xref: /freebsd/sys/vm/vm_radix.c (revision 730cecb05aaf016ac52ef7cfc691ccec3a0408cd)
1 /*
2  * Copyright (c) 2013 EMC Corp.
3  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
4  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 /*
31  * Path-compressed radix trie implementation.
32  * The following code is not generalized into a general purpose library
33  * because there are way too many parameters embedded that should really
34  * be decided by the library consumers.  At the same time, consumers
35  * of this code must achieve highest possible performance.
36  *
37  * The implementation takes into account the following rationale:
38  * - Size of the nodes should be as small as possible but still big enough
39  *   to avoid a large maximum depth for the trie.  This is a balance
40  *   between the necessity to not wire too much physical memory for the nodes
41  *   and the necessity to avoid too much cache pollution during the trie
42  *   operations.
43  * - There is not a huge bias toward the number of lookup operations over
44  *   the number of insert and remove operations.  This basically implies
45  *   that optimizations supposedly helping one operation but hurting the
46  *   other might be carefully evaluated.
47  * - On average not many nodes are expected to be fully populated, hence
48  *   level compression may just complicate things.
49  */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include "opt_ddb.h"
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/vmmeter.h>
60 
61 #include <vm/uma.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_radix.h>
66 
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70 
71 /*
72  * These widths should allow the pointers to a node's children to fit within
73  * a single cache line.  The extra levels from a narrow width should not be
74  * a problem thanks to path compression.
75  */
76 #ifdef __LP64__
77 #define	VM_RADIX_WIDTH	4
78 #else
79 #define	VM_RADIX_WIDTH	3
80 #endif
81 
82 #define	VM_RADIX_COUNT	(1 << VM_RADIX_WIDTH)
83 #define	VM_RADIX_MASK	(VM_RADIX_COUNT - 1)
84 #define	VM_RADIX_LIMIT							\
85 	(howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1)
86 
87 /* Flag bits stored in node pointers. */
88 #define	VM_RADIX_ISLEAF	0x1
89 #define	VM_RADIX_FLAGS	0x1
90 #define	VM_RADIX_PAD	VM_RADIX_FLAGS
91 
92 /* Returns one unit associated with specified level. */
93 #define	VM_RADIX_UNITLEVEL(lev)						\
94 	((vm_pindex_t)1 << ((VM_RADIX_LIMIT - (lev)) * VM_RADIX_WIDTH))
95 
96 struct vm_radix_node {
97 	void		*rn_child[VM_RADIX_COUNT];	/* Child nodes. */
98 	vm_pindex_t	 rn_owner;			/* Owner of record. */
99 	uint16_t	 rn_count;			/* Valid children. */
100 	uint16_t	 rn_clev;			/* Current level. */
101 };
102 
103 static uma_zone_t vm_radix_node_zone;
104 
105 /*
106  * Allocate a radix node.  Pre-allocation should ensure that the request
107  * will always be satisfied.
108  */
109 static __inline struct vm_radix_node *
110 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
111 {
112 	struct vm_radix_node *rnode;
113 
114 	rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT);
115 
116 	/*
117 	 * The required number of nodes should already be pre-allocated
118 	 * by vm_radix_prealloc().  However, UMA can hold a few nodes
119 	 * in per-CPU buckets, which will not be accessible by the
120 	 * current CPU.  Thus, the allocation could return NULL when
121 	 * the pre-allocated pool is close to exhaustion.  Anyway,
122 	 * in practice this should never occur because a new node
123 	 * is not always required for insert.  Thus, the pre-allocated
124 	 * pool should have some extra pages that prevent this from
125 	 * becoming a problem.
126 	 */
127 	if (rnode == NULL)
128 		panic("%s: uma_zalloc() returned NULL for a new node",
129 		    __func__);
130 	rnode->rn_owner = owner;
131 	rnode->rn_count = count;
132 	rnode->rn_clev = clevel;
133 	return (rnode);
134 }
135 
136 /*
137  * Free radix node.
138  */
139 static __inline void
140 vm_radix_node_put(struct vm_radix_node *rnode)
141 {
142 
143 	uma_zfree(vm_radix_node_zone, rnode);
144 }
145 
146 /*
147  * Return the position in the array for a given level.
