1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2006 Rice University 5 * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu> 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Alan L. Cox, 9 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 27 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 30 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Superpage reservation management module 36 * 37 * Any external functions defined by this module are only to be used by the 38 * virtual memory system. 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_vm.h" 45 46 #include <sys/param.h> 47 #include <sys/kernel.h> 48 #include <sys/lock.h> 49 #include <sys/malloc.h> 50 #include <sys/mutex.h> 51 #include <sys/queue.h> 52 #include <sys/rwlock.h> 53 #include <sys/sbuf.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 #include <sys/counter.h> 57 #include <sys/ktr.h> 58 #include <sys/vmmeter.h> 59 #include <sys/smp.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_param.h> 63 #include <vm/vm_object.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_pageout.h> 66 #include <vm/vm_phys.h> 67 #include <vm/vm_pagequeue.h> 68 #include <vm/vm_radix.h> 69 #include <vm/vm_reserv.h> 70 71 /* 72 * The reservation system supports the speculative allocation of large physical 73 * pages ("superpages"). Speculative allocation enables the fully automatic 74 * utilization of superpages by the virtual memory system. In other words, no 75 * programmatic directives are required to use superpages. 76 */ 77 78 #if VM_NRESERVLEVEL > 0 79 80 /* 81 * The number of small pages that are contained in a level 0 reservation 82 */ 83 #define VM_LEVEL_0_NPAGES (1 << VM_LEVEL_0_ORDER) 84 85 /* 86 * The number of bits by which a physical address is shifted to obtain the 87 * reservation number 88 */ 89 #define VM_LEVEL_0_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 90 91 /* 92 * The size of a level 0 reservation in bytes 93 */ 94 #define VM_LEVEL_0_SIZE (1 << VM_LEVEL_0_SHIFT) 95 96 /* 97 * Computes the index of the small page underlying the given (object, pindex) 98 * within the reservation's array of small pages. 99 */ 100 #define VM_RESERV_INDEX(object, pindex) \ 101 (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1)) 102 103 /* 104 * The size of a population map entry 105 */ 106 typedef u_long popmap_t; 107 108 /* 109 * The number of bits in a population map entry 110 */ 111 #define NBPOPMAP (NBBY * sizeof(popmap_t)) 112 113 /* 114 * The number of population map entries in a reservation 115 */ 116 #define NPOPMAP howmany(VM_LEVEL_0_NPAGES, NBPOPMAP) 117 118 /* 119 * Number of elapsed ticks before we update the LRU queue position. Used 120 * to reduce contention and churn on the list. 121 */ 122 #define PARTPOPSLOP 1 123 124 /* 125 * Clear a bit in the population map. 126 */ 127 static __inline void 128 popmap_clear(popmap_t popmap[], int i) 129 { 130 131 popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP)); 132 } 133 134 /* 135 * Set a bit in the population map. 136 */ 137 static __inline void 138 popmap_set(popmap_t popmap[], int i) 139 { 140 141 popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP); 142 } 143 144 /* 145 * Is a bit in the population map clear? 146 */ 147 static __inline boolean_t 148 popmap_is_clear(popmap_t popmap[], int i) 149 { 150 151 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0); 152 } 153 154 /* 155 * Is a bit in the population map set? 156 */ 157 static __inline boolean_t 158 popmap_is_set(popmap_t popmap[], int i) 159 { 160 161 return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0); 162 } 163 164 /* 165 * The reservation structure 166 * 167 * A reservation structure is constructed whenever a large physical page is 168 * speculatively allocated to an object. The reservation provides the small 169 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets 170 * within that object. The reservation's "popcnt" tracks the number of these 171 * small physical pages that are in use at any given time. When and if the 172 * reservation is not fully utilized, it appears in the queue of partially 173 * populated reservations. The reservation always appears on the containing 174 * object's list of reservations. 175 * 176 * A partially populated reservation can be broken and reclaimed at any time. 177 * 178 * r - vm_reserv_lock 179 * d - vm_reserv_domain_lock 180 * o - vm_reserv_object_lock 181 * c - constant after boot 182 */ 183 struct vm_reserv { 184 struct mtx lock; /* reservation lock. */ 185 TAILQ_ENTRY(vm_reserv) partpopq; /* (d) per-domain queue. */ 186 LIST_ENTRY(vm_reserv) objq; /* (o, r) object queue */ 187 vm_object_t object; /* (o, r) containing object */ 188 vm_pindex_t pindex; /* (o, r) offset in object */ 189 vm_page_t pages; /* (c) first page */ 190 uint16_t domain; /* (c) NUMA domain. */ 191 uint16_t popcnt; /* (r) # of pages in use */ 192 int lasttick; /* (r) last pop update tick. */ 193 char inpartpopq; /* (d) */ 194 popmap_t popmap[NPOPMAP]; /* (r) bit vector, used pages */ 195 }; 196 197 #define vm_reserv_lockptr(rv) (&(rv)->lock) 198 #define vm_reserv_assert_locked(rv) \ 199 mtx_assert(vm_reserv_lockptr(rv), MA_OWNED) 200 #define vm_reserv_lock(rv) mtx_lock(vm_reserv_lockptr(rv)) 201 #define vm_reserv_trylock(rv) mtx_trylock(vm_reserv_lockptr(rv)) 202 #define vm_reserv_unlock(rv) mtx_unlock(vm_reserv_lockptr(rv)) 203 204 static struct mtx_padalign vm_reserv_domain_locks[MAXMEMDOM]; 205 206 #define vm_reserv_domain_lockptr(d) &vm_reserv_domain_locks[(d)] 207 #define vm_reserv_domain_lock(d) mtx_lock(vm_reserv_domain_lockptr(d)) 208 #define vm_reserv_domain_unlock(d) mtx_unlock(vm_reserv_domain_lockptr(d)) 209 210 /* 211 * The reservation array 212 * 213 * This array is analoguous in function to vm_page_array. It differs in the 214 * respect that it may contain a greater number of useful reservation 215 * structures than there are (physical) superpages. These "invalid" 216 * reservation structures exist to trade-off space for time in the 217 * implementation of vm_reserv_from_page(). Invalid reservation structures are 218 * distinguishable from "valid" reservation structures by inspecting the 219 * reservation's "pages" field. Invalid reservation structures have a NULL 220 * "pages" field. 