind >= 0 && 638 rv->pages->psind < VM_LEVEL_0_PSIND, 639 ("vm_reserv_populate: reserv %p is already promoted", rv)); 640 KASSERT(rv->domain < vm_ndomains, 641 ("vm_reserv_populate: reserv %p's domain is corrupted %d", 642 rv, rv->domain)); 643 bit_set(rv->popmap, index); 644 #ifdef VM_SUBLEVEL_0_NPAGES 645 if (vm_reserv_is_sublevel_full(rv, index)) 646 rv->pages[rounddown2(index, VM_SUBLEVEL_0_NPAGES)].psind = 1; 647 #endif 648 rv->popcnt++; 649 if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP && 650 rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES) 651 return; 652 rv->lasttick = ticks; 653 vm_reserv_domain_lock(rv->domain); 654 if (rv->inpartpopq) { 655 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 656 rv->inpartpopq = FALSE; 657 } 658 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 659 rv->inpartpopq = TRUE; 660 TAILQ_INSERT_TAIL(&vm_rvd[rv->domain].partpop, rv, partpopq); 661 } else { 662 KASSERT(rv->pages->psind == VM_LEVEL_0_PSIND - 1, 663 ("vm_reserv_populate: reserv %p is already promoted", 664 rv)); 665 rv->pages->psind = VM_LEVEL_0_PSIND; 666 } 667 vm_reserv_domain_unlock(rv->domain); 668 } 669 670 /* 671 * Allocates a contiguous set of physical pages of the given size "npages" 672 * from existing or newly created reservations. All of the physical pages 673 * must be at or above the given physical address "low" and below the given 674 * physical address "high". The given value "alignment" determines the 675 * alignment of the first physical page in the set. If the given value 676 * "boundary" is non-zero, then the set of physical pages cannot cross any 677 * physical address boundary that is a multiple of that value. Both 678 * "alignment" and "boundary" must be a power of two. 679 * 680 * The page "mpred" must immediately precede the offset "pindex" within the 681 * specified object. 682 * 683 * The object must be locked. 684 */ 685 vm_page_t 686 vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, int domain, 687 int req, vm_page_t mpred, u_long npages, vm_paddr_t low, vm_paddr_t high, 688 u_long alignment, vm_paddr_t boundary) 689 { 690 struct vm_domain *vmd; 691 vm_paddr_t pa, size; 692 vm_page_t m, m_ret, msucc; 693 vm_pindex_t first; 694 vm_reserv_t rv; 695 u_long allocpages; 696 int i, index, n; 697 698 VM_OBJECT_ASSERT_WLOCKED(object); 699 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 700 701 /* 702 * Is a reservation fundamentally impossible? 703 */ 704 if (pindex < VM_RESERV_INDEX(object, pindex) || 705 pindex + npages > object->size) 706 return (NULL); 707 708 /* 709 * All reservations of a particular size have the same alignment. 710 * Assuming that the first page is allocated from a reservation, the 711 * least significant bits of its physical address can be determined 712 * from its offset from the beginning of the reservation and the size 713 * of the reservation. 714 * 715 * Could the specified index within a reservation of the smallest 716 * possible size satisfy the alignment and boundary requirements? 717 */ 718 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 719 size = npages << PAGE_SHIFT; 720 if (!vm_addr_ok(pa, size, alignment, boundary)) 721 return (NULL); 722 723 /* 724 * Look for an existing reservation. 