148  */
149 static __inline int
150 vm_radix_slot(vm_pindex_t index, uint16_t level)
151 {
152 
153 	return ((index >> ((VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH)) &
154 	    VM_RADIX_MASK);
155 }
156 
157 /* Trims the key after the specified level. */
158 static __inline vm_pindex_t
159 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
160 {
161 	vm_pindex_t ret;
162 
163 	ret = index;
164 	if (level < VM_RADIX_LIMIT) {
165 		ret >>= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH;
166 		ret <<= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH;
167 	}
168 	return (ret);
169 }
170 
171 /*
172  * Get the root node for a radix tree.
173  */
174 static __inline struct vm_radix_node *
175 vm_radix_getroot(struct vm_radix *rtree)
176 {
177 
178 	return ((struct vm_radix_node *)(rtree->rt_root & ~VM_RADIX_FLAGS));
179 }
180 
181 /*
182  * Set the root node for a radix tree.
183  */
184 static __inline void
185 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
186 {
187 
188 	rtree->rt_root = (uintptr_t)rnode;
189 }
190 
191 /*
192  * Returns the associated page extracted from rnode if available,
193  * and NULL otherwise.
194  */
195 static __inline vm_page_t
196 vm_radix_node_page(struct vm_radix_node *rnode)
197 {
198 
199 	return ((((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0) ?
200 	    (vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS) : NULL);
201 }
202 
203 /*
204  * Adds the page as a child of the provided node.
205  */
206 static __inline void
207 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
208     vm_page_t page)
209 {
210 	int slot;
211 
212 	slot = vm_radix_slot(index, clev);
213 	rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
214 }
215 
216 /*
217  * Returns the slot where two keys differ.
218  * It cannot accept 2 equal keys.
219  */
220 static __inline uint16_t
221 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
222 {
223 	uint16_t clev;
224 
225 	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
226 	    __func__, (uintmax_t)index1));
227 
228 	index1 ^= index2;
229 	for (clev = 0; clev <= VM_RADIX_LIMIT ; clev++)
230 		if (vm_radix_slot(index1, clev))
231 			return (clev);
232 	panic("%s: cannot reach this point", __func__);
233 	return (0);
234 }
235 
236 /*
237  * Returns TRUE if it can be determined that key does not belong to the
238  * specified rnode.  Otherwise, returns FALSE.
239  */
240 static __inline boolean_t
241 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
242 {
243 
244 	if (rnode->rn_clev > 0) {
245 		idx = vm_radix_trimkey(idx, rnode->rn_clev - 1);
246 		idx -= rnode->rn_owner;
247 		if (idx != 0)
248 			return (TRUE);
249 	}
250 	return (FALSE);
251 }
252 
253 /*
254  * Adjusts the idx key to the first upper level available, based on a valid
255  * initial level and map of available levels.
256  * Returns a value bigger than 0 to signal that there are not valid levels
257  * available.
258  */
259 static __inline int
260 vm_radix_addlev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev)
261 {
262 	vm_pindex_t wrapidx;
263 
264 	for (; levels[ilev] == FALSE ||
265 	    vm_radix_slot(*idx, ilev) == (VM_RADIX_COUNT - 1); ilev--)
266 		if (ilev == 0)
267 			break;
268 	KASSERT(ilev > 0 || levels[0],
269 	    ("%s: levels back-scanning problem", __func__));
270 	if (ilev == 0 && vm_radix_slot(*idx, ilev) == (VM_RADIX_COUNT - 1))
271 		return (1);
272 	wrapidx = *idx;
273 	*idx = vm_radix_trimkey(*idx, ilev);
274 	*idx += VM_RADIX_UNITLEVEL(ilev);
275 	return (*idx < wrapidx);
276 }
277 
278 /*
279  * Adjusts the idx key to the first lower level available, based on a valid
280  * initial level and map of available levels.
281  * Returns a value bigger than 0 to signal that there are not valid levels
282  * available.
283  */
284 static __inline int
285 vm_radix_declev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev)
286 {
287 	vm_pindex_t wrapidx;
288 
289 	for (; levels[ilev] == FALSE ||
290 	    vm_radix_slot(*idx, ilev) == 0; ilev--)
291 		if (ilev == 0)
292 			break;
293 	KASSERT(ilev > 0 || levels[0],
294 	    ("%s: levels back-scanning problem", __func__));
295 	if (ilev == 0 && vm_radix_slot(*idx, ilev) == 0)
296 		return (1);
297 	wrapidx = *idx;
298 	*idx = vm_radix_trimkey(*idx, ilev);
299 	*idx |= VM_RADIX_UNITLEVEL(ilev) - 1;
300 	*idx -= VM_RADIX_UNITLEVEL(ilev);
301 	return (*idx > wrapidx);
302 }
303 
304 /*
305  * Internal helper for vm_radix_reclaim_allnodes().
