xref: /freebsd/sys/vm/vm_radix.c (revision 32c7dde816fd1d738a48af82bf490307cb7b4739)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2013 EMC Corp.
5  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31 
32 /*
33  * Path-compressed radix trie implementation.
34  * The following code is not generalized into a general purpose library
35  * because there are way too many parameters embedded that should really
36  * be decided by the library consumers.  At the same time, consumers
37  * of this code must achieve highest possible performance.
38  *
39  * The implementation takes into account the following rationale:
40  * - Size of the nodes should be as small as possible but still big enough
41  *   to avoid a large maximum depth for the trie.  This is a balance
42  *   between the necessity to not wire too much physical memory for the nodes
43  *   and the necessity to avoid too much cache pollution during the trie
44  *   operations.
45  * - There is not a huge bias toward the number of lookup operations over
46  *   the number of insert and remove operations.  This basically implies
47  *   that optimizations supposedly helping one operation but hurting the
48  *   other might be carefully evaluated.
49  * - On average not many nodes are expected to be fully populated, hence
50  *   level compression may just complicate things.
51  */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include "opt_ddb.h"
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/libkern.h>
62 #include <sys/proc.h>
63 #include <sys/vmmeter.h>
64 #include <sys/smr.h>
65 #include <sys/smr_types.h>
66 
67 #include <vm/uma.h>
68 #include <vm/vm.h>
69 #include <vm/vm_param.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_radix.h>
73 
74 #ifdef DDB
75 #include <ddb/ddb.h>
76 #endif
77 
78 /*
79  * These widths should allow the pointers to a node's children to fit within
80  * a single cache line.  The extra levels from a narrow width should not be
81  * a problem thanks to path compression.
82  */
83 #ifdef __LP64__
84 #define	VM_RADIX_WIDTH	4
85 #else
86 #define	VM_RADIX_WIDTH	3
87 #endif
88 
89 #define	VM_RADIX_COUNT	(1 << VM_RADIX_WIDTH)
90 #define	VM_RADIX_MASK	(VM_RADIX_COUNT - 1)
91 #define	VM_RADIX_LIMIT							\
92 	(howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1)
93 
94 /* Flag bits stored in node pointers. */
95 #define	VM_RADIX_ISLEAF	0x1
96 #define	VM_RADIX_FLAGS	0x1
97 #define	VM_RADIX_PAD	VM_RADIX_FLAGS
98 
99 /* Returns one unit associated with specified level. */
100 #define	VM_RADIX_UNITLEVEL(lev)						\
101 	((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
102 
103 enum vm_radix_access { SMR, LOCKED, UNSERIALIZED };
104 
105 struct vm_radix_node;
106 typedef SMR_POINTER(struct vm_radix_node *) smrnode_t;
107 
108 struct vm_radix_node {
109 	vm_pindex_t	rn_owner;			/* Owner of record. */
110 	uint16_t	rn_count;			/* Valid children. */
111 	uint8_t		rn_clev;			/* Current level. */
112 	int8_t		rn_last;			/* zero last ptr. */
113 	smrnode_t	rn_child[VM_RADIX_COUNT];	/* Child nodes. */
114 };
115 
116 static uma_zone_t vm_radix_node_zone;
117 static smr_t vm_radix_smr;
118 
119 static void vm_radix_node_store(smrnode_t *p, struct vm_radix_node *v,
120     enum vm_radix_access access);
121 
122 /*
123  * Allocate a radix node.
124  */
125 static struct vm_radix_node *
126 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
127 {
128 	struct vm_radix_node *rnode;
129 
130 	rnode = uma_zalloc_smr(vm_radix_node_zone, M_NOWAIT);
131 	if (rnode == NULL)
132 		return (NULL);
133 
134 	/*
135 	 * We want to clear the last child pointer after the final section
136 	 * has exited so lookup can not return false negatives.  It is done
137 	 * here because it will be cache-cold in the dtor callback.
138 	 */
139 	if (rnode->rn_last != 0) {
140 		vm_radix_node_store(&rnode->rn_child[rnode->rn_last - 1],
141 		    NULL, UNSERIALIZED);
142 		rnode->rn_last = 0;
143 	}
144 	rnode->rn_owner = owner;
145 	rnode->rn_count = count;
146 	rnode->rn_clev = clevel;
147 	return (rnode);
148 }
149 
150 /*
151  * Free radix node.