221 * 222 * vm_reserv_from_page() maps a small (physical) page to an element of this 223 * array by computing a physical reservation number from the page's physical 224 * address. The physical reservation number is used as the array index. 225 * 226 * An "active" reservation is a valid reservation structure that has a non-NULL 227 * "object" field and a non-zero "popcnt" field. In other words, every active 228 * reservation belongs to a particular object. Moreover, every active 229 * reservation has an entry in the containing object's list of reservations. 230 */ 231 static vm_reserv_t vm_reserv_array; 232 233 /* 234 * The partially populated reservation queue 235 * 236 * This queue enables the fast recovery of an unused free small page from a 237 * partially populated reservation. The reservation at the head of this queue 238 * is the least recently changed, partially populated reservation. 239 * 240 * Access to this queue is synchronized by the free page queue lock. 241 */ 242 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop[MAXMEMDOM]; 243 244 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info"); 245 246 static counter_u64_t vm_reserv_broken = EARLY_COUNTER; 247 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD, 248 &vm_reserv_broken, "Cumulative number of broken reservations"); 249 250 static counter_u64_t vm_reserv_freed = EARLY_COUNTER; 251 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD, 252 &vm_reserv_freed, "Cumulative number of freed reservations"); 253 254 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS); 255 256 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0, 257 sysctl_vm_reserv_fullpop, "I", "Current number of full reservations"); 258 259 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS); 260 261 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0, 262 sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues"); 263 264 static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER; 265 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD, 266 &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations"); 267 268 /* 269 * The object lock pool is used to synchronize the rvq. We can not use a 270 * pool mutex because it is required before malloc works. 271 * 272 * The "hash" function could be made faster without divide and modulo. 273 */ 274 #define VM_RESERV_OBJ_LOCK_COUNT MAXCPU 275 276 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT]; 277 278 #define vm_reserv_object_lock_idx(object) \ 279 (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT) 280 #define vm_reserv_object_lock_ptr(object) \ 281 &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))] 282 #define vm_reserv_object_lock(object) \ 283 mtx_lock(vm_reserv_object_lock_ptr((object))) 284 #define vm_reserv_object_unlock(object) \ 285 mtx_unlock(vm_reserv_object_lock_ptr((object))) 286 287 static void vm_reserv_break(vm_reserv_t rv); 288 static void vm_reserv_depopulate(vm_reserv_t rv, int index); 289 static vm_reserv_t vm_reserv_from_page(vm_page_t m); 290 static boolean_t vm_reserv_has_pindex(vm_reserv_t rv, 291 vm_pindex_t pindex); 292 static void vm_reserv_populate(vm_reserv_t rv, int index); 293 static void vm_reserv_reclaim(vm_reserv_t rv); 294 295 /* 296 * Returns the current number of full reservations. 297 * 298 * Since the number of full reservations is computed without acquiring the 299 * free page queue lock, the returned value may be inexact. 300 */ 301 static int 302 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS) 303 { 304 vm_paddr_t paddr; 305 struct vm_phys_seg *seg; 306 vm_reserv_t rv; 307 int fullpop, segind; 308 309 fullpop = 0; 310 for (segind = 0; segind < vm_phys_nsegs; segind++) { 311 seg = &vm_phys_segs[segind]; 312 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 313 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 314 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; 315 fullpop += rv->popcnt == VM_LEVEL_0_NPAGES; 316 paddr += VM_LEVEL_0_SIZE; 317 } 318 } 319 return (sysctl_handle_int(oidp, &fullpop, 0, req)); 320 } 321 322 /* 323 * Describes the current state of the partially populated reservation queue. 324 */ 325 static int 326 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS) 327 { 328 struct sbuf sbuf; 329 vm_reserv_t rv; 330 int counter, error, domain, level, unused_pages; 331 332 error = sysctl_wire_old_buffer(req, 0); 333 if (error != 0) 334 return (error); 335 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 336 sbuf_printf(&sbuf, "\nDOMAIN LEVEL SIZE NUMBER\n\n"); 337 for (domain = 0; domain < vm_ndomains; domain++) { 338 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) { 339 counter = 0; 340 unused_pages = 0; 341 vm_reserv_domain_lock(domain); 342 TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) { 343 counter++; 344 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt; 345 } 346 vm_reserv_domain_unlock(domain); 347 sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n", 348 domain, level, 349 unused_pages * ((int)PAGE_SIZE / 1024), counter); 350 } 351 } 352 error = sbuf_finish(&sbuf); 353 sbuf_delete(&sbuf); 354 return (error); 355 } 356 357 /* 358 * Remove a reservation from the object's objq. 359 */ 360 static void 361 vm_reserv_remove(vm_reserv_t rv) 362 { 363 vm_object_t object; 364 365 vm_reserv_assert_locked(rv); 366 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 