725 */ 726 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 727 if (rv != NULL) { 728 KASSERT(object != kernel_object || rv->domain == domain, 729 ("vm_reserv_alloc_contig: domain mismatch")); 730 index = VM_RESERV_INDEX(object, pindex); 731 /* Does the allocation fit within the reservation? */ 732 if (index + npages > VM_LEVEL_0_NPAGES) 733 return (NULL); 734 domain = rv->domain; 735 vmd = VM_DOMAIN(domain); 736 vm_reserv_lock(rv); 737 /* Handle reclaim race. */ 738 if (rv->object != object) 739 goto out; 740 m = &rv->pages[index]; 741 pa = VM_PAGE_TO_PHYS(m); 742 if (pa < low || pa + size > high || 743 !vm_addr_ok(pa, size, alignment, boundary)) 744 goto out; 745 /* Handle vm_page_iter_rename(..., m, new_object, ...). */ 746 if (!bit_ntest(rv->popmap, index, index + npages - 1, 0)) 747 goto out; 748 if (!vm_domain_allocate(vmd, req, npages)) 749 goto out; 750 for (i = 0; i < npages; i++) 751 vm_reserv_populate(rv, index + i); 752 vm_reserv_unlock(rv); 753 return (m); 754 out: 755 vm_reserv_unlock(rv); 756 return (NULL); 757 } 758 759 /* 760 * Check whether an allocation including at least one reservation can 761 * fit between mpred and msucc. 762 */ 763 first = pindex - VM_RESERV_INDEX(object, pindex); 764 allocpages = vm_reserv_num_alloc_pages(object, first, 765 VM_RESERV_INDEX(object, pindex) + npages, mpred, msucc); 766 if (allocpages < VM_LEVEL_0_NPAGES) 767 return (NULL); 768 769 /* 770 * Allocate the physical pages. The alignment and boundary specified 771 * for this allocation may be different from the alignment and 772 * boundary specified for the requested pages. For instance, the 773 * specified index may not be the first page within the first new 774 * reservation. 775 */ 776 m = NULL; 777 vmd = VM_DOMAIN(domain); 778 if (vm_domain_allocate(vmd, req, npages)) { 779 vm_domain_free_lock(vmd); 780 m = vm_phys_alloc_contig(domain, allocpages, low, high, 781 ulmax(alignment, VM_LEVEL_0_SIZE), 782 boundary > VM_LEVEL_0_SIZE ? boundary : 0); 783 vm_domain_free_unlock(vmd); 784 if (m == NULL) { 785 vm_domain_freecnt_inc(vmd, npages); 786 return (NULL); 787 } 788 } else 789 return (NULL); 790 KASSERT(vm_page_domain(m) == domain, 791 ("vm_reserv_alloc_contig: Page domain does not match requested.")); 792 793 /* 794 * The allocated physical pages always begin at a reservation 795 * boundary, but they do not always end at a reservation boundary. 796 * Initialize every reservation that is completely covered by the 797 * allocated physical pages. 798 */ 799 m_ret = NULL; 800 index = VM_RESERV_INDEX(object, pindex); 801 do { 802 rv = vm_reserv_from_page(m); 803 KASSERT(rv->pages == m, 804 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 805 rv)); 806 vm_reserv_lock(rv); 807 vm_reserv_insert(rv, object, first); 808 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 809 for (i = 0; i < n; i++) 810 vm_reserv_populate(rv, index + i); 811 npages -= n; 812 if (m_ret == NULL) { 813 m_ret = &rv->pages[index]; 814 index = 0; 815 } 816 vm_reserv_unlock(rv); 817 m += VM_LEVEL_0_NPAGES; 818 first += VM_LEVEL_0_NPAGES; 819 allocpages -= VM_LEVEL_0_NPAGES; 820 } while (allocpages >= VM_LEVEL_0_NPAGES); 821 return (m_ret); 822 } 823 824 /* 825 * Allocate a physical page from an existing or newly created reservation. 826 * 827 * The page "mpred" must immediately precede the offset "pindex" within the 828 * specified object. 829 * 830 * The object must be locked. 