152  */
153 static __inline void
154 vm_radix_node_put(struct vm_radix_node *rnode, int8_t last)
155 {
156 #ifdef INVARIANTS
157 	int slot;
158 
159 	KASSERT(rnode->rn_count == 0,
160 	    ("vm_radix_node_put: rnode %p has %d children", rnode,
161 	    rnode->rn_count));
162 	for (slot = 0; slot < VM_RADIX_COUNT; slot++) {
163 		if (slot == last)
164 			continue;
165 		KASSERT(smr_unserialized_load(&rnode->rn_child[slot], true) ==
166 		    NULL, ("vm_radix_node_put: rnode %p has a child", rnode));
167 	}
168 #endif
169 	/* Off by one so a freshly zero'd node is not assigned to. */
170 	rnode->rn_last = last + 1;
171 	uma_zfree_smr(vm_radix_node_zone, rnode);
172 }
173 
174 /*
175  * Return the position in the array for a given level.
176  */
177 static __inline int
178 vm_radix_slot(vm_pindex_t index, uint16_t level)
179 {
180 
181 	return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
182 }
183 
184 /* Computes the key (index) with the low-order 'level' radix-digits zeroed. */
185 static __inline vm_pindex_t
186 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
187 {
188 	return (index & -VM_RADIX_UNITLEVEL(level));
189 }
190 
191 /*
192  * Fetch a node pointer from a slot in another node.
193  */
194 static __inline struct vm_radix_node *
195 vm_radix_node_load(smrnode_t *p, enum vm_radix_access access)
196 {
197 
198 	switch (access) {
199 	case UNSERIALIZED:
200 		return (smr_unserialized_load(p, true));
201 	case LOCKED:
202 		return (smr_serialized_load(p, true));
203 	case SMR:
204 		return (smr_entered_load(p, vm_radix_smr));
205 	}
206 	__assert_unreachable();
207 }
208 
209 static __inline void
210 vm_radix_node_store(smrnode_t *p, struct vm_radix_node *v,
211     enum vm_radix_access access)
212 {
213 
214 	switch (access) {
215 	case UNSERIALIZED:
216 		smr_unserialized_store(p, v, true);
217 		break;
218 	case LOCKED:
219 		smr_serialized_store(p, v, true);
220 		break;
221 	case SMR:
222 		panic("vm_radix_node_store: Not supported in smr section.");
223 	}
224 }
225 
226 /*
227  * Get the root node for a radix tree.
228  */
229 static __inline struct vm_radix_node *
230 vm_radix_root_load(struct vm_radix *rtree, enum vm_radix_access access)
231 {
232 
233 	return (vm_radix_node_load((smrnode_t *)&rtree->rt_root, access));
234 }
235 
236 /*
237  * Set the root node for a radix tree.
238  */
239 static __inline void
240 vm_radix_root_store(struct vm_radix *rtree, struct vm_radix_node *rnode,
241     enum vm_radix_access access)
242 {
243 
244 	vm_radix_node_store((smrnode_t *)&rtree->rt_root, rnode, access);
245 }
246 
247 /*
248  * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
249  */
250 static __inline bool
251 vm_radix_isleaf(struct vm_radix_node *rnode)
252 {
253 
254 	return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
255 }
256 
257 /*
258  * Returns page cast to radix node with leaf bit set.
259  */
260 static __inline struct vm_radix_node *
261 vm_radix_toleaf(vm_page_t page)
262 {
263 	return ((struct vm_radix_node *)((uintptr_t)page | VM_RADIX_ISLEAF));
264 }
265 
266 /*
267  * Returns the associated page extracted from rnode.
268  */
269 static __inline vm_page_t
270 vm_radix_topage(struct vm_radix_node *rnode)
271 {
272 
273 	return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
274 }
275 
276 /*
277  * Adds the page as a child of the provided node.
278  */
279 static __inline void
280 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
281     vm_page_t page, enum vm_radix_access access)
282 {
283 	int slot;
284 
285 	slot = vm_radix_slot(index, clev);
286 	vm_radix_node_store(&rnode->rn_child[slot],
287 	    vm_radix_toleaf(page), access);
288 }
289 
290 /*
291  * Returns the level where two keys differ.