367 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 368 KASSERT(rv->object != NULL, 369 ("vm_reserv_remove: reserv %p is free", rv)); 370 KASSERT(!rv->inpartpopq, 371 ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv)); 372 object = rv->object; 373 vm_reserv_object_lock(object); 374 LIST_REMOVE(rv, objq); 375 rv->object = NULL; 376 vm_reserv_object_unlock(object); 377 } 378 379 /* 380 * Insert a new reservation into the object's objq. 381 */ 382 static void 383 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex) 384 { 385 int i; 386 387 vm_reserv_assert_locked(rv); 388 CTR6(KTR_VM, 389 "%s: rv %p(%p) object %p new %p popcnt %d", 390 __FUNCTION__, rv, rv->pages, rv->object, object, 391 rv->popcnt); 392 KASSERT(rv->object == NULL, 393 ("vm_reserv_insert: reserv %p isn't free", rv)); 394 KASSERT(rv->popcnt == 0, 395 ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv)); 396 KASSERT(!rv->inpartpopq, 397 ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv)); 398 for (i = 0; i < NPOPMAP; i++) 399 KASSERT(rv->popmap[i] == 0, 400 ("vm_reserv_insert: reserv %p's popmap is corrupted", rv)); 401 vm_reserv_object_lock(object); 402 rv->pindex = pindex; 403 rv->object = object; 404 rv->lasttick = ticks; 405 LIST_INSERT_HEAD(&object->rvq, rv, objq); 406 vm_reserv_object_unlock(object); 407 } 408 409 /* 410 * Reduces the given reservation's population count. If the population count 411 * becomes zero, the reservation is destroyed. Additionally, moves the 412 * reservation to the tail of the partially populated reservation queue if the 413 * population count is non-zero. 414 */ 415 static void 416 vm_reserv_depopulate(vm_reserv_t rv, int index) 417 { 418 struct vm_domain *vmd; 419 420 vm_reserv_assert_locked(rv); 421 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 422 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 423 KASSERT(rv->object != NULL, 424 ("vm_reserv_depopulate: reserv %p is free", rv)); 425 KASSERT(popmap_is_set(rv->popmap, index), 426 ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv, 427 index)); 428 KASSERT(rv->popcnt > 0, 429 ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv)); 430 KASSERT(rv->domain < vm_ndomains, 431 ("vm_reserv_depopulate: reserv %p's domain is corrupted %d", 432 rv, rv->domain)); 433 if (rv->popcnt == VM_LEVEL_0_NPAGES) { 434 KASSERT(rv->pages->psind == 1, 435 ("vm_reserv_depopulate: reserv %p is already demoted", 436 rv)); 437 rv->pages->psind = 0; 438 } 439 popmap_clear(rv->popmap, index); 440 rv->popcnt--; 441 if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP || 442 rv->popcnt == 0) { 443 vm_reserv_domain_lock(rv->domain); 444 if (rv->inpartpopq) { 445 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); 446 rv->inpartpopq = FALSE; 447 } 448 if (rv->popcnt != 0) { 449 rv->inpartpopq = TRUE; 450 TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq); 451 } 452 vm_reserv_domain_unlock(rv->domain); 453 rv->lasttick = ticks; 454 } 455 vmd = VM_DOMAIN(rv->domain); 456 if (rv->popcnt == 0) { 457 vm_reserv_remove(rv); 458 vm_domain_free_lock(vmd); 459 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER); 460 vm_domain_free_unlock(vmd); 461 counter_u64_add(vm_reserv_freed, 1); 462 } 463 vm_domain_freecnt_inc(vmd, 1); 464 } 465 466 /* 467 * Returns the reservation to which the given page might belong. 468 */ 469 static __inline vm_reserv_t 470 vm_reserv_from_page(vm_page_t m) 471 { 472 473 return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]); 474 } 475 476 /* 477 * Returns an existing reservation or NULL and initialized successor pointer. 478 */ 479 static vm_reserv_t 480 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex, 481 vm_page_t mpred, vm_page_t *msuccp) 482 { 483 vm_reserv_t rv; 484 vm_page_t msucc; 485 486 msucc = NULL; 487 if (mpred != NULL) { 488 KASSERT(mpred->object == object, 489 ("vm_reserv_from_object: object doesn't contain mpred")); 490 KASSERT(mpred->pindex < pindex, 491 ("vm_reserv_from_object: mpred doesn't precede pindex")); 492 rv = vm_reserv_from_page(mpred); 493 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 494 goto found; 495 msucc = TAILQ_NEXT(mpred, listq); 496 } else 497 msucc = TAILQ_FIRST(&object->memq); 498 if (msucc != NULL) { 499 KASSERT(msucc->pindex > pindex, 500 ("vm_reserv_from_object: msucc doesn't succeed pindex")); 501 rv = vm_reserv_from_page(msucc); 502 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) 503 goto found; 504 } 505 rv = NULL; 506 507 found: 508 *msuccp = msucc; 509 510 return (rv); 511 } 512 513 /* 514 * Returns TRUE if the given reservation contains the given page index and 515 * FALSE otherwise. 516 */ 517 static __inline boolean_t 518 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex) 519 { 520 521 return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0); 522 } 523 524 /* 525 * Increases the given reservation's population count. Moves the reservation 526 * to the tail of the partially populated reservation queue. 527 * 528 * The free page queue must be locked. 