1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2013 EMC Corp. 5 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org> 6 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 */ 31 32 /* 33 * Path-compressed radix trie implementation. 34 * The following code is not generalized into a general purpose library 35 * because there are way too many parameters embedded that should really 36 * be decided by the library consumers. At the same time, consumers 37 * of this code must achieve highest possible performance. 38 * 39 * The implementation takes into account the following rationale: 40 * - Size of the nodes should be as small as possible but still big enough 41 * to avoid a large maximum depth for the trie. This is a balance 42 * between the necessity to not wire too much physical memory for the nodes 43 * and the necessity to avoid too much cache pollution during the trie 44 * operations. 45 * - There is not a huge bias toward the number of lookup operations over 46 * the number of insert and remove operations. This basically implies 47 * that optimizations supposedly helping one operation but hurting the 48 * other might be carefully evaluated. 49 * - On average not many nodes are expected to be fully populated, hence 50 * level compression may just complicate things. 51 */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include "opt_ddb.h" 57 58 #include <sys/param.h> 59 #include <sys/systm.h> 60 #include <sys/kernel.h> 61 #include <sys/vmmeter.h> 62 63 #include <vm/uma.h> 64 #include <vm/vm.h> 65 #include <vm/vm_param.h> 66 #include <vm/vm_page.h> 67 #include <vm/vm_radix.h> 68 69 #ifdef DDB 70 #include <ddb/ddb.h> 71 #endif 72 73 /* 74 * These widths should allow the pointers to a node's children to fit within 75 * a single cache line. The extra levels from a narrow width should not be 76 * a problem thanks to path compression. 77 */ 78 #ifdef __LP64__ 79 #define VM_RADIX_WIDTH 4 80 #else 81 #define VM_RADIX_WIDTH 3 82 #endif 83 84 #define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH) 85 #define VM_RADIX_MASK (VM_RADIX_COUNT - 1) 86 #define VM_RADIX_LIMIT \ 87 (howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1) 88 89 /* Flag bits stored in node pointers. */ 90 #define VM_RADIX_ISLEAF 0x1 91 #define VM_RADIX_FLAGS 0x1 92 #define VM_RADIX_PAD VM_RADIX_FLAGS 93 94 /* Returns one unit associated with specified level. */ 95 #define VM_RADIX_UNITLEVEL(lev) \ 96 ((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH)) 97 98 struct vm_radix_node { 99 vm_pindex_t rn_owner; /* Owner of record. */ 100 uint16_t rn_count; /* Valid children. */ 101 uint16_t rn_clev; /* Current level. */ 102 void *rn_child[VM_RADIX_COUNT]; /* Child nodes. */ 103 }; 104 105 static uma_zone_t vm_radix_node_zone; 106 107 /* 108 * Allocate a radix node. 109 */ 110 static __inline struct vm_radix_node * 111 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel) 112 { 113 struct vm_radix_node *rnode; 114 115 rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO); 116 if (rnode == NULL) 117 return (NULL); 118 rnode->rn_owner = owner; 119 rnode->rn_count = count; 120 rnode->rn_clev = clevel; 121 return (rnode); 122 } 123 124 /* 125 * Free radix node. 126 */ 127 static __inline void 128 vm_radix_node_put(struct vm_radix_node *rnode) 129 { 130 131 uma_zfree(vm_radix_node_zone, rnode); 132 } 133 134 /* 135 * Return the position in the array for a given level. 