306  * This function is recursive.
307  */
308 static void
309 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
310 {
311 	int slot;
312 
313 	KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
314 	    ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
315 	for (slot = 0; rnode->rn_count != 0; slot++) {
316 		if (rnode->rn_child[slot] == NULL)
317 			continue;
318 		if (vm_radix_node_page(rnode->rn_child[slot]) == NULL)
319 			vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
320 		rnode->rn_child[slot] = NULL;
321 		rnode->rn_count--;
322 	}
323 	vm_radix_node_put(rnode);
324 }
325 
326 #ifdef INVARIANTS
327 /*
328  * Radix node zone destructor.
329  */
330 static void
331 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
332 {
333 	struct vm_radix_node *rnode;
334 	int slot;
335 
336 	rnode = mem;
337 	KASSERT(rnode->rn_count == 0,
338 	    ("vm_radix_node_put: rnode %p has %d children", rnode,
339 	    rnode->rn_count));
340 	for (slot = 0; slot < VM_RADIX_COUNT; slot++)
341 		KASSERT(rnode->rn_child[slot] == NULL,
342 		    ("vm_radix_node_put: rnode %p has a child", rnode));
343 }
344 #endif
345 
346 /*
347  * Radix node zone initializer.
348  */
349 static int
350 vm_radix_node_zone_init(void *mem, int size __unused, int flags __unused)
351 {
352 	struct vm_radix_node *rnode;
353 
354 	rnode = mem;
355 	memset(rnode->rn_child, 0, sizeof(rnode->rn_child));
356 	return (0);
357 }
358 
359 /*
360  * Pre-allocate intermediate nodes from the UMA slab zone.
361  */
362 static void
363 vm_radix_prealloc(void *arg __unused)
364 {
365 
366 	if (!uma_zone_reserve_kva(vm_radix_node_zone, cnt.v_page_count))
367 		panic("%s: unable to create new zone", __func__);
368 	uma_prealloc(vm_radix_node_zone, cnt.v_page_count);
369 }
370 SYSINIT(vm_radix_prealloc, SI_SUB_KMEM, SI_ORDER_SECOND, vm_radix_prealloc,
371     NULL);
372 
373 /*
374  * Initialize the UMA slab zone.
375  * Until vm_radix_prealloc() is called, the zone will be served by the
376  * UMA boot-time pre-allocated pool of pages.
377  */
378 void
379 vm_radix_init(void)
380 {
381 
382 	vm_radix_node_zone = uma_zcreate("RADIX NODE",
383 	    sizeof(struct vm_radix_node), NULL,
384 #ifdef INVARIANTS
385 	    vm_radix_node_zone_dtor,
386 #else
387 	    NULL,
388 #endif
389 	    vm_radix_node_zone_init, NULL, VM_RADIX_PAD, UMA_ZONE_VM |
390 	    UMA_ZONE_NOFREE);
391 }
392 
393 /*
394  * Inserts the key-value pair into the trie.
395  * Panics if the key already exists.
396  */
397 void
398 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
399 {
400 	vm_pindex_t index, newind;
401 	struct vm_radix_node *rnode, *tmp, *tmp2;
402 	vm_page_t m;
403 	int slot;
404 	uint16_t clev;
405 
406 	index = page->pindex;
407 
408 	/*
409 	 * The owner of record for root is not really important because it
410 	 * will never be used.