292  * It cannot accept 2 equal keys.
293  */
294 static __inline uint16_t
295 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
296 {
297 
298 	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
299 	    __func__, (uintmax_t)index1));
300 	CTASSERT(sizeof(long long) >= sizeof(vm_pindex_t));
301 
302 	/*
303 	 * From the highest-order bit where the indexes differ,
304 	 * compute the highest level in the trie where they differ.
305 	 */
306 	return ((flsll(index1 ^ index2) - 1) / VM_RADIX_WIDTH);
307 }
308 
309 /*
310  * Returns TRUE if it can be determined that key does not belong to the
311  * specified rnode.  Otherwise, returns FALSE.
312  */
313 static __inline bool
314 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
315 {
316 
317 	if (rnode->rn_clev < VM_RADIX_LIMIT) {
318 		idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
319 		return (idx != rnode->rn_owner);
320 	}
321 	return (false);
322 }
323 
324 /*
325  * Internal helper for vm_radix_reclaim_allnodes().
326  * This function is recursive.
327  */
328 static void
329 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
330 {
331 	struct vm_radix_node *child;
332 	int slot;
333 
334 	KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
335 	    ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
336 	for (slot = 0; rnode->rn_count != 0; slot++) {
337 		child = vm_radix_node_load(&rnode->rn_child[slot],
338 		    UNSERIALIZED);
339 		if (child == NULL)
340 			continue;
341 		if (!vm_radix_isleaf(child))
342 			vm_radix_reclaim_allnodes_int(child);
343 		vm_radix_node_store(&rnode->rn_child[slot], NULL, UNSERIALIZED);
344 		rnode->rn_count--;
345 	}
346 	vm_radix_node_put(rnode, -1);
347 }
348 
349 #ifndef UMA_MD_SMALL_ALLOC
350 void vm_radix_reserve_kva(void);
351 /*
352  * Reserve the KVA necessary to satisfy the node allocation.
353  * This is mandatory in architectures not supporting direct
354  * mapping as they will need otherwise to carve into the kernel maps for
355  * every node allocation, resulting into deadlocks for consumers already
356  * working with kernel maps.
357  */
358 void
359 vm_radix_reserve_kva(void)
360 {
361 
362 	/*
363 	 * Calculate the number of reserved nodes, discounting the pages that
364 	 * are needed to store them.
365 	 */
366 	if (!uma_zone_reserve_kva(vm_radix_node_zone,
367 	    ((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
368 	    sizeof(struct vm_radix_node))))
369 		panic("%s: unable to reserve KVA", __func__);
370 }
371 #endif
372 
373 /*
374  * Initialize the UMA slab zone.
375  */
376 void
377 vm_radix_zinit(void)
378 {
379 
380 	vm_radix_node_zone = uma_zcreate("RADIX NODE",
381 	    sizeof(struct vm_radix_node), NULL, NULL, NULL, NULL,
382 	    VM_RADIX_PAD, UMA_ZONE_VM | UMA_ZONE_SMR | UMA_ZONE_ZINIT);
383 	vm_radix_smr = uma_zone_get_smr(vm_radix_node_zone);
384 }
385 
386 /*
387  * Inserts the key-value pair into the trie.
388  * Panics if the key already exists.
389  */
390 int
391 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
392 {
393 	vm_pindex_t index, newind;
394 	struct vm_radix_node *rnode, *tmp;
395 	smrnode_t *parentp;
396 	vm_page_t m;
397 	int slot;
398 	uint16_t clev;
399 
400 	index = page->pindex;
401 
402 	/*
403 	 * The owner of record for root is not really important because it
404 	 * will never be used.