831 */ 832 vm_page_t 833 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, int domain, 834 int req, vm_page_t mpred) 835 { 836 struct vm_domain *vmd; 837 vm_page_t m, msucc; 838 vm_pindex_t first; 839 vm_reserv_t rv; 840 int index; 841 842 VM_OBJECT_ASSERT_WLOCKED(object); 843 844 /* 845 * Is a reservation fundamentally impossible? 846 */ 847 if (pindex < VM_RESERV_INDEX(object, pindex) || 848 pindex >= object->size) 849 return (NULL); 850 851 /* 852 * Look for an existing reservation. 853 */ 854 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 855 if (rv != NULL) { 856 KASSERT(object != kernel_object || rv->domain == domain, 857 ("vm_reserv_alloc_page: domain mismatch")); 858 domain = rv->domain; 859 vmd = VM_DOMAIN(domain); 860 index = VM_RESERV_INDEX(object, pindex); 861 m = &rv->pages[index]; 862 vm_reserv_lock(rv); 863 /* Handle reclaim race. */ 864 if (rv->object != object || 865 /* Handle vm_page_iter_rename(..., m, new_object, ...). */ 866 bit_test(rv->popmap, index)) { 867 m = NULL; 868 goto out; 869 } 870 if (vm_domain_allocate(vmd, req, 1) == 0) 871 m = NULL; 872 else 873 vm_reserv_populate(rv, index); 874 out: 875 vm_reserv_unlock(rv); 876 return (m); 877 } 878 879 /* 880 * Check whether an allocation including reservations can fit 881 * between mpred and msucc. 882 */ 883 first = pindex - VM_RESERV_INDEX(object, pindex); 884 if (vm_reserv_num_alloc_pages(object, first, 1, mpred, msucc) < 885 VM_LEVEL_0_NPAGES) 886 return (NULL); 887 888 /* 889 * Allocate and populate the new reservation. 890 */ 891 m = NULL; 892 vmd = VM_DOMAIN(domain); 893 if (vm_domain_allocate(vmd, req, 1)) { 894 vm_domain_free_lock(vmd); 895 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 896 VM_LEVEL_0_ORDER); 897 vm_domain_free_unlock(vmd); 898 if (m == NULL) { 899 vm_domain_freecnt_inc(vmd, 1); 900 return (NULL); 901 } 902 } else 903 return (NULL); 904 rv = vm_reserv_from_page(m); 905 vm_reserv_lock(rv); 906 KASSERT(rv->pages == m, 907 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 908 vm_reserv_insert(rv, object, first); 909 index = VM_RESERV_INDEX(object, pindex); 910 vm_reserv_populate(rv, index); 911 vm_reserv_unlock(rv); 912 913 return (&rv->pages[index]); 914 } 915 916 /* 917 * Breaks the given reservation. All free pages in the reservation 918 * are returned to the physical memory allocator. The reservation's 919 * population count and map are reset to their initial state. 920 * 921 * The given reservation must not be in the partially populated reservation 922 * queue. 923 */ 924 static void 925 vm_reserv_break(vm_reserv_t rv) 926 { 927 vm_page_t m; 928 int pos, pos0, pos1; 929 930 vm_reserv_assert_locked(rv); 931 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 932 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 933 vm_reserv_remove(rv); 934 m = rv->pages; 935 #ifdef VM_SUBLEVEL_0_NPAGES 936 for (; m < rv->pages + VM_LEVEL_0_NPAGES; m += VM_SUBLEVEL_0_NPAGES) 937 #endif 938 m->psind = 0; 939 pos0 = bit_test(rv->popmap, 0) ? -1 : 0; 940 pos1 = -1 - pos0; 941 for (pos = 0; pos < VM_LEVEL_0_NPAGES; ) { 942 /* Find the first different bit after pos. */ 943 bit_ff_at(rv->popmap, pos + 1, VM_LEVEL_0_NPAGES, 944 pos1 < pos0, &pos); 945 if (pos == -1) 946 pos = VM_LEVEL_0_NPAGES; 947 if (pos0 < pos1) { 948 pos0 = pos; 949 continue; 950 } 951 /* Free unused pages from pos0 to pos. */ 952 pos1 = pos; 953 vm_domain_free_lock(VM_DOMAIN(rv->domain)); 954 vm_phys_enqueue_contig(&rv->pages[pos0], VM_FREEPOOL_DEFAULT, 955 pos1 - pos0); 956 vm_domain_free_unlock(VM_DOMAIN(rv->domain)); 957 } 958 bit_nclear(rv->popmap, 0, VM_LEVEL_0_NPAGES - 1); 959 rv->popcnt = 0; 960 counter_u64_add(vm_reserv_broken, 1); 961 } 962 963 /* 964 * Breaks all reservations belonging to the given object. 