411 	 */
412 	rnode = vm_radix_getroot(rtree);
413 	if (rnode == NULL) {
414 		rnode = vm_radix_node_get(0, 1, 0);
415 		vm_radix_setroot(rtree, rnode);
416 		vm_radix_addpage(rnode, index, 0, page);
417 		return;
418 	}
419 	do {
420 		slot = vm_radix_slot(index, rnode->rn_clev);
421 		m = vm_radix_node_page(rnode->rn_child[slot]);
422 		if (m != NULL) {
423 			if (m->pindex == index)
424 				panic("%s: key %jx is already present",
425 				    __func__, (uintmax_t)index);
426 			clev = vm_radix_keydiff(m->pindex, index);
427 			tmp = vm_radix_node_get(vm_radix_trimkey(index,
428 			    clev - 1), 2, clev);
429 			rnode->rn_child[slot] = tmp;
430 			vm_radix_addpage(tmp, index, clev, page);
431 			vm_radix_addpage(tmp, m->pindex, clev, m);
432 			return;
433 		}
434 		if (rnode->rn_child[slot] == NULL) {
435 			rnode->rn_count++;
436 			vm_radix_addpage(rnode, index, rnode->rn_clev, page);
437 			return;
438 		}
439 		rnode = rnode->rn_child[slot];
440 	} while (!vm_radix_keybarr(rnode, index));
441 
442 	/*
443 	 * Scan the trie from the top and find the parent to insert
444 	 * the new object.
445 	 */
446 	newind = rnode->rn_owner;
447 	clev = vm_radix_keydiff(newind, index);
448 	slot = VM_RADIX_COUNT;
449 	for (rnode = vm_radix_getroot(rtree); ; rnode = tmp) {
450 		KASSERT(rnode != NULL, ("%s: edge cannot be NULL in the scan",
451 		    __func__));
452 		KASSERT(clev >= rnode->rn_clev,
453 		    ("%s: unexpected trie depth: clev: %d, rnode->rn_clev: %d",
454 		    __func__, clev, rnode->rn_clev));
455 		slot = vm_radix_slot(index, rnode->rn_clev);
456 		tmp = rnode->rn_child[slot];
457 		KASSERT(tmp != NULL && vm_radix_node_page(tmp) == NULL,
458 		    ("%s: unexpected lookup interruption", __func__));
459 		if (tmp->rn_clev > clev)
460 			break;
461 	}
462 	KASSERT(rnode != NULL && tmp != NULL && slot < VM_RADIX_COUNT,
463 	    ("%s: invalid scan parameters rnode: %p, tmp: %p, slot: %d",
464 	    __func__, (void *)rnode, (void *)tmp, slot));
465 
466 	/*
467 	 * A new node is needed because the right insertion level is reached.
468 	 * Setup the new intermediate node and add the 2 children: the
469 	 * new object and the older edge.
470 	 */
471 	tmp2 = vm_radix_node_get(vm_radix_trimkey(index, clev - 1), 2,
472 	    clev);
473 	rnode->rn_child[slot] = tmp2;
474 	vm_radix_addpage(tmp2, index, clev, page);
475 	slot = vm_radix_slot(newind, clev);
476 	tmp2->rn_child[slot] = tmp;
477 }
478 
479 /*
480  * Returns the value stored at the index.  If the index is not present,
481  * NULL is returned.
482  */
483 vm_page_t
484 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
485 {
486 	struct vm_radix_node *rnode;
487 	vm_page_t m;
488 	int slot;
489 
490 	rnode = vm_radix_getroot(rtree);
491 	while (rnode != NULL) {
492 		if (vm_radix_keybarr(rnode, index))
493 			return (NULL);
494 		slot = vm_radix_slot(index, rnode->rn_clev);
495 		rnode = rnode->rn_child[slot];
496 		m = vm_radix_node_page(rnode);
497 		if (m != NULL) {
498 			if (m->pindex == index)
499 				return (m);
500 			else
501 				return (NULL);
502 		}
503 	}
504 	return (NULL);
505 }
506 
507 /*
508  * Look up the nearest entry at a position bigger than or equal to index.
509  */
510 vm_page_t
511 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
512 {
513 	vm_pindex_t inc;
514 	vm_page_t m;
515 	struct vm_radix_node *rnode;
516 	int slot;
517 	uint16_t difflev;
518 	boolean_t maplevels[VM_RADIX_LIMIT + 1];
519 #ifdef INVARIANTS
520 	int loops = 0;
521 #endif
522 
523 restart:
524 	KASSERT(++loops < 1000, ("%s: too many loops", __func__));
525 	for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++)
526 		maplevels[difflev] = FALSE;
527 	rnode = vm_radix_getroot(rtree);
528 	while (rnode != NULL) {
529 		maplevels[rnode->rn_clev] = TRUE;
530 
531 		/*
532 		 * If the keys differ before the current bisection node
533 		 * the search key might rollback to the earliest
534 		 * available bisection node, or to the smaller value
535 		 * in the current domain (if the owner is bigger than the
536 		 * search key).