405 	 */
406 	rnode = vm_radix_root_load(rtree, LOCKED);
407 	if (rnode == NULL) {
408 		rtree->rt_root = (uintptr_t)vm_radix_toleaf(page);
409 		return (0);
410 	}
411 	parentp = (smrnode_t *)&rtree->rt_root;
412 	for (;;) {
413 		if (vm_radix_isleaf(rnode)) {
414 			m = vm_radix_topage(rnode);
415 			if (m->pindex == index)
416 				panic("%s: key %jx is already present",
417 				    __func__, (uintmax_t)index);
418 			clev = vm_radix_keydiff(m->pindex, index);
419 			tmp = vm_radix_node_get(vm_radix_trimkey(index,
420 			    clev + 1), 2, clev);
421 			if (tmp == NULL)
422 				return (ENOMEM);
423 			/* These writes are not yet visible due to ordering. */
424 			vm_radix_addpage(tmp, index, clev, page, UNSERIALIZED);
425 			vm_radix_addpage(tmp, m->pindex, clev, m, UNSERIALIZED);
426 			/* Synchronize to make leaf visible. */
427 			vm_radix_node_store(parentp, tmp, LOCKED);
428 			return (0);
429 		} else if (vm_radix_keybarr(rnode, index))
430 			break;
431 		slot = vm_radix_slot(index, rnode->rn_clev);
432 		parentp = &rnode->rn_child[slot];
433 		tmp = vm_radix_node_load(parentp, LOCKED);
434 		if (tmp == NULL) {
435 			rnode->rn_count++;
436 			vm_radix_addpage(rnode, index, rnode->rn_clev, page,
437 			    LOCKED);
438 			return (0);
439 		}
440 		rnode = tmp;
441 	}
442 
443 	/*
444 	 * A new node is needed because the right insertion level is reached.
445 	 * Setup the new intermediate node and add the 2 children: the
446 	 * new object and the older edge.
447 	 */
448 	newind = rnode->rn_owner;
449 	clev = vm_radix_keydiff(newind, index);
450 	tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
451 	if (tmp == NULL)
452 		return (ENOMEM);
453 	slot = vm_radix_slot(newind, clev);
454 	/* These writes are not yet visible due to ordering. */
455 	vm_radix_addpage(tmp, index, clev, page, UNSERIALIZED);
456 	vm_radix_node_store(&tmp->rn_child[slot], rnode, UNSERIALIZED);
457 	/* Serializing write to make the above visible. */
458 	vm_radix_node_store(parentp, tmp, LOCKED);
459 
460 	return (0);
461 }
462 
463 /*
464  * Returns the value stored at the index.  If the index is not present,
465  * NULL is returned.
466  */
467 static __always_inline vm_page_t
468 _vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index,
469     enum vm_radix_access access)
470 {
471 	struct vm_radix_node *rnode;
472 	vm_page_t m;
473 	int slot;
474 
475 	rnode = vm_radix_root_load(rtree, access);
476 	while (rnode != NULL) {
477 		if (vm_radix_isleaf(rnode)) {
478 			m = vm_radix_topage(rnode);
479 			if (m->pindex == index)
480 				return (m);
481 			break;
482 		}
483 		if (vm_radix_keybarr(rnode, index))
484 			break;
485 		slot = vm_radix_slot(index, rnode->rn_clev);
486 		rnode = vm_radix_node_load(&rnode->rn_child[slot], access);
487 	}
488 	return (NULL);
489 }
490 
491 /*
492  * Returns the value stored at the index assuming there is an external lock.
493  *
494  * If the index is not present, NULL is returned.
495  */
496 vm_page_t
497 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
498 {
499 
500 	return _vm_radix_lookup(rtree, index, LOCKED);
501 }
502 
503 /*
504  * Returns the value stored at the index without requiring an external lock.
505  *
506  * If the index is not present, NULL is returned.
507  */
508 vm_page_t
509 vm_radix_lookup_unlocked(struct vm_radix *rtree, vm_pindex_t index)
510 {
511 	vm_page_t m;
512 
513 	smr_enter(vm_radix_smr);
514 	m = _vm_radix_lookup(rtree, index, SMR);
515 	smr_exit(vm_radix_smr);
516 
517 	return (m);
518 }
519 
520 /*
521  * Look up the nearest entry at a position greater than or equal to index.
522  */
523 vm_page_t
524 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
525 {
526 	struct vm_radix_node *stack[VM_RADIX_LIMIT];
527 	vm_pindex_t inc;
528 	vm_page_t m;
529 	struct vm_radix_node *child, *rnode;
530 #ifdef INVARIANTS
531 	int loops = 0;
532 #endif
533 	int slot, tos;
534 
535 	rnode = vm_radix_root_load(rtree, LOCKED);
536 	if (rnode == NULL)
537 		return (NULL);
538 	else if (vm_radix_isleaf(rnode)) {
539 		m = vm_radix_topage(rnode);
540 		if (m->pindex >= index)
541 			return (m);
542 		else
543 			return (NULL);
544 	}
545 	tos = 0;
546 	for (;;) {
547 		/*
548 		 * If the keys differ before the current bisection node,
549 		 * then the search key might rollback to the earliest
550 		 * available bisection node or to the smallest key
551 		 * in the current node (if the owner is greater than the
552 		 * search key).