136 */ 137 static __inline int 138 vm_radix_slot(vm_pindex_t index, uint16_t level) 139 { 140 141 return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK); 142 } 143 144 /* Trims the key after the specified level. */ 145 static __inline vm_pindex_t 146 vm_radix_trimkey(vm_pindex_t index, uint16_t level) 147 { 148 vm_pindex_t ret; 149 150 ret = index; 151 if (level > 0) { 152 ret >>= level * VM_RADIX_WIDTH; 153 ret <<= level * VM_RADIX_WIDTH; 154 } 155 return (ret); 156 } 157 158 /* 159 * Get the root node for a radix tree. 160 */ 161 static __inline struct vm_radix_node * 162 vm_radix_getroot(struct vm_radix *rtree) 163 { 164 165 return ((struct vm_radix_node *)rtree->rt_root); 166 } 167 168 /* 169 * Set the root node for a radix tree. 170 */ 171 static __inline void 172 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode) 173 { 174 175 rtree->rt_root = (uintptr_t)rnode; 176 } 177 178 /* 179 * Returns TRUE if the specified radix node is a leaf and FALSE otherwise. 180 */ 181 static __inline boolean_t 182 vm_radix_isleaf(struct vm_radix_node *rnode) 183 { 184 185 return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0); 186 } 187 188 /* 189 * Returns the associated page extracted from rnode. 190 */ 191 static __inline vm_page_t 192 vm_radix_topage(struct vm_radix_node *rnode) 193 { 194 195 return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS)); 196 } 197 198 /* 199 * Adds the page as a child of the provided node. 200 */ 201 static __inline void 202 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev, 203 vm_page_t page) 204 { 205 int slot; 206 207 slot = vm_radix_slot(index, clev); 208 rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF); 209 } 210 211 /* 212 * Returns the slot where two keys differ. 213 * It cannot accept 2 equal keys. 214 */ 215 static __inline uint16_t 216 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2) 217 { 218 uint16_t clev; 219 220 KASSERT(index1 != index2, ("%s: passing the same key value %jx", 221 __func__, (uintmax_t)index1)); 222 223 index1 ^= index2; 224 for (clev = VM_RADIX_LIMIT;; clev--) 225 if (vm_radix_slot(index1, clev) != 0) 226 return (clev); 227 } 228 229 /* 230 * Returns TRUE if it can be determined that key does not belong to the 231 * specified rnode. Otherwise, returns FALSE. 232 */ 233 static __inline boolean_t 234 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx) 235 { 236 237 if (rnode->rn_clev < VM_RADIX_LIMIT) { 238 idx = vm_radix_trimkey(idx, rnode->rn_clev + 1); 239 return (idx != rnode->rn_owner); 240 } 241 return (FALSE); 242 } 243 244 /* 245 * Internal helper for vm_radix_reclaim_allnodes(). 246 * This function is recursive. 247 */ 248 static void 249 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode) 250 { 251 int slot; 252 253 KASSERT(rnode->rn_count <= VM_RADIX_COUNT, 254 ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode)); 255 for (slot = 0; rnode->rn_count != 0; slot++) { 256 if (rnode->rn_child[slot] == NULL) 257 continue; 258 if (!vm_radix_isleaf(rnode->rn_child[slot])) 259 vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]); 260 rnode->rn_child[slot] = NULL; 261 rnode->rn_count--; 262 } 263 vm_radix_node_put(rnode); 264 } 265 266 #ifdef INVARIANTS 267 /* 268 * Radix node zone destructor. 269 */ 270 static void 271 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused) 272 { 273 struct vm_radix_node *rnode; 274 int slot; 275 276 rnode = mem; 277 KASSERT(rnode->rn_count == 0, 278 ("vm_radix_node_put: rnode %p has %d children", rnode, 279 rnode->rn_count)); 280 for (slot = 0; slot < VM_RADIX_COUNT; slot++) 281 KASSERT(rnode->rn_child[slot] == NULL, 282 ("vm_radix_node_put: rnode %p has a child", rnode)); 283 } 284 #endif 285 286 #ifndef UMA_MD_SMALL_ALLOC 287 void vm_radix_reserve_kva(void); 288 /* 289 * Reserve the KVA necessary to satisfy the node allocation. 