965 */ 966 void 967 vm_reserv_break_all(vm_object_t object) 968 { 969 vm_reserv_t rv; 970 971 /* 972 * This access of object->rvq is unsynchronized so that the 973 * object rvq lock can nest after the domain_free lock. We 974 * must check for races in the results. However, the object 975 * lock prevents new additions, so we are guaranteed that when 976 * it returns NULL the object is properly empty. 977 */ 978 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 979 vm_reserv_lock(rv); 980 /* Reclaim race. */ 981 if (rv->object != object) { 982 vm_reserv_unlock(rv); 983 continue; 984 } 985 vm_reserv_domain_lock(rv->domain); 986 if (rv->inpartpopq) { 987 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 988 rv->inpartpopq = FALSE; 989 } 990 vm_reserv_domain_unlock(rv->domain); 991 vm_reserv_break(rv); 992 vm_reserv_unlock(rv); 993 } 994 } 995 996 /* 997 * Frees the given page if it belongs to a reservation. Returns TRUE if the 998 * page is freed and FALSE otherwise. 999 */ 1000 boolean_t 1001 vm_reserv_free_page(vm_page_t m) 1002 { 1003 vm_reserv_t rv; 1004 boolean_t ret; 1005 1006 rv = vm_reserv_from_page(m); 1007 if (rv->object == NULL) 1008 return (FALSE); 1009 vm_reserv_lock(rv); 1010 /* Re-validate after lock. */ 1011 if (rv->object != NULL) { 1012 vm_reserv_depopulate(rv, m - rv->pages); 1013 ret = TRUE; 1014 } else 1015 ret = FALSE; 1016 vm_reserv_unlock(rv); 1017 1018 return (ret); 1019 } 1020 1021 /* 1022 * Initializes the reservation management system. Specifically, initializes 1023 * the reservation array. 1024 * 1025 * Requires that vm_page_array and first_page are initialized! 1026 */ 1027 void 1028 vm_reserv_init(void) 1029 { 1030 vm_paddr_t paddr; 1031 struct vm_phys_seg *seg; 1032 struct vm_reserv *rv; 1033 struct vm_reserv_domain *rvd; 1034 #ifdef VM_PHYSSEG_SPARSE 1035 vm_pindex_t used; 1036 #endif 1037 int i, segind; 1038 1039 /* 1040 * Initialize the reservation array. Specifically, initialize the 1041 * "pages" field for every element that has an underlying superpage. 1042 */ 1043 #ifdef VM_PHYSSEG_SPARSE 1044 used = 0; 1045 #endif 1046 for (segind = 0; segind < vm_phys_nsegs; segind++) { 1047 seg = &vm_phys_segs[segind]; 1048 #ifdef VM_PHYSSEG_SPARSE 1049 seg->first_reserv = &vm_reserv_array[used]; 1050 used += howmany(seg->end, VM_LEVEL_0_SIZE) - 1051 seg->start / VM_LEVEL_0_SIZE; 1052 #else 1053 seg->first_reserv = 1054 &vm_reserv_array[seg->start >> VM_LEVEL_0_SHIFT]; 1055 #endif 1056 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 1057 rv = seg->first_reserv + (paddr >> VM_LEVEL_0_SHIFT) - 1058 (seg->start >> VM_LEVEL_0_SHIFT); 1059 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr + 1060 VM_LEVEL_0_SIZE <= seg->end) { 1061 rv->pages = PHYS_TO_VM_PAGE(paddr); 1062 rv->domain = seg->domain; 1063 mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF); 1064 paddr += VM_LEVEL_0_SIZE; 1065 rv++; 1066 } 1067 } 1068 for (i = 0; i < MAXMEMDOM; i++) { 1069 rvd = &vm_rvd[i]; 1070 mtx_init(&rvd->lock, "vm reserv domain", NULL, MTX_DEF); 1071 TAILQ_INIT(&rvd->partpop); 1072 mtx_init(&rvd->marker.lock, "vm reserv marker", NULL, MTX_DEF); 1073 1074 /* 1075 * Fully populated reservations should never be present in the 1076 * partially populated reservation queues. 