553 		 */
554 		if (vm_radix_keybarr(rnode, index)) {
555 			if (index > rnode->rn_owner) {
556 ascend:
557 				KASSERT(++loops < 1000,
558 				    ("vm_radix_lookup_ge: too many loops"));
559 
560 				/*
561 				 * Pop nodes from the stack until either the
562 				 * stack is empty or a node that could have a
563 				 * matching descendant is found.
564 				 */
565 				do {
566 					if (tos == 0)
567 						return (NULL);
568 					rnode = stack[--tos];
569 				} while (vm_radix_slot(index,
570 				    rnode->rn_clev) == (VM_RADIX_COUNT - 1));
571 
572 				/*
573 				 * The following computation cannot overflow
574 				 * because index's slot at the current level
575 				 * is less than VM_RADIX_COUNT - 1.
576 				 */
577 				index = vm_radix_trimkey(index,
578 				    rnode->rn_clev);
579 				index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
580 			} else
581 				index = rnode->rn_owner;
582 			KASSERT(!vm_radix_keybarr(rnode, index),
583 			    ("vm_radix_lookup_ge: keybarr failed"));
584 		}
585 		slot = vm_radix_slot(index, rnode->rn_clev);
586 		child = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
587 		if (vm_radix_isleaf(child)) {
588 			m = vm_radix_topage(child);
589 			if (m->pindex >= index)
590 				return (m);
591 		} else if (child != NULL)
592 			goto descend;
593 
594 		/*
595 		 * Look for an available edge or page within the current
596 		 * bisection node.
597 		 */
598                 if (slot < (VM_RADIX_COUNT - 1)) {
599 			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
600 			index = vm_radix_trimkey(index, rnode->rn_clev);
601 			do {
602 				index += inc;
603 				slot++;
604 				child = vm_radix_node_load(&rnode->rn_child[slot],
605 				    LOCKED);
606 				if (vm_radix_isleaf(child)) {
607 					m = vm_radix_topage(child);
608 					KASSERT(m->pindex >= index,
609 					    ("vm_radix_lookup_ge: leaf<index"));
610 					return (m);
611 				} else if (child != NULL)
612 					goto descend;
613 			} while (slot < (VM_RADIX_COUNT - 1));
614 		}
615 		KASSERT(child == NULL || vm_radix_isleaf(child),
616 		    ("vm_radix_lookup_ge: child is radix node"));
617 
618 		/*
619 		 * If a page or edge greater than the search slot is not found
620 		 * in the current node, ascend to the next higher-level node.
621 		 */
622 		goto ascend;
623 descend:
624 		KASSERT(rnode->rn_clev > 0,
625 		    ("vm_radix_lookup_ge: pushing leaf's parent"));
626 		KASSERT(tos < VM_RADIX_LIMIT,
627 		    ("vm_radix_lookup_ge: stack overflow"));
628 		stack[tos++] = rnode;
629 		rnode = child;
630 	}
631 }
632 
633 /*
634  * Look up the nearest entry at a position less than or equal to index.
635  */
636 vm_page_t
637 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
638 {
639 	struct vm_radix_node *stack[VM_RADIX_LIMIT];
640 	vm_pindex_t inc;
641 	vm_page_t m;
642 	struct vm_radix_node *child, *rnode;
643 #ifdef INVARIANTS
644 	int loops = 0;
645 #endif
646 	int slot, tos;
647 
648 	rnode = vm_radix_root_load(rtree, LOCKED);
649 	if (rnode == NULL)
650 		return (NULL);
651 	else if (vm_radix_isleaf(rnode)) {
652 		m = vm_radix_topage(rnode);
653 		if (m->pindex <= index)
654 			return (m);
655 		else
656 			return (NULL);
657 	}
658 	tos = 0;
659 	for (;;) {
660 		/*
661 		 * If the keys differ before the current bisection node,
662 		 * then the search key might rollback to the earliest
663 		 * available bisection node or to the largest key
664 		 * in the current node (if the owner is smaller than the
665 		 * search key).