529 */ 530 static void 531 vm_reserv_populate(vm_reserv_t rv, int index) 532 { 533 534 vm_reserv_assert_locked(rv); 535 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 536 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 537 KASSERT(rv->object != NULL, 538 ("vm_reserv_populate: reserv %p is free", rv)); 539 KASSERT(popmap_is_clear(rv->popmap, index), 540 ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv, 541 index)); 542 KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES, 543 ("vm_reserv_populate: reserv %p is already full", rv)); 544 KASSERT(rv->pages->psind == 0, 545 ("vm_reserv_populate: reserv %p is already promoted", rv)); 546 KASSERT(rv->domain < vm_ndomains, 547 ("vm_reserv_populate: reserv %p's domain is corrupted %d", 548 rv, rv->domain)); 549 popmap_set(rv->popmap, index); 550 rv->popcnt++; 551 if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP && 552 rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES) 553 return; 554 rv->lasttick = ticks; 555 vm_reserv_domain_lock(rv->domain); 556 if (rv->inpartpopq) { 557 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); 558 rv->inpartpopq = FALSE; 559 } 560 if (rv->popcnt < VM_LEVEL_0_NPAGES) { 561 rv->inpartpopq = TRUE; 562 TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq); 563 } else { 564 KASSERT(rv->pages->psind == 0, 565 ("vm_reserv_populate: reserv %p is already promoted", 566 rv)); 567 rv->pages->psind = 1; 568 } 569 vm_reserv_domain_unlock(rv->domain); 570 } 571 572 /* 573 * Attempts to allocate a contiguous set of physical pages from existing 574 * reservations. See vm_reserv_alloc_contig() for a description of the 575 * function's parameters. 576 * 577 * The page "mpred" must immediately precede the offset "pindex" within the 578 * specified object. 579 * 580 * The object must be locked. 581 */ 582 vm_page_t 583 vm_reserv_extend_contig(int req, vm_object_t object, vm_pindex_t pindex, 584 int domain, u_long npages, vm_paddr_t low, vm_paddr_t high, 585 u_long alignment, vm_paddr_t boundary, vm_page_t mpred) 586 { 587 struct vm_domain *vmd; 588 vm_paddr_t pa, size; 589 vm_page_t m, msucc; 590 vm_reserv_t rv; 591 int i, index; 592 593 VM_OBJECT_ASSERT_WLOCKED(object); 594 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 595 596 /* 597 * Is a reservation fundamentally impossible? 598 */ 599 if (pindex < VM_RESERV_INDEX(object, pindex) || 600 pindex + npages > object->size || object->resident_page_count == 0) 601 return (NULL); 602 603 /* 604 * All reservations of a particular size have the same alignment. 605 * Assuming that the first page is allocated from a reservation, the 606 * least significant bits of its physical address can be determined 607 * from its offset from the beginning of the reservation and the size 608 * of the reservation. 609 * 610 * Could the specified index within a reservation of the smallest 611 * possible size satisfy the alignment and boundary requirements? 612 */ 613 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 614 if ((pa & (alignment - 1)) != 0) 615 return (NULL); 616 size = npages << PAGE_SHIFT; 617 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 618 return (NULL); 619 620 /* 621 * Look for an existing reservation. 622 */ 623 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 624 if (rv == NULL) 625 return (NULL); 626 KASSERT(object != kernel_object || rv->domain == domain, 627 ("vm_reserv_extend_contig: Domain mismatch from reservation.")); 628 index = VM_RESERV_INDEX(object, pindex); 629 /* Does the allocation fit within the reservation? */ 630 if (index + npages > VM_LEVEL_0_NPAGES) 631 return (NULL); 632 domain = rv->domain; 633 vmd = VM_DOMAIN(domain); 634 vm_reserv_lock(rv); 635 if (rv->object != object) 636 goto out; 637 m = &rv->pages[index]; 638 pa = VM_PAGE_TO_PHYS(m); 639 if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 || 640 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 641 goto out; 642 /* Handle vm_page_rename(m, new_object, ...). */ 643 for (i = 0; i < npages; i++) { 644 if (popmap_is_set(rv->popmap, index + i)) 645 goto out; 646 } 647 if (!vm_domain_allocate(vmd, req, npages)) 648 goto out; 649 for (i = 0; i < npages; i++) 650 vm_reserv_populate(rv, index + i); 651 vm_reserv_unlock(rv); 652 return (m); 653 654 out: 655 vm_reserv_unlock(rv); 656 return (NULL); 657 } 658 659 /* 660 * Allocates a contiguous set of physical pages of the given size "npages" 661 * from newly created reservations. All of the physical pages 662 * must be at or above the given physical address "low" and below the given 663 * physical address "high". The given value "alignment" determines the 664 * alignment of the first physical page in the set. If the given value 665 * "boundary" is non-zero, then the set of physical pages cannot cross any 666 * physical address boundary that is a multiple of that value. Both 667 * "alignment" and "boundary" must be a power of two. 668 * 669 * Callers should first invoke vm_reserv_extend_contig() to attempt an 670 * allocation from existing reservations. 671 * 672 * The page "mpred" must immediately precede the offset "pindex" within the 673 * specified object. 674 * 675 * The object and free page queue must be locked. 676 */ 677 vm_page_t 678 vm_reserv_alloc_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain, 679 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, 680 vm_paddr_t boundary, vm_page_t mpred) 681 { 682 struct vm_domain *vmd; 683 vm_paddr_t pa, size; 684 vm_page_t m, m_ret, msucc; 685 vm_pindex_t first, leftcap, rightcap; 686 vm_reserv_t rv; 687 u_long allocpages, maxpages, minpages; 688 int i, index, n; 689 690 VM_OBJECT_ASSERT_WLOCKED(object); 691 KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0")); 692 693 /* 694 * Is a reservation fundamentally impossible? 695 */ 696 if (pindex < VM_RESERV_INDEX(object, pindex) || 697 pindex + npages > object->size) 698 return (NULL); 699 700 /* 701 * All reservations of a particular size have the same alignment. 702 * Assuming that the first page is allocated from a reservation, the 703 * least significant bits of its physical address can be determined 704 * from its offset from the beginning of the reservation and the size 705 * of the reservation. 706 * 707 * Could the specified index within a reservation of the smallest 708 * possible size satisfy the alignment and boundary requirements? 709 */ 710 pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT; 711 if ((pa & (alignment - 1)) != 0) 712 return (NULL); 713 size = npages << PAGE_SHIFT; 714 if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) 715 return (NULL); 716 717 /* 718 * Callers should've extended an existing reservation prior to 719 * calling this function. If a reservation exists it is 720 * incompatible with the allocation. 