1077 */ 1078 rvd->marker.popcnt = VM_LEVEL_0_NPAGES; 1079 bit_nset(rvd->marker.popmap, 0, VM_LEVEL_0_NPAGES - 1); 1080 } 1081 1082 for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++) 1083 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL, 1084 MTX_DEF); 1085 } 1086 1087 /* 1088 * Returns true if the given page belongs to a reservation and that page is 1089 * free. Otherwise, returns false. 1090 */ 1091 bool 1092 vm_reserv_is_page_free(vm_page_t m) 1093 { 1094 vm_reserv_t rv; 1095 1096 rv = vm_reserv_from_page(m); 1097 if (rv->object == NULL) 1098 return (false); 1099 return (!bit_test(rv->popmap, m - rv->pages)); 1100 } 1101 1102 /* 1103 * Returns true if the given page is part of a block of npages, starting at a 1104 * multiple of npages, that are all allocated. Otherwise, returns false. 1105 */ 1106 bool 1107 vm_reserv_is_populated(vm_page_t m, int npages) 1108 { 1109 vm_reserv_t rv; 1110 int index; 1111 1112 KASSERT(npages <= VM_LEVEL_0_NPAGES, 1113 ("%s: npages %d exceeds VM_LEVEL_0_NPAGES", __func__, npages)); 1114 KASSERT(powerof2(npages), 1115 ("%s: npages %d is not a power of 2", __func__, npages)); 1116 rv = vm_reserv_from_page(m); 1117 if (rv->object == NULL) 1118 return (false); 1119 index = rounddown2(m - rv->pages, npages); 1120 return (bit_ntest(rv->popmap, index, index + npages - 1, 1)); 1121 } 1122 1123 /* 1124 * If the given page belongs to a reservation, returns the level of that 1125 * reservation. Otherwise, returns -1. 1126 */ 1127 int 1128 vm_reserv_level(vm_page_t m) 1129 { 1130 vm_reserv_t rv; 1131 1132 rv = vm_reserv_from_page(m); 1133 #ifdef VM_SUBLEVEL_0_NPAGES 1134 return (rv->object != NULL ? 1 : -1); 1135 #else 1136 return (rv->object != NULL ? 0 : -1); 1137 #endif 1138 } 1139 1140 /* 1141 * Returns a reservation level if the given page belongs to a fully populated 1142 * reservation and -1 otherwise. 1143 */ 1144 int 1145 vm_reserv_level_iffullpop(vm_page_t m) 1146 { 1147 vm_reserv_t rv; 1148 1149 rv = vm_reserv_from_page(m); 1150 if (rv->popcnt == VM_LEVEL_0_NPAGES) { 1151 #ifdef VM_SUBLEVEL_0_NPAGES 1152 return (1); 1153 } else if (rv->pages != NULL && 1154 vm_reserv_is_sublevel_full(rv, m - rv->pages)) { 1155 #endif 1156 return (0); 1157 } 1158 return (-1); 1159 } 1160 1161 /* 1162 * Remove a partially populated reservation from the queue. 1163 */ 1164 static void 1165 vm_reserv_dequeue(vm_reserv_t rv) 1166 { 1167 1168 vm_reserv_domain_assert_locked(rv->domain); 1169 vm_reserv_assert_locked(rv); 1170 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 1171 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 1172 KASSERT(rv->inpartpopq, 1173 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 1174 1175 TAILQ_REMOVE(&vm_rvd[rv->domain].partpop, rv, partpopq); 1176 rv->inpartpopq = FALSE; 1177 } 1178 1179 /* 1180 * Breaks the given partially populated reservation, releasing its free pages 1181 * to the physical memory allocator. 