666 		 */
667 		if (vm_radix_keybarr(rnode, index)) {
668 			if (index > rnode->rn_owner) {
669 				index = rnode->rn_owner + VM_RADIX_COUNT *
670 				    VM_RADIX_UNITLEVEL(rnode->rn_clev);
671 			} else {
672 ascend:
673 				KASSERT(++loops < 1000,
674 				    ("vm_radix_lookup_le: too many loops"));
675 
676 				/*
677 				 * Pop nodes from the stack until either the
678 				 * stack is empty or a node that could have a
679 				 * matching descendant is found.
680 				 */
681 				do {
682 					if (tos == 0)
683 						return (NULL);
684 					rnode = stack[--tos];
685 				} while (vm_radix_slot(index,
686 				    rnode->rn_clev) == 0);
687 
688 				/*
689 				 * The following computation cannot overflow
690 				 * because index's slot at the current level
691 				 * is greater than 0.
692 				 */
693 				index = vm_radix_trimkey(index,
694 				    rnode->rn_clev);
695 			}
696 			index--;
697 			KASSERT(!vm_radix_keybarr(rnode, index),
698 			    ("vm_radix_lookup_le: keybarr failed"));
699 		}
700 		slot = vm_radix_slot(index, rnode->rn_clev);
701 		child = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
702 		if (vm_radix_isleaf(child)) {
703 			m = vm_radix_topage(child);
704 			if (m->pindex <= index)
705 				return (m);
706 		} else if (child != NULL)
707 			goto descend;
708 
709 		/*
710 		 * Look for an available edge or page within the current
711 		 * bisection node.
712 		 */
713 		if (slot > 0) {
714 			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
715 			index |= inc - 1;
716 			do {
717 				index -= inc;
718 				slot--;
719 				child = vm_radix_node_load(&rnode->rn_child[slot],
720 				    LOCKED);
721 				if (vm_radix_isleaf(child)) {
722 					m = vm_radix_topage(child);
723 					KASSERT(m->pindex <= index,
724 					    ("vm_radix_lookup_le: leaf>index"));
725 					return (m);
726 				} else if (child != NULL)
727 					goto descend;
728 			} while (slot > 0);
729 		}
730 		KASSERT(child == NULL || vm_radix_isleaf(child),
731 		    ("vm_radix_lookup_le: child is radix node"));
732 
733 		/*
734 		 * If a page or edge smaller than the search slot is not found
735 		 * in the current node, ascend to the next higher-level node.
736 		 */
737 		goto ascend;
738 descend:
739 		KASSERT(rnode->rn_clev > 0,
740 		    ("vm_radix_lookup_le: pushing leaf's parent"));
741 		KASSERT(tos < VM_RADIX_LIMIT,
742 		    ("vm_radix_lookup_le: stack overflow"));
743 		stack[tos++] = rnode;
744 		rnode = child;
745 	}
746 }
747 
748 /*
749  * Remove the specified index from the trie, and return the value stored at
750  * that index.  If the index is not present, return NULL.
751  */
752 vm_page_t
753 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
754 {
755 	struct vm_radix_node *rnode, *parent, *tmp;
756 	vm_page_t m;
757 	int i, slot;
758 
759 	rnode = vm_radix_root_load(rtree, LOCKED);
760 	if (vm_radix_isleaf(rnode)) {
761 		m = vm_radix_topage(rnode);
762 		if (m->pindex != index)
763 			return (NULL);
764 		vm_radix_root_store(rtree, NULL, LOCKED);
765 		return (m);
766 	}
767 	parent = NULL;
768 	for (;;) {
769 		if (rnode == NULL)
770 			return (NULL);
771 		slot = vm_radix_slot(index, rnode->rn_clev);
772 		tmp = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
773 		if (vm_radix_isleaf(tmp)) {
774 			m = vm_radix_topage(tmp);
775 			if (m->pindex != index)
776 				return (NULL);
777 			vm_radix_node_store(
778 			    &rnode->rn_child[slot], NULL, LOCKED);
779 			rnode->rn_count--;
780 			if (rnode->rn_count > 1)
781 				return (m);
782 			for (i = 0; i < VM_RADIX_COUNT; i++) {
783 				tmp = vm_radix_node_load(&rnode->rn_child[i],
784 				    LOCKED);
785 				if (tmp != NULL)
786 					break;
787 			}
788 			KASSERT(tmp != NULL,
789 			    ("%s: invalid node configuration", __func__));
790 			if (parent == NULL)
791 				vm_radix_root_store(rtree, tmp, LOCKED);
792 			else {
793 				slot = vm_radix_slot(index, parent->rn_clev);
794 				KASSERT(vm_radix_node_load(
795 				    &parent->rn_child[slot], LOCKED) == rnode,
796 				    ("%s: invalid child value", __func__));
797 				vm_radix_node_store(&parent->rn_child[slot],
798 				    tmp, LOCKED);
799 			}
800 			/*
801 			 * The child is still valid and we can not zero the
802 			 * pointer until all smr references are gone.