290 * This is mandatory in architectures not supporting direct 291 * mapping as they will need otherwise to carve into the kernel maps for 292 * every node allocation, resulting into deadlocks for consumers already 293 * working with kernel maps. 294 */ 295 void 296 vm_radix_reserve_kva(void) 297 { 298 299 /* 300 * Calculate the number of reserved nodes, discounting the pages that 301 * are needed to store them. 302 */ 303 if (!uma_zone_reserve_kva(vm_radix_node_zone, 304 ((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE + 305 sizeof(struct vm_radix_node)))) 306 panic("%s: unable to reserve KVA", __func__); 307 } 308 #endif 309 310 /* 311 * Initialize the UMA slab zone. 312 */ 313 void 314 vm_radix_zinit(void) 315 { 316 317 vm_radix_node_zone = uma_zcreate("RADIX NODE", 318 sizeof(struct vm_radix_node), NULL, 319 #ifdef INVARIANTS 320 vm_radix_node_zone_dtor, 321 #else 322 NULL, 323 #endif 324 NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM); 325 } 326 327 /* 328 * Inserts the key-value pair into the trie. 329 * Panics if the key already exists. 330 */ 331 int 332 vm_radix_insert(struct vm_radix *rtree, vm_page_t page) 333 { 334 vm_pindex_t index, newind; 335 void **parentp; 336 struct vm_radix_node *rnode, *tmp; 337 vm_page_t m; 338 int slot; 339 uint16_t clev; 340 341 index = page->pindex; 342 343 /* 344 * The owner of record for root is not really important because it 345 * will never be used. 346 */ 347 rnode = vm_radix_getroot(rtree); 348 if (rnode == NULL) { 349 rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF; 350 return (0); 351 } 352 parentp = (void **)&rtree->rt_root; 353 for (;;) { 354 if (vm_radix_isleaf(rnode)) { 355 m = vm_radix_topage(rnode); 356 if (m->pindex == index) 357 panic("%s: key %jx is already present", 358 __func__, (uintmax_t)index); 359 clev = vm_radix_keydiff(m->pindex, index); 360 tmp = vm_radix_node_get(vm_radix_trimkey(index, 361 clev + 1), 2, clev); 362 if (tmp == NULL) 363 return (ENOMEM); 364 *parentp = tmp; 365 vm_radix_addpage(tmp, index, clev, page); 366 vm_radix_addpage(tmp, m->pindex, clev, m); 367 return (0); 368 } else if (vm_radix_keybarr(rnode, index)) 369 break; 370 slot = vm_radix_slot(index, rnode->rn_clev); 371 if (rnode->rn_child[slot] == NULL) { 372 rnode->rn_count++; 373 vm_radix_addpage(rnode, index, rnode->rn_clev, page); 374 return (0); 375 } 376 parentp = &rnode->rn_child[slot]; 377 rnode = rnode->rn_child[slot]; 378 } 379 380 /* 381 * A new node is needed because the right insertion level is reached. 382 * Setup the new intermediate node and add the 2 children: the 383 * new object and the older edge. 384 */ 385 newind = rnode->rn_owner; 386 clev = vm_radix_keydiff(newind, index); 387 tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev); 388 if (tmp == NULL) 389 return (ENOMEM); 390 *parentp = tmp; 391 vm_radix_addpage(tmp, index, clev, page); 392 slot = vm_radix_slot(newind, clev); 393 tmp->rn_child[slot] = rnode; 394 return (0); 395 } 396 397 /* 398 * Returns TRUE if the specified radix tree contains a single leaf and FALSE 399 * otherwise. 400 */ 401 boolean_t 402 vm_radix_is_singleton(struct vm_radix *rtree) 403 { 404 struct vm_radix_node *rnode; 405 406 rnode = vm_radix_getroot(rtree); 407 if (rnode == NULL) 408 return (FALSE); 409 return (vm_radix_isleaf(rnode)); 410 } 411 412 /* 413 * Returns the value stored at the index. If the index is not present, 414 * NULL is returned. 