1182 */ 1183 static void 1184 vm_reserv_reclaim(vm_reserv_t rv) 1185 { 1186 1187 vm_reserv_assert_locked(rv); 1188 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 1189 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 1190 if (rv->inpartpopq) { 1191 vm_reserv_domain_lock(rv->domain); 1192 vm_reserv_dequeue(rv); 1193 vm_reserv_domain_unlock(rv->domain); 1194 } 1195 vm_reserv_break(rv); 1196 counter_u64_add(vm_reserv_reclaimed, 1); 1197 } 1198 1199 /* 1200 * Breaks a reservation near the head of the partially populated reservation 1201 * queue, releasing its free pages to the physical memory allocator. Returns 1202 * TRUE if a reservation is broken and FALSE otherwise. 1203 */ 1204 bool 1205 vm_reserv_reclaim_inactive(int domain) 1206 { 1207 vm_reserv_t rv; 1208 1209 vm_reserv_domain_lock(domain); 1210 TAILQ_FOREACH(rv, &vm_rvd[domain].partpop, partpopq) { 1211 /* 1212 * A locked reservation is likely being updated or reclaimed, 1213 * so just skip ahead. 1214 */ 1215 if (rv != &vm_rvd[domain].marker && vm_reserv_trylock(rv)) { 1216 vm_reserv_dequeue(rv); 1217 break; 1218 } 1219 } 1220 vm_reserv_domain_unlock(domain); 1221 if (rv != NULL) { 1222 vm_reserv_reclaim(rv); 1223 vm_reserv_unlock(rv); 1224 return (true); 1225 } 1226 return (false); 1227 } 1228 1229 /* 1230 * Determine whether this reservation has free pages that satisfy the given 1231 * request for contiguous physical memory. Start searching from the lower 1232 * bound, defined by lo, and stop at the upper bound, hi. Return the index 1233 * of the first satisfactory free page, or -1 if none is found. 1234 */ 1235 static int 1236 vm_reserv_find_contig(vm_reserv_t rv, int npages, int lo, 1237 int hi, int ppn_align, int ppn_bound) 1238 { 1239 1240 vm_reserv_assert_locked(rv); 1241 KASSERT(npages <= VM_LEVEL_0_NPAGES - 1, 1242 ("%s: Too many pages", __func__)); 1243 KASSERT(ppn_bound <= VM_LEVEL_0_NPAGES, 1244 ("%s: Too big a boundary for reservation size", __func__)); 1245 KASSERT(npages <= ppn_bound, 1246 ("%s: Too many pages for given boundary", __func__)); 1247 KASSERT(ppn_align != 0 && powerof2(ppn_align), 1248 ("ppn_align is not a positive power of 2")); 1249 KASSERT(ppn_bound != 0 && powerof2(ppn_bound), 1250 ("ppn_bound is not a positive power of 2")); 1251 while (bit_ffc_area_at(rv->popmap, lo, hi, npages, &lo), lo != -1) { 1252 if (lo < roundup2(lo, ppn_align)) { 1253 /* Skip to next aligned page. */ 1254 lo = roundup2(lo, ppn_align); 1255 } else if (roundup2(lo + 1, ppn_bound) >= lo + npages) 1256 return (lo); 1257 if (roundup2(lo + 1, ppn_bound) < lo + npages) { 1258 /* Skip to next boundary-matching page. */ 1259 lo = roundup2(lo + 1, ppn_bound); 1260 } 1261 } 1262 return (-1); 1263 } 1264 1265 /* 1266 * Searches the partially populated reservation queue for the least recently 1267 * changed reservation with free pages that satisfy the given request for 1268 * contiguous physical memory. If a satisfactory reservation is found, it is 1269 * broken. Returns a page if a reservation is broken and NULL otherwise. 1270 */ 1271 vm_page_t 1272 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low, 1273 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 1274 { 1275 struct vm_reserv_queue *queue; 1276 vm_paddr_t pa, size; 1277 vm_page_t m_ret; 1278 vm_reserv_t marker, rv, rvn; 1279 int hi, lo, posn, ppn_align, ppn_bound; 1280 1281 KASSERT(npages > 0, ("npages is 0")); 1282 KASSERT(powerof2(alignment), ("alignment is not a power of 2")); 1283 KASSERT(powerof2(boundary), ("boundary is not a power of 2")); 1284 if (npages > VM_LEVEL_0_NPAGES - 1) 1285 return (NULL); 1286 size = npages << PAGE_SHIFT; 1287 /* 1288 * Ensure that a free range starting at a boundary-multiple 1289 * doesn't include a boundary-multiple within it. Otherwise, 1290 * no boundary-constrained allocation is possible. 