721 */ 722 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 723 if (rv != NULL) 724 return (NULL); 725 726 /* 727 * Could at least one reservation fit between the first index to the 728 * left that can be used ("leftcap") and the first index to the right 729 * that cannot be used ("rightcap")? 730 * 731 * We must synchronize with the reserv object lock to protect the 732 * pindex/object of the resulting reservations against rename while 733 * we are inspecting. 734 */ 735 first = pindex - VM_RESERV_INDEX(object, pindex); 736 minpages = VM_RESERV_INDEX(object, pindex) + npages; 737 maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES); 738 allocpages = maxpages; 739 vm_reserv_object_lock(object); 740 if (mpred != NULL) { 741 if ((rv = vm_reserv_from_page(mpred))->object != object) 742 leftcap = mpred->pindex + 1; 743 else 744 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 745 if (leftcap > first) { 746 vm_reserv_object_unlock(object); 747 return (NULL); 748 } 749 } 750 if (msucc != NULL) { 751 if ((rv = vm_reserv_from_page(msucc))->object != object) 752 rightcap = msucc->pindex; 753 else 754 rightcap = rv->pindex; 755 if (first + maxpages > rightcap) { 756 if (maxpages == VM_LEVEL_0_NPAGES) { 757 vm_reserv_object_unlock(object); 758 return (NULL); 759 } 760 761 /* 762 * At least one reservation will fit between "leftcap" 763 * and "rightcap". However, a reservation for the 764 * last of the requested pages will not fit. Reduce 765 * the size of the upcoming allocation accordingly. 766 */ 767 allocpages = minpages; 768 } 769 } 770 vm_reserv_object_unlock(object); 771 772 /* 773 * Would the last new reservation extend past the end of the object? 774 */ 775 if (first + maxpages > object->size) { 776 /* 777 * Don't allocate the last new reservation if the object is a 778 * vnode or backed by another object that is a vnode. 779 */ 780 if (object->type == OBJT_VNODE || 781 (object->backing_object != NULL && 782 object->backing_object->type == OBJT_VNODE)) { 783 if (maxpages == VM_LEVEL_0_NPAGES) 784 return (NULL); 785 allocpages = minpages; 786 } 787 /* Speculate that the object may grow. */ 788 } 789 790 /* 791 * Allocate the physical pages. The alignment and boundary specified 792 * for this allocation may be different from the alignment and 793 * boundary specified for the requested pages. For instance, the 794 * specified index may not be the first page within the first new 795 * reservation. 796 */ 797 m = NULL; 798 vmd = VM_DOMAIN(domain); 799 if (vm_domain_allocate(vmd, req, npages)) { 800 vm_domain_free_lock(vmd); 801 m = vm_phys_alloc_contig(domain, allocpages, low, high, 802 ulmax(alignment, VM_LEVEL_0_SIZE), 803 boundary > VM_LEVEL_0_SIZE ? boundary : 0); 804 vm_domain_free_unlock(vmd); 805 if (m == NULL) { 806 vm_domain_freecnt_inc(vmd, npages); 807 return (NULL); 808 } 809 } else 810 return (NULL); 811 KASSERT(vm_phys_domain(m) == domain, 812 ("vm_reserv_alloc_contig: Page domain does not match requested.")); 813 814 /* 815 * The allocated physical pages always begin at a reservation 816 * boundary, but they do not always end at a reservation boundary. 817 * Initialize every reservation that is completely covered by the 818 * allocated physical pages. 819 */ 820 m_ret = NULL; 821 index = VM_RESERV_INDEX(object, pindex); 822 do { 823 rv = vm_reserv_from_page(m); 824 KASSERT(rv->pages == m, 825 ("vm_reserv_alloc_contig: reserv %p's pages is corrupted", 826 rv)); 827 vm_reserv_lock(rv); 828 vm_reserv_insert(rv, object, first); 829 n = ulmin(VM_LEVEL_0_NPAGES - index, npages); 830 for (i = 0; i < n; i++) 831 vm_reserv_populate(rv, index + i); 832 npages -= n; 833 if (m_ret == NULL) { 834 m_ret = &rv->pages[index]; 835 index = 0; 836 } 837 vm_reserv_unlock(rv); 838 m += VM_LEVEL_0_NPAGES; 839 first += VM_LEVEL_0_NPAGES; 840 allocpages -= VM_LEVEL_0_NPAGES; 841 } while (allocpages >= VM_LEVEL_0_NPAGES); 842 return (m_ret); 843 } 844 845 /* 846 * Attempts to extend an existing reservation and allocate the page to the 847 * object. 848 * 849 * The page "mpred" must immediately precede the offset "pindex" within the 850 * specified object. 851 * 852 * The object must be locked. 853 */ 854 vm_page_t 855 vm_reserv_extend(int req, vm_object_t object, vm_pindex_t pindex, int domain, 856 vm_page_t mpred) 857 { 858 struct vm_domain *vmd; 859 vm_page_t m, msucc; 860 vm_reserv_t rv; 861 int index; 862 863 VM_OBJECT_ASSERT_WLOCKED(object); 864 865 /* 866 * Could a reservation currently exist? 867 */ 868 if (pindex < VM_RESERV_INDEX(object, pindex) || 869 pindex >= object->size || object->resident_page_count == 0) 870 return (NULL); 871 872 /* 873 * Look for an existing reservation. 874 */ 875 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 876 if (rv == NULL) 877 return (NULL); 878 879 KASSERT(object != kernel_object || rv->domain == domain, 880 ("vm_reserv_extend: Domain mismatch from reservation.")); 881 domain = rv->domain; 882 vmd = VM_DOMAIN(domain); 883 index = VM_RESERV_INDEX(object, pindex); 884 m = &rv->pages[index]; 885 vm_reserv_lock(rv); 886 /* Handle reclaim race. */ 887 if (rv->object != object || 888 /* Handle vm_page_rename(m, new_object, ...). */ 889 popmap_is_set(rv->popmap, index)) { 890 m = NULL; 891 goto out; 892 } 893 if (vm_domain_allocate(vmd, req, 1) == 0) 894 m = NULL; 895 else 896 vm_reserv_populate(rv, index); 897 out: 898 vm_reserv_unlock(rv); 899 900 return (m); 901 } 902 903 /* 904 * Attempts to allocate a new reservation for the object, and allocates a 905 * page from that reservation. Callers should first invoke vm_reserv_extend() 906 * to attempt an allocation from an existing reservation. 