537 		 * The maplevels array records any node has been seen
538 		 * at a given level.  This aids the search for a valid
539 		 * bisection node.
540 		 */
541 		if (vm_radix_keybarr(rnode, index)) {
542 			difflev = vm_radix_keydiff(index, rnode->rn_owner);
543 			if (index > rnode->rn_owner) {
544 				if (vm_radix_addlev(&index, maplevels,
545 				    difflev) > 0)
546 					break;
547 			} else
548 				index = vm_radix_trimkey(rnode->rn_owner,
549 				    difflev);
550 			goto restart;
551 		}
552 		slot = vm_radix_slot(index, rnode->rn_clev);
553 		m = vm_radix_node_page(rnode->rn_child[slot]);
554 		if (m != NULL && m->pindex >= index)
555 			return (m);
556 		if (rnode->rn_child[slot] != NULL && m == NULL) {
557 			rnode = rnode->rn_child[slot];
558 			continue;
559 		}
560 
561 		/*
562 		 * Look for an available edge or page within the current
563 		 * bisection node.
564 		 */
565                 if (slot < (VM_RADIX_COUNT - 1)) {
566 			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
567 			index = vm_radix_trimkey(index, rnode->rn_clev);
568 			index += inc;
569 			slot++;
570 			for (;; index += inc, slot++) {
571 				m = vm_radix_node_page(rnode->rn_child[slot]);
572 				if (m != NULL && m->pindex >= index)
573 					return (m);
574 				if ((rnode->rn_child[slot] != NULL &&
575 				    m == NULL) || slot == (VM_RADIX_COUNT - 1))
576 					break;
577 			}
578 		}
579 
580 		/*
581 		 * If a valid page or edge bigger than the search slot is
582 		 * found in the traversal, skip to the next higher-level key.
583 		 */
584 		if (slot == (VM_RADIX_COUNT - 1) &&
585 		    (rnode->rn_child[slot] == NULL || m != NULL)) {
586 			if (rnode->rn_clev == 0  || vm_radix_addlev(&index,
587 			    maplevels, rnode->rn_clev - 1) > 0)
588 				break;
589 			goto restart;
590 		}
591 		rnode = rnode->rn_child[slot];
592 	}
593 	return (NULL);
594 }
595 
596 /*
597  * Look up the nearest entry at a position less than or equal to index.
598  */
599 vm_page_t
600 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
601 {
602 	vm_pindex_t inc;
603 	vm_page_t m;
604 	struct vm_radix_node *rnode;
605 	int slot;
606 	uint16_t difflev;
607 	boolean_t maplevels[VM_RADIX_LIMIT + 1];
608 #ifdef INVARIANTS
609 	int loops = 0;
610 #endif
611 
612 restart:
613 	KASSERT(++loops < 1000, ("%s: too many loops", __func__));
614 	for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++)
615 		maplevels[difflev] = FALSE;
616 	rnode = vm_radix_getroot(rtree);
617 	while (rnode != NULL) {
618 		maplevels[rnode->rn_clev] = TRUE;
619 
620 		/*
621 		 * If the keys differ before the current bisection node
622 		 * the search key might rollback to the earliest
623 		 * available bisection node, or to the higher value
624 		 * in the current domain (if the owner is smaller than the
625 		 * search key).
626 		 * The maplevels array records any node has been seen
627 		 * at a given level.  This aids the search for a valid
628 		 * bisection node.
629 		 */
630 		if (vm_radix_keybarr(rnode, index)) {
631 			difflev = vm_radix_keydiff(index, rnode->rn_owner);
632 			if (index > rnode->rn_owner) {
633 				index = vm_radix_trimkey(rnode->rn_owner,
634 				    difflev);
635 				index |= VM_RADIX_UNITLEVEL(difflev) - 1;
636 			} else if (vm_radix_declev(&index, maplevels,
637 			    difflev) > 0)
638 				break;
639 			goto restart;
640 		}
641 		slot = vm_radix_slot(index, rnode->rn_clev);
642 		m = vm_radix_node_page(rnode->rn_child[slot]);
643 		if (m != NULL && m->pindex <= index)
644 			return (m);
645 		if (rnode->rn_child[slot] != NULL && m == NULL) {
646 			rnode = rnode->rn_child[slot];
647 			continue;
648 		}
649 
650 		/*
651 		 * Look for an available edge or page within the current
652 		 * bisection node.