1291 */ 1292 if (!vm_addr_bound_ok(0, size, boundary)) 1293 return (NULL); 1294 marker = &vm_rvd[domain].marker; 1295 queue = &vm_rvd[domain].partpop; 1296 /* 1297 * Compute shifted alignment, boundary values for page-based 1298 * calculations. Constrain to range [1, VM_LEVEL_0_NPAGES] to 1299 * avoid overflow. 1300 */ 1301 ppn_align = (int)(ulmin(ulmax(PAGE_SIZE, alignment), 1302 VM_LEVEL_0_SIZE) >> PAGE_SHIFT); 1303 ppn_bound = boundary == 0 ? VM_LEVEL_0_NPAGES : 1304 (int)(MIN(MAX(PAGE_SIZE, boundary), 1305 VM_LEVEL_0_SIZE) >> PAGE_SHIFT); 1306 1307 vm_reserv_domain_scan_lock(domain); 1308 vm_reserv_domain_lock(domain); 1309 TAILQ_FOREACH_SAFE(rv, queue, partpopq, rvn) { 1310 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 1311 if (pa + VM_LEVEL_0_SIZE - size < low) { 1312 /* This entire reservation is too low; go to next. */ 1313 continue; 1314 } 1315 if (pa + size > high) { 1316 /* This entire reservation is too high; go to next. */ 1317 continue; 1318 } 1319 if (!vm_addr_align_ok(pa, alignment)) { 1320 /* This entire reservation is unaligned; go to next. */ 1321 continue; 1322 } 1323 1324 if (vm_reserv_trylock(rv) == 0) { 1325 TAILQ_INSERT_AFTER(queue, rv, marker, partpopq); 1326 vm_reserv_domain_unlock(domain); 1327 vm_reserv_lock(rv); 1328 if (TAILQ_PREV(marker, vm_reserv_queue, partpopq) != 1329 rv) { 1330 vm_reserv_unlock(rv); 1331 vm_reserv_domain_lock(domain); 1332 rvn = TAILQ_NEXT(marker, partpopq); 1333 TAILQ_REMOVE(queue, marker, partpopq); 1334 continue; 1335 } 1336 vm_reserv_domain_lock(domain); 1337 TAILQ_REMOVE(queue, marker, partpopq); 1338 } 1339 vm_reserv_domain_unlock(domain); 1340 lo = (pa >= low) ? 0 : 1341 (int)((low + PAGE_MASK - pa) >> PAGE_SHIFT); 1342 hi = (pa + VM_LEVEL_0_SIZE <= high) ? VM_LEVEL_0_NPAGES : 1343 (int)((high - pa) >> PAGE_SHIFT); 1344 posn = vm_reserv_find_contig(rv, (int)npages, lo, hi, 1345 ppn_align, ppn_bound); 1346 if (posn >= 0) { 1347 vm_reserv_domain_scan_unlock(domain); 1348 /* Allocate requested space */ 1349 rv->popcnt += npages; 1350 bit_nset(rv->popmap, posn, posn + npages - 1); 1351 vm_reserv_reclaim(rv); 1352 vm_reserv_unlock(rv); 1353 m_ret = &rv->pages[posn]; 1354 pa = VM_PAGE_TO_PHYS(m_ret); 1355 KASSERT(vm_addr_ok(pa, size, alignment, boundary), 1356 ("%s: adjusted address not aligned/bounded to " 1357 "%lx/%jx", 1358 __func__, alignment, (uintmax_t)boundary)); 1359 return (m_ret); 1360 } 1361 vm_reserv_domain_lock(domain); 1362 rvn = TAILQ_NEXT(rv, partpopq); 1363 vm_reserv_unlock(rv); 1364 } 1365 vm_reserv_domain_unlock(domain); 1366 vm_reserv_domain_scan_unlock(domain); 1367 return (NULL); 1368 } 1369 1370 /* 1371 * Transfers the reservation underlying the given page to a new object. 1372 * 1373 * The object must be locked. 