907 * 908 * The page "mpred" must immediately precede the offset "pindex" within the 909 * specified object. 910 * 911 * The object and free page queue must be locked. 912 */ 913 vm_page_t 914 vm_reserv_alloc_page(int req, vm_object_t object, vm_pindex_t pindex, int domain, 915 vm_page_t mpred) 916 { 917 struct vm_domain *vmd; 918 vm_page_t m, msucc; 919 vm_pindex_t first, leftcap, rightcap; 920 vm_reserv_t rv; 921 int index; 922 923 VM_OBJECT_ASSERT_WLOCKED(object); 924 925 /* 926 * Is a reservation fundamentally impossible? 927 */ 928 if (pindex < VM_RESERV_INDEX(object, pindex) || 929 pindex >= object->size) 930 return (NULL); 931 932 /* 933 * Callers should've extended an existing reservation prior to 934 * calling this function. If a reservation exists it is 935 * incompatible with the allocation. 936 */ 937 rv = vm_reserv_from_object(object, pindex, mpred, &msucc); 938 if (rv != NULL) 939 return (NULL); 940 941 /* 942 * Could a reservation fit between the first index to the left that 943 * can be used and the first index to the right that cannot be used? 944 * 945 * We must synchronize with the reserv object lock to protect the 946 * pindex/object of the resulting reservations against rename while 947 * we are inspecting. 948 */ 949 first = pindex - VM_RESERV_INDEX(object, pindex); 950 vm_reserv_object_lock(object); 951 if (mpred != NULL) { 952 if ((rv = vm_reserv_from_page(mpred))->object != object) 953 leftcap = mpred->pindex + 1; 954 else 955 leftcap = rv->pindex + VM_LEVEL_0_NPAGES; 956 if (leftcap > first) { 957 vm_reserv_object_unlock(object); 958 return (NULL); 959 } 960 } 961 if (msucc != NULL) { 962 if ((rv = vm_reserv_from_page(msucc))->object != object) 963 rightcap = msucc->pindex; 964 else 965 rightcap = rv->pindex; 966 if (first + VM_LEVEL_0_NPAGES > rightcap) { 967 vm_reserv_object_unlock(object); 968 return (NULL); 969 } 970 } 971 vm_reserv_object_unlock(object); 972 973 /* 974 * Would a new reservation extend past the end of the object? 975 */ 976 if (first + VM_LEVEL_0_NPAGES > object->size) { 977 /* 978 * Don't allocate a new reservation if the object is a vnode or 979 * backed by another object that is a vnode. 980 */ 981 if (object->type == OBJT_VNODE || 982 (object->backing_object != NULL && 983 object->backing_object->type == OBJT_VNODE)) 984 return (NULL); 985 /* Speculate that the object may grow. */ 986 } 987 988 /* 989 * Allocate and populate the new reservation. 990 */ 991 m = NULL; 992 vmd = VM_DOMAIN(domain); 993 if (vm_domain_allocate(vmd, req, 1)) { 994 vm_domain_free_lock(vmd); 995 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 996 VM_LEVEL_0_ORDER); 997 vm_domain_free_unlock(vmd); 998 if (m == NULL) { 999 vm_domain_freecnt_inc(vmd, 1); 1000 return (NULL); 1001 } 1002 } else 1003 return (NULL); 1004 rv = vm_reserv_from_page(m); 1005 vm_reserv_lock(rv); 1006 KASSERT(rv->pages == m, 1007 ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv)); 1008 vm_reserv_insert(rv, object, first); 1009 index = VM_RESERV_INDEX(object, pindex); 1010 vm_reserv_populate(rv, index); 1011 vm_reserv_unlock(rv); 1012 1013 return (&rv->pages[index]); 1014 } 1015 1016 /* 1017 * Breaks the given reservation. All free pages in the reservation 1018 * are returned to the physical memory allocator. The reservation's 1019 * population count and map are reset to their initial state. 1020 * 1021 * The given reservation must not be in the partially populated reservation 1022 * queue. The free page queue lock must be held. 1023 */ 1024 static void 1025 vm_reserv_break(vm_reserv_t rv) 1026 { 1027 int begin_zeroes, hi, i, lo; 1028 1029 vm_reserv_assert_locked(rv); 1030 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 1031 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 1032 vm_reserv_remove(rv); 1033 rv->pages->psind = 0; 1034 i = hi = 0; 1035 do { 1036 /* Find the next 0 bit. Any previous 0 bits are < "hi". */ 1037 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 1038 if (lo == 0) { 1039 /* Redundantly clears bits < "hi". */ 1040 rv->popmap[i] = 0; 1041 rv->popcnt -= NBPOPMAP - hi; 1042 while (++i < NPOPMAP) { 1043 lo = ffsl(~rv->popmap[i]); 1044 if (lo == 0) { 1045 rv->popmap[i] = 0; 1046 rv->popcnt -= NBPOPMAP; 1047 } else 1048 break; 1049 } 1050 if (i == NPOPMAP) 1051 break; 1052 hi = 0; 1053 } 1054 KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo)); 1055 /* Convert from ffsl() to ordinary bit numbering. */ 1056 lo--; 1057 if (lo > 0) { 1058 /* Redundantly clears bits < "hi". */ 1059 rv->popmap[i] &= ~((1UL << lo) - 1); 1060 rv->popcnt -= lo - hi; 1061 } 1062 begin_zeroes = NBPOPMAP * i + lo; 1063 /* Find the next 1 bit. */ 1064 do 1065 hi = ffsl(rv->popmap[i]); 1066 while (hi == 0 && ++i < NPOPMAP); 1067 if (i != NPOPMAP) 1068 /* Convert from ffsl() to ordinary bit numbering. */ 1069 hi--; 1070 vm_domain_free_lock(VM_DOMAIN(rv->domain)); 1071 vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i + 1072 hi - begin_zeroes); 1073 vm_domain_free_unlock(VM_DOMAIN(rv->domain)); 1074 } while (i < NPOPMAP); 1075 KASSERT(rv->popcnt == 0, 1076 ("vm_reserv_break: reserv %p's popcnt is corrupted", rv)); 1077 counter_u64_add(vm_reserv_broken, 1); 1078 } 1079 1080 /* 1081 * Breaks all reservations belonging to the given object. 1082 */ 1083 void 1084 vm_reserv_break_all(vm_object_t object) 1085 { 1086 vm_reserv_t rv; 1087 1088 /* 1089 * This access of object->rvq is unsynchronized so that the 1090 * object rvq lock can nest after the domain_free lock. We 1091 * must check for races in the results. However, the object 1092 * lock prevents new additions, so we are guaranteed that when 1093 * it returns NULL the object is properly empty. 