803 			 */
804 			rnode->rn_count--;
805 			vm_radix_node_put(rnode, i);
806 			return (m);
807 		}
808 		parent = rnode;
809 		rnode = tmp;
810 	}
811 }
812 
813 /*
814  * Remove and free all the nodes from the radix tree.
815  * This function is recursive but there is a tight control on it as the
816  * maximum depth of the tree is fixed.
817  */
818 void
819 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
820 {
821 	struct vm_radix_node *root;
822 
823 	root = vm_radix_root_load(rtree, LOCKED);
824 	if (root == NULL)
825 		return;
826 	vm_radix_root_store(rtree, NULL, UNSERIALIZED);
827 	if (!vm_radix_isleaf(root))
828 		vm_radix_reclaim_allnodes_int(root);
829 }
830 
831 /*
832  * Replace an existing page in the trie with another one.
833  * Panics if there is not an old page in the trie at the new page's index.
834  */
835 vm_page_t
836 vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
837 {
838 	struct vm_radix_node *rnode, *tmp;
839 	vm_page_t m;
840 	vm_pindex_t index;
841 	int slot;
842 
843 	index = newpage->pindex;
844 	rnode = vm_radix_root_load(rtree, LOCKED);
845 	if (rnode == NULL)
846 		panic("%s: replacing page on an empty trie", __func__);
847 	if (vm_radix_isleaf(rnode)) {
848 		m = vm_radix_topage(rnode);
849 		if (m->pindex != index)
850 			panic("%s: original replacing root key not found",
851 			    __func__);
852 		rtree->rt_root = (uintptr_t)vm_radix_toleaf(newpage);
853 		return (m);
854 	}
855 	for (;;) {
856 		slot = vm_radix_slot(index, rnode->rn_clev);
857 		tmp = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
858 		if (vm_radix_isleaf(tmp)) {
859 			m = vm_radix_topage(tmp);
860 			if (m->pindex != index)
861 				break;
862 			vm_radix_node_store(&rnode->rn_child[slot],
863 			    vm_radix_toleaf(newpage), LOCKED);
864 			return (m);
865 		} else if (tmp == NULL || vm_radix_keybarr(tmp, index))
866 			break;
867 		rnode = tmp;
868 	}
869 	panic("%s: original replacing page not found", __func__);
870 }
871 
872 void
873 vm_radix_wait(void)
874 {
875 	uma_zwait(vm_radix_node_zone);
876 }
877 
878 #ifdef DDB
879 /*
880  * Show details about the given radix node.
881  */
882 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
883 {
884 	struct vm_radix_node *rnode, *tmp;
885 	int i;
886 
887         if (!have_addr)
888                 return;
889 	rnode = (struct vm_radix_node *)addr;
890 	db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
891 	    (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
892 	    rnode->rn_clev);
893 	for (i = 0; i < VM_RADIX_COUNT; i++) {
894 		tmp = vm_radix_node_load(&rnode->rn_child[i], UNSERIALIZED);
895 		if (tmp != NULL)
896 			db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
897 			    i, (void *)tmp,
898 			    vm_radix_isleaf(tmp) ?  vm_radix_topage(tmp) : NULL,
899 			    rnode->rn_clev);
900 	}
901 }
902 #endif /* DDB */
903