1374 */ 1375 void 1376 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 1377 vm_pindex_t old_object_offset) 1378 { 1379 vm_reserv_t rv; 1380 1381 VM_OBJECT_ASSERT_WLOCKED(new_object); 1382 rv = vm_reserv_from_page(m); 1383 if (rv->object == old_object) { 1384 vm_reserv_lock(rv); 1385 CTR6(KTR_VM, 1386 "%s: rv %p object %p new %p popcnt %d inpartpop %d", 1387 __FUNCTION__, rv, rv->object, new_object, rv->popcnt, 1388 rv->inpartpopq); 1389 if (rv->object == old_object) { 1390 vm_reserv_object_lock(old_object); 1391 rv->object = NULL; 1392 LIST_REMOVE(rv, objq); 1393 vm_reserv_object_unlock(old_object); 1394 vm_reserv_object_lock(new_object); 1395 rv->object = new_object; 1396 rv->pindex -= old_object_offset; 1397 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 1398 vm_reserv_object_unlock(new_object); 1399 } 1400 vm_reserv_unlock(rv); 1401 } 1402 } 1403 1404 /* 1405 * Returns the size (in bytes) of a reservation of the specified level. 1406 */ 1407 int 1408 vm_reserv_size(int level) 1409 { 1410 1411 switch (level) { 1412 case 0: 1413 #ifdef VM_SUBLEVEL_0_NPAGES 1414 return (VM_SUBLEVEL_0_NPAGES * PAGE_SIZE); 1415 case 1: 1416 #endif 1417 return (VM_LEVEL_0_SIZE); 1418 case -1: 1419 return (PAGE_SIZE); 1420 default: 1421 return (0); 1422 } 1423 } 1424 1425 /* 1426 * Allocates the virtual and physical memory required by the reservation 1427 * management system's data structures, in particular, the reservation array. 1428 */ 1429 vm_paddr_t 1430 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end) 1431 { 1432 vm_paddr_t new_end; 1433 vm_pindex_t count; 1434 size_t size; 1435 int i; 1436 1437 count = 0; 1438 for (i = 0; i < vm_phys_nsegs; i++) { 1439 #ifdef VM_PHYSSEG_SPARSE 1440 count += howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE) - 1441 vm_phys_segs[i].start / VM_LEVEL_0_SIZE; 1442 #else 1443 count = MAX(count, 1444 howmany(vm_phys_segs[i].end, VM_LEVEL_0_SIZE)); 1445 #endif 1446 } 1447 1448 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 1449 #ifdef VM_PHYSSEG_SPARSE 1450 count += howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE) - 1451 phys_avail[i] / VM_LEVEL_0_SIZE; 1452 #else 1453 count = MAX(count, 1454 howmany(phys_avail[i + 1], VM_LEVEL_0_SIZE)); 1455 #endif 1456 } 1457 1458 /* 1459 * Calculate the size (in bytes) of the reservation array. Rounding up 1460 * for partial superpages at boundaries, as every small page is mapped 1461 * to an element in the reservation array based on its physical address. 1462 * Thus, the number of elements in the reservation array can be greater 1463 * than the number of superpages. 1464 */ 1465 size = count * sizeof(struct vm_reserv); 1466 1467 /* 1468 * Allocate and map the physical memory for the reservation array. The 1469 * next available virtual address is returned by reference. 1470 */ 1471 new_end = end - round_page(size); 1472 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 1473 VM_PROT_READ | VM_PROT_WRITE); 1474 bzero(vm_reserv_array, size); 1475 1476 /* 1477 * Return the next available physical address. 1478 */ 1479 return (new_end); 1480 } 1481 1482 /* 1483 * Returns the superpage containing the given page. 1484 */ 1485 vm_page_t 1486 vm_reserv_to_superpage(vm_page_t m) 1487 { 1488 vm_reserv_t rv; 1489 1490 VM_OBJECT_ASSERT_LOCKED(m->object); 1491 rv = vm_reserv_from_page(m); 1492 if (rv->object == m->object) { 1493 if (rv->popcnt == VM_LEVEL_0_NPAGES) 1494 return (rv->pages); 1495 #ifdef VM_SUBLEVEL_0_NPAGES 1496 if (vm_reserv_is_sublevel_full(rv, m - rv->pages)) 1497 return (rv->pages + rounddown2(m - rv->pages, 1498 VM_SUBLEVEL_0_NPAGES)); 1499 #endif 1500 } 1501 return (NULL); 1502 } 1503 1504 #endif /* VM_NRESERVLEVEL > 0 */ 1505