1094 */ 1095 while ((rv = LIST_FIRST(&object->rvq)) != NULL) { 1096 vm_reserv_lock(rv); 1097 /* Reclaim race. */ 1098 if (rv->object != object) { 1099 vm_reserv_unlock(rv); 1100 continue; 1101 } 1102 vm_reserv_domain_lock(rv->domain); 1103 if (rv->inpartpopq) { 1104 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); 1105 rv->inpartpopq = FALSE; 1106 } 1107 vm_reserv_domain_unlock(rv->domain); 1108 vm_reserv_break(rv); 1109 vm_reserv_unlock(rv); 1110 } 1111 } 1112 1113 /* 1114 * Frees the given page if it belongs to a reservation. Returns TRUE if the 1115 * page is freed and FALSE otherwise. 1116 * 1117 * The free page queue lock must be held. 1118 */ 1119 boolean_t 1120 vm_reserv_free_page(vm_page_t m) 1121 { 1122 vm_reserv_t rv; 1123 boolean_t ret; 1124 1125 rv = vm_reserv_from_page(m); 1126 if (rv->object == NULL) 1127 return (FALSE); 1128 vm_reserv_lock(rv); 1129 /* Re-validate after lock. */ 1130 if (rv->object != NULL) { 1131 vm_reserv_depopulate(rv, m - rv->pages); 1132 ret = TRUE; 1133 } else 1134 ret = FALSE; 1135 vm_reserv_unlock(rv); 1136 1137 return (ret); 1138 } 1139 1140 /* 1141 * Initializes the reservation management system. Specifically, initializes 1142 * the reservation array. 1143 * 1144 * Requires that vm_page_array and first_page are initialized! 1145 */ 1146 void 1147 vm_reserv_init(void) 1148 { 1149 vm_paddr_t paddr; 1150 struct vm_phys_seg *seg; 1151 struct vm_reserv *rv; 1152 int i, segind; 1153 1154 /* 1155 * Initialize the reservation array. Specifically, initialize the 1156 * "pages" field for every element that has an underlying superpage. 1157 */ 1158 for (segind = 0; segind < vm_phys_nsegs; segind++) { 1159 seg = &vm_phys_segs[segind]; 1160 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE); 1161 while (paddr + VM_LEVEL_0_SIZE <= seg->end) { 1162 rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT]; 1163 rv->pages = PHYS_TO_VM_PAGE(paddr); 1164 rv->domain = seg->domain; 1165 mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF); 1166 paddr += VM_LEVEL_0_SIZE; 1167 } 1168 } 1169 for (i = 0; i < MAXMEMDOM; i++) { 1170 mtx_init(&vm_reserv_domain_locks[i], "VM reserv domain", NULL, 1171 MTX_DEF); 1172 TAILQ_INIT(&vm_rvq_partpop[i]); 1173 } 1174 1175 for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++) 1176 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL, 1177 MTX_DEF); 1178 } 1179 1180 /* 1181 * Returns true if the given page belongs to a reservation and that page is 1182 * free. Otherwise, returns false. 1183 */ 1184 bool 1185 vm_reserv_is_page_free(vm_page_t m) 1186 { 1187 vm_reserv_t rv; 1188 1189 rv = vm_reserv_from_page(m); 1190 if (rv->object == NULL) 1191 return (false); 1192 return (popmap_is_clear(rv->popmap, m - rv->pages)); 1193 } 1194 1195 /* 1196 * If the given page belongs to a reservation, returns the level of that 1197 * reservation. Otherwise, returns -1. 1198 */ 1199 int 1200 vm_reserv_level(vm_page_t m) 1201 { 1202 vm_reserv_t rv; 1203 1204 rv = vm_reserv_from_page(m); 1205 return (rv->object != NULL ? 0 : -1); 1206 } 1207 1208 /* 1209 * Returns a reservation level if the given page belongs to a fully populated 1210 * reservation and -1 otherwise. 1211 */ 1212 int 1213 vm_reserv_level_iffullpop(vm_page_t m) 1214 { 1215 vm_reserv_t rv; 1216 1217 rv = vm_reserv_from_page(m); 1218 return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1); 1219 } 1220 1221 /* 1222 * Breaks the given partially populated reservation, releasing its free pages 1223 * to the physical memory allocator. 1224 * 1225 * The free page queue lock must be held. 1226 */ 1227 static void 1228 vm_reserv_reclaim(vm_reserv_t rv) 1229 { 1230 1231 vm_reserv_assert_locked(rv); 1232 CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d", 1233 __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq); 1234 vm_reserv_domain_lock(rv->domain); 1235 KASSERT(rv->inpartpopq, 1236 ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv)); 1237 KASSERT(rv->domain < vm_ndomains, 1238 ("vm_reserv_reclaim: reserv %p's domain is corrupted %d", 1239 rv, rv->domain)); 1240 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq); 1241 rv->inpartpopq = FALSE; 1242 vm_reserv_domain_unlock(rv->domain); 1243 vm_reserv_break(rv); 1244 counter_u64_add(vm_reserv_reclaimed, 1); 1245 } 1246 1247 /* 1248 * Breaks the reservation at the head of the partially populated reservation 1249 * queue, releasing its free pages to the physical memory allocator. Returns 1250 * TRUE if a reservation is broken and FALSE otherwise. 1251 * 1252 * The free page queue lock must be held. 1253 */ 1254 boolean_t 1255 vm_reserv_reclaim_inactive(int domain) 1256 { 1257 vm_reserv_t rv; 1258 1259 while ((rv = TAILQ_FIRST(&vm_rvq_partpop[domain])) != NULL) { 1260 vm_reserv_lock(rv); 1261 if (rv != TAILQ_FIRST(&vm_rvq_partpop[domain])) { 1262 vm_reserv_unlock(rv); 1263 continue; 1264 } 1265 vm_reserv_reclaim(rv); 1266 vm_reserv_unlock(rv); 1267 return (TRUE); 1268 } 1269 return (FALSE); 1270 } 1271 1272 /* 1273 * Searches the partially populated reservation queue for the least recently 1274 * changed reservation with free pages that satisfy the given request for 1275 * contiguous physical memory. If a satisfactory reservation is found, it is 1276 * broken. Returns TRUE if a reservation is broken and FALSE otherwise. 