415 */ 416 vm_page_t 417 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index) 418 { 419 struct vm_radix_node *rnode; 420 vm_page_t m; 421 int slot; 422 423 rnode = vm_radix_getroot(rtree); 424 while (rnode != NULL) { 425 if (vm_radix_isleaf(rnode)) { 426 m = vm_radix_topage(rnode); 427 if (m->pindex == index) 428 return (m); 429 else 430 break; 431 } else if (vm_radix_keybarr(rnode, index)) 432 break; 433 slot = vm_radix_slot(index, rnode->rn_clev); 434 rnode = rnode->rn_child[slot]; 435 } 436 return (NULL); 437 } 438 439 /* 440 * Look up the nearest entry at a position bigger than or equal to index. 441 */ 442 vm_page_t 443 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index) 444 { 445 struct vm_radix_node *stack[VM_RADIX_LIMIT]; 446 vm_pindex_t inc; 447 vm_page_t m; 448 struct vm_radix_node *child, *rnode; 449 #ifdef INVARIANTS 450 int loops = 0; 451 #endif 452 int slot, tos; 453 454 rnode = vm_radix_getroot(rtree); 455 if (rnode == NULL) 456 return (NULL); 457 else if (vm_radix_isleaf(rnode)) { 458 m = vm_radix_topage(rnode); 459 if (m->pindex >= index) 460 return (m); 461 else 462 return (NULL); 463 } 464 tos = 0; 465 for (;;) { 466 /* 467 * If the keys differ before the current bisection node, 468 * then the search key might rollback to the earliest 469 * available bisection node or to the smallest key 470 * in the current node (if the owner is bigger than the 471 * search key). 472 */ 473 if (vm_radix_keybarr(rnode, index)) { 474 if (index > rnode->rn_owner) { 475 ascend: 476 KASSERT(++loops < 1000, 477 ("vm_radix_lookup_ge: too many loops")); 478 479 /* 480 * Pop nodes from the stack until either the 481 * stack is empty or a node that could have a 482 * matching descendant is found. 483 */ 484 do { 485 if (tos == 0) 486 return (NULL); 487 rnode = stack[--tos]; 488 } while (vm_radix_slot(index, 489 rnode->rn_clev) == (VM_RADIX_COUNT - 1)); 490 491 /* 492 * The following computation cannot overflow 493 * because index's slot at the current level 494 * is less than VM_RADIX_COUNT - 1. 495 */ 496 index = vm_radix_trimkey(index, 497 rnode->rn_clev); 498 index += VM_RADIX_UNITLEVEL(rnode->rn_clev); 499 } else 500 index = rnode->rn_owner; 501 KASSERT(!vm_radix_keybarr(rnode, index), 502 ("vm_radix_lookup_ge: keybarr failed")); 503 } 504 slot = vm_radix_slot(index, rnode->rn_clev); 505 child = rnode->rn_child[slot]; 506 if (vm_radix_isleaf(child)) { 507 m = vm_radix_topage(child); 508 if (m->pindex >= index) 509 return (m); 510 } else if (child != NULL) 511 goto descend; 512 513 /* 514 * Look for an available edge or page within the current 515 * bisection node. 516 */ 517 if (slot < (VM_RADIX_COUNT - 1)) { 518 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev); 519 index = vm_radix_trimkey(index, rnode->rn_clev); 520 do { 521 index += inc; 522 slot++; 523 child = rnode->rn_child[slot]; 524 if (vm_radix_isleaf(child)) { 525 m = vm_radix_topage(child); 526 if (m->pindex >= index) 527 return (m); 528 } else if (child != NULL) 529 goto descend; 530 } while (slot < (VM_RADIX_COUNT - 1)); 531 } 532 KASSERT(child == NULL || vm_radix_isleaf(child), 533 ("vm_radix_lookup_ge: child is radix node")); 534 535 /* 536 * If a page or edge bigger than the search slot is not found 537 * in the current node, ascend to the next higher-level node. 538 */ 539 goto ascend; 540 descend: 541 KASSERT(rnode->rn_clev > 0, 542 ("vm_radix_lookup_ge: pushing leaf's parent")); 543 KASSERT(tos < VM_RADIX_LIMIT, 544 ("vm_radix_lookup_ge: stack overflow")); 545 stack[tos++] = rnode; 546 rnode = child; 547 } 548 } 549 550 /* 551 * Look up the nearest entry at a position less than or equal to index. 