653 		 */
654 		if (slot > 0) {
655 			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
656 			index = vm_radix_trimkey(index, rnode->rn_clev);
657 			index |= inc - 1;
658 			index -= inc;
659 			slot--;
660 			for (;; index -= inc, slot--) {
661 				m = vm_radix_node_page(rnode->rn_child[slot]);
662 				if (m != NULL && m->pindex <= index)
663 					return (m);
664 				if ((rnode->rn_child[slot] != NULL &&
665 				    m == NULL) || slot == 0)
666 					break;
667 			}
668 		}
669 
670 		/*
671 		 * If a valid page or edge smaller than the search slot is
672 		 * found in the traversal, skip to the next higher-level key.
673 		 */
674 		if (slot == 0 && (rnode->rn_child[slot] == NULL || m != NULL)) {
675 			if (rnode->rn_clev == 0 || vm_radix_declev(&index,
676 			    maplevels, rnode->rn_clev - 1) > 0)
677 				break;
678 			goto restart;
679 		}
680 		rnode = rnode->rn_child[slot];
681 	}
682 	return (NULL);
683 }
684 
685 /*
686  * Remove the specified index from the tree.
687  * Panics if the key is not present.
688  */
689 void
690 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
691 {
692 	struct vm_radix_node *rnode, *parent;
693 	vm_page_t m;
694 	int i, slot;
695 
696 	parent = NULL;
697 	rnode = vm_radix_getroot(rtree);
698 	for (;;) {
699 		if (rnode == NULL)
700 			panic("vm_radix_remove: impossible to locate the key");
701 		slot = vm_radix_slot(index, rnode->rn_clev);
702 		m = vm_radix_node_page(rnode->rn_child[slot]);
703 		if (m != NULL && m->pindex == index) {
704 			rnode->rn_child[slot] = NULL;
705 			rnode->rn_count--;
706 			if (rnode->rn_count > 1)
707 				break;
708 			if (parent == NULL) {
709 				if (rnode->rn_count == 0) {
710 					vm_radix_node_put(rnode);
711 					vm_radix_setroot(rtree, NULL);
712 				}
713 				break;
714 			}
715 			for (i = 0; i < VM_RADIX_COUNT; i++)
716 				if (rnode->rn_child[i] != NULL)
717 					break;
718 			KASSERT(i != VM_RADIX_COUNT,
719 			    ("%s: invalid node configuration", __func__));
720 			slot = vm_radix_slot(index, parent->rn_clev);
721 			KASSERT(parent->rn_child[slot] == rnode,
722 			    ("%s: invalid child value", __func__));
723 			parent->rn_child[slot] = rnode->rn_child[i];
724 			rnode->rn_count--;
725 			rnode->rn_child[i] = NULL;
726 			vm_radix_node_put(rnode);
727 			break;
728 		}
729 		if (m != NULL && m->pindex != index)
730 			panic("%s: invalid key found", __func__);
731 		parent = rnode;
732 		rnode = rnode->rn_child[slot];
733 	}
734 }
735 
736 /*
737  * Remove and free all the nodes from the radix tree.
738  * This function is recursive but there is a tight control on it as the
739  * maximum depth of the tree is fixed.
740  */
741 void
742 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
743 {
744 	struct vm_radix_node *root;
745 
746 	root = vm_radix_getroot(rtree);
747 	if (root == NULL)
748 		return;
749 	vm_radix_setroot(rtree, NULL);
750 	vm_radix_reclaim_allnodes_int(root);
751 }
752 
753 #ifdef DDB
754 /*
755  * Show details about the given radix node.
756  */
757 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
758 {
759 	struct vm_radix_node *rnode;
760 	int i;
761 
762         if (!have_addr)
763                 return;
764 	rnode = (struct vm_radix_node *)addr;
765 	db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
766 	    (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
767 	    rnode->rn_clev);
768 	for (i = 0; i < VM_RADIX_COUNT; i++)
769 		if (rnode->rn_child[i] != NULL)
770 			db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
771 			    i, (void *)rnode->rn_child[i],
772 			    (void *)vm_radix_node_page(rnode->rn_child[i]),
773 			    rnode->rn_clev);
774 }
775 #endif /* DDB */
776