1277 * 1278 * The free page queue lock must be held. 1279 */ 1280 boolean_t 1281 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low, 1282 vm_paddr_t high, u_long alignment, vm_paddr_t boundary) 1283 { 1284 vm_paddr_t pa, size; 1285 vm_reserv_t rv, rvn; 1286 int hi, i, lo, low_index, next_free; 1287 1288 if (npages > VM_LEVEL_0_NPAGES - 1) 1289 return (FALSE); 1290 size = npages << PAGE_SHIFT; 1291 vm_reserv_domain_lock(domain); 1292 again: 1293 for (rv = TAILQ_FIRST(&vm_rvq_partpop[domain]); rv != NULL; rv = rvn) { 1294 rvn = TAILQ_NEXT(rv, partpopq); 1295 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]); 1296 if (pa + PAGE_SIZE - size < low) { 1297 /* This entire reservation is too low; go to next. */ 1298 continue; 1299 } 1300 pa = VM_PAGE_TO_PHYS(&rv->pages[0]); 1301 if (pa + size > high) { 1302 /* This entire reservation is too high; go to next. */ 1303 continue; 1304 } 1305 if (vm_reserv_trylock(rv) == 0) { 1306 vm_reserv_domain_unlock(domain); 1307 vm_reserv_lock(rv); 1308 if (!rv->inpartpopq) { 1309 vm_reserv_domain_lock(domain); 1310 if (!rvn->inpartpopq) 1311 goto again; 1312 continue; 1313 } 1314 } else 1315 vm_reserv_domain_unlock(domain); 1316 if (pa < low) { 1317 /* Start the search for free pages at "low". */ 1318 low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT; 1319 i = low_index / NBPOPMAP; 1320 hi = low_index % NBPOPMAP; 1321 } else 1322 i = hi = 0; 1323 do { 1324 /* Find the next free page. */ 1325 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i])); 1326 while (lo == 0 && ++i < NPOPMAP) 1327 lo = ffsl(~rv->popmap[i]); 1328 if (i == NPOPMAP) 1329 break; 1330 /* Convert from ffsl() to ordinary bit numbering. */ 1331 lo--; 1332 next_free = NBPOPMAP * i + lo; 1333 pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]); 1334 KASSERT(pa >= low, 1335 ("vm_reserv_reclaim_contig: pa is too low")); 1336 if (pa + size > high) { 1337 /* The rest of this reservation is too high. */ 1338 break; 1339 } else if ((pa & (alignment - 1)) != 0 || 1340 ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) { 1341 /* 1342 * The current page doesn't meet the alignment 1343 * and/or boundary requirements. Continue 1344 * searching this reservation until the rest 1345 * of its free pages are either excluded or 1346 * exhausted. 1347 */ 1348 hi = lo + 1; 1349 if (hi >= NBPOPMAP) { 1350 hi = 0; 1351 i++; 1352 } 1353 continue; 1354 } 1355 /* Find the next used page. */ 1356 hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1)); 1357 while (hi == 0 && ++i < NPOPMAP) { 1358 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >= 1359 size) { 1360 vm_reserv_reclaim(rv); 1361 vm_reserv_unlock(rv); 1362 return (TRUE); 1363 } 1364 hi = ffsl(rv->popmap[i]); 1365 } 1366 /* Convert from ffsl() to ordinary bit numbering. */ 1367 if (i != NPOPMAP) 1368 hi--; 1369 if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >= 1370 size) { 1371 vm_reserv_reclaim(rv); 1372 vm_reserv_unlock(rv); 1373 return (TRUE); 1374 } 1375 } while (i < NPOPMAP); 1376 vm_reserv_unlock(rv); 1377 vm_reserv_domain_lock(domain); 1378 if (rvn != NULL && !rvn->inpartpopq) 1379 goto again; 1380 } 1381 vm_reserv_domain_unlock(domain); 1382 return (FALSE); 1383 } 1384 1385 /* 1386 * Transfers the reservation underlying the given page to a new object. 1387 * 1388 * The object must be locked. 1389 */ 1390 void 1391 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object, 1392 vm_pindex_t old_object_offset) 1393 { 1394 vm_reserv_t rv; 1395 1396 VM_OBJECT_ASSERT_WLOCKED(new_object); 1397 rv = vm_reserv_from_page(m); 1398 if (rv->object == old_object) { 1399 vm_reserv_lock(rv); 1400 CTR6(KTR_VM, 1401 "%s: rv %p object %p new %p popcnt %d inpartpop %d", 1402 __FUNCTION__, rv, rv->object, new_object, rv->popcnt, 1403 rv->inpartpopq); 1404 if (rv->object == old_object) { 1405 vm_reserv_object_lock(old_object); 1406 rv->object = NULL; 1407 LIST_REMOVE(rv, objq); 1408 vm_reserv_object_unlock(old_object); 1409 vm_reserv_object_lock(new_object); 1410 rv->object = new_object; 1411 rv->pindex -= old_object_offset; 1412 LIST_INSERT_HEAD(&new_object->rvq, rv, objq); 1413 vm_reserv_object_unlock(new_object); 1414 } 1415 vm_reserv_unlock(rv); 1416 } 1417 } 1418 1419 /* 1420 * Returns the size (in bytes) of a reservation of the specified level. 1421 */ 1422 int 1423 vm_reserv_size(int level) 1424 { 1425 1426 switch (level) { 1427 case 0: 1428 return (VM_LEVEL_0_SIZE); 1429 case -1: 1430 return (PAGE_SIZE); 1431 default: 1432 return (0); 1433 } 1434 } 1435 1436 /* 1437 * Allocates the virtual and physical memory required by the reservation 1438 * management system's data structures, in particular, the reservation array. 1439 */ 1440 vm_paddr_t 1441 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water) 1442 { 1443 vm_paddr_t new_end; 1444 size_t size; 1445 1446 /* 1447 * Calculate the size (in bytes) of the reservation array. Round up 1448 * from "high_water" because every small page is mapped to an element 1449 * in the reservation array based on its physical address. Thus, the 1450 * number of elements in the reservation array can be greater than the 1451 * number of superpages. 1452 */ 1453 size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv); 1454 1455 /* 1456 * Allocate and map the physical memory for the reservation array. The 1457 * next available virtual address is returned by reference. 1458 */ 1459 new_end = end - round_page(size); 1460 vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end, 1461 VM_PROT_READ | VM_PROT_WRITE); 1462 bzero(vm_reserv_array, size); 1463 1464 /* 1465 * Return the next available physical address. 1466 */ 1467 return (new_end); 1468 } 1469 1470 /* 1471 * Initializes the reservation management system. Specifically, initializes 1472 * the reservation counters. 1473 */ 1474 static void 1475 vm_reserv_counter_init(void *unused) 1476 { 1477 1478 vm_reserv_freed = counter_u64_alloc(M_WAITOK); 1479 vm_reserv_broken = counter_u64_alloc(M_WAITOK); 1480 vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK); 1481 } 1482 SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY, 1483 vm_reserv_counter_init, NULL); 1484 1485 /* 1486 * Returns the superpage containing the given page. 1487 */ 1488 vm_page_t 1489 vm_reserv_to_superpage(vm_page_t m) 1490 { 1491 vm_reserv_t rv; 1492 1493 VM_OBJECT_ASSERT_LOCKED(m->object); 1494 rv = vm_reserv_from_page(m); 1495 if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES) 1496 m = rv->pages; 1497 else 1498 m = NULL; 1499 1500 return (m); 1501 } 1502 1503 #endif /* VM_NRESERVLEVEL > 0 */ 1504