552 */ 553 vm_page_t 554 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index) 555 { 556 struct vm_radix_node *stack[VM_RADIX_LIMIT]; 557 vm_pindex_t inc; 558 vm_page_t m; 559 struct vm_radix_node *child, *rnode; 560 #ifdef INVARIANTS 561 int loops = 0; 562 #endif 563 int slot, tos; 564 565 rnode = vm_radix_getroot(rtree); 566 if (rnode == NULL) 567 return (NULL); 568 else if (vm_radix_isleaf(rnode)) { 569 m = vm_radix_topage(rnode); 570 if (m->pindex <= index) 571 return (m); 572 else 573 return (NULL); 574 } 575 tos = 0; 576 for (;;) { 577 /* 578 * If the keys differ before the current bisection node, 579 * then the search key might rollback to the earliest 580 * available bisection node or to the largest key 581 * in the current node (if the owner is smaller than the 582 * search key). 583 */ 584 if (vm_radix_keybarr(rnode, index)) { 585 if (index > rnode->rn_owner) { 586 index = rnode->rn_owner + VM_RADIX_COUNT * 587 VM_RADIX_UNITLEVEL(rnode->rn_clev); 588 } else { 589 ascend: 590 KASSERT(++loops < 1000, 591 ("vm_radix_lookup_le: too many loops")); 592 593 /* 594 * Pop nodes from the stack until either the 595 * stack is empty or a node that could have a 596 * matching descendant is found. 597 */ 598 do { 599 if (tos == 0) 600 return (NULL); 601 rnode = stack[--tos]; 602 } while (vm_radix_slot(index, 603 rnode->rn_clev) == 0); 604 605 /* 606 * The following computation cannot overflow 607 * because index's slot at the current level 608 * is greater than 0. 609 */ 610 index = vm_radix_trimkey(index, 611 rnode->rn_clev); 612 } 613 index--; 614 KASSERT(!vm_radix_keybarr(rnode, index), 615 ("vm_radix_lookup_le: keybarr failed")); 616 } 617 slot = vm_radix_slot(index, rnode->rn_clev); 618 child = rnode->rn_child[slot]; 619 if (vm_radix_isleaf(child)) { 620 m = vm_radix_topage(child); 621 if (m->pindex <= index) 622 return (m); 623 } else if (child != NULL) 624 goto descend; 625 626 /* 627 * Look for an available edge or page within the current 628 * bisection node. 629 */ 630 if (slot > 0) { 631 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev); 632 index |= inc - 1; 633 do { 634 index -= inc; 635 slot--; 636 child = rnode->rn_child[slot]; 637 if (vm_radix_isleaf(child)) { 638 m = vm_radix_topage(child); 639 if (m->pindex <= index) 640 return (m); 641 } else if (child != NULL) 642 goto descend; 643 } while (slot > 0); 644 } 645 KASSERT(child == NULL || vm_radix_isleaf(child), 646 ("vm_radix_lookup_le: child is radix node")); 647 648 /* 649 * If a page or edge smaller than the search slot is not found 650 * in the current node, ascend to the next higher-level node. 651 */ 652 goto ascend; 653 descend: 654 KASSERT(rnode->rn_clev > 0, 655 ("vm_radix_lookup_le: pushing leaf's parent")); 656 KASSERT(tos < VM_RADIX_LIMIT, 657 ("vm_radix_lookup_le: stack overflow")); 658 stack[tos++] = rnode; 659 rnode = child; 660 } 661 } 662 663 /* 664 * Remove the specified index from the trie, and return the value stored at 665 * that index. If the index is not present, return NULL. 666 */ 667 vm_page_t 668 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index) 669 { 670 struct vm_radix_node *rnode, *parent; 671 vm_page_t m; 672 int i, slot; 673 674 rnode = vm_radix_getroot(rtree); 675 if (vm_radix_isleaf(rnode)) { 676 m = vm_radix_topage(rnode); 677 if (m->pindex != index) 678 return (NULL); 679 vm_radix_setroot(rtree, NULL); 680 return (m); 681 } 682 parent = NULL; 683 for (;;) { 684 if (rnode == NULL) 685 return (NULL); 686 slot = vm_radix_slot(index, rnode->rn_clev); 687 if (vm_radix_isleaf(rnode->rn_child[slot])) { 688 m = vm_radix_topage(rnode->rn_child[slot]); 689 if (m->pindex != index) 690 return (NULL); 691 rnode->rn_child[slot] = NULL; 692 rnode->rn_count--; 693 if (rnode->rn_count > 1) 694 return (m); 695 for (i = 0; i < VM_RADIX_COUNT; i++) 696 if (rnode->rn_child[i] != NULL) 697 break; 698 KASSERT(i != VM_RADIX_COUNT, 699 ("%s: invalid node configuration", __func__)); 700 if (parent == NULL) 701 vm_radix_setroot(rtree, rnode->rn_child[i]); 702 else { 703 slot = vm_radix_slot(index, parent->rn_clev); 704 KASSERT(parent->rn_child[slot] == rnode, 705 ("%s: invalid child value", __func__)); 706 parent->rn_child[slot] = rnode->rn_child[i]; 707 } 708 rnode->rn_count--; 709 rnode->rn_child[i] = NULL; 710 vm_radix_node_put(rnode); 711 return (m); 712 } 713 parent = rnode; 714 rnode = rnode->rn_child[slot]; 715 } 716 } 717 718 /* 719 * Remove and free all the nodes from the radix tree. 720 * This function is recursive but there is a tight control on it as the 721 * maximum depth of the tree is fixed. 722 */ 723 void 724 vm_radix_reclaim_allnodes(struct vm_radix *rtree) 725 { 726 struct vm_radix_node *root; 727 728 root = vm_radix_getroot(rtree); 729 if (root == NULL) 730 return; 731 vm_radix_setroot(rtree, NULL); 732 if (!vm_radix_isleaf(root)) 733 vm_radix_reclaim_allnodes_int(root); 734 } 735 736 /* 737 * Replace an existing page in the trie with another one. 738 * Panics if there is not an old page in the trie at the new page's index. 739 */ 740 vm_page_t 741 vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage) 742 { 743 struct vm_radix_node *rnode; 744 vm_page_t m; 745 vm_pindex_t index; 746 int slot; 747 748 index = newpage->pindex; 749 rnode = vm_radix_getroot(rtree); 750 if (rnode == NULL) 751 panic("%s: replacing page on an empty trie", __func__); 752 if (vm_radix_isleaf(rnode)) { 753 m = vm_radix_topage(rnode); 754 if (m->pindex != index) 755 panic("%s: original replacing root key not found", 756 __func__); 757 rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF; 758 return (m); 759 } 760 for (;;) { 761 slot = vm_radix_slot(index, rnode->rn_clev); 762 if (vm_radix_isleaf(rnode->rn_child[slot])) { 763 m = vm_radix_topage(rnode->rn_child[slot]); 764 if (m->pindex == index) { 765 rnode->rn_child[slot] = 766 (void *)((uintptr_t)newpage | 767 VM_RADIX_ISLEAF); 768 return (m); 769 } else 770 break; 771 } else if (rnode->rn_child[slot] == NULL || 772 vm_radix_keybarr(rnode->rn_child[slot], index)) 773 break; 774 rnode = rnode->rn_child[slot]; 775 } 776 panic("%s: original replacing page not found", __func__); 777 } 778 779 void 780 vm_radix_wait(void) 781 { 782 uma_zwait(vm_radix_node_zone); 783 } 784 785 #ifdef DDB 786 /* 787 * Show details about the given radix node. 788 */ 789 DB_SHOW_COMMAND(radixnode, db_show_radixnode) 790 { 791 struct vm_radix_node *rnode; 792 int i; 793 794 if (!have_addr) 795 return; 796 rnode = (struct vm_radix_node *)addr; 797 db_printf("radixnode %p, owner %jx, children count %u, level %u:\n", 798 (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count, 799 rnode->rn_clev); 800 for (i = 0; i < VM_RADIX_COUNT; i++) 801 if (rnode->rn_child[i] != NULL) 802 db_printf("slot: %d, val: %p, page: %p, clev: %d\n", 803 i, (void *)rnode->rn_child[i], 804 vm_radix_isleaf(rnode->rn_child[i]) ? 805 vm_radix_topage(rnode->rn_child[i]) : NULL, 806 rnode->rn_clev); 807 } 808 #endif /* DDB */ 809