1 /* 2 * Copyright (c) 2013 EMC Corp. 3 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org> 4 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 /* 31 * Path-compressed radix trie implementation. 32 * The following code is not generalized into a general purpose library 33 * because there are way too many parameters embedded that should really 34 * be decided by the library consumers. At the same time, consumers 35 * of this code must achieve highest possible performance. 36 * 37 * The implementation takes into account the following rationale: 38 * - Size of the nodes should be as small as possible but still big enough 39 * to avoid a large maximum depth for the trie. This is a balance 40 * between the necessity to not wire too much physical memory for the nodes 41 * and the necessity to avoid too much cache pollution during the trie 42 * operations. 43 * - There is not a huge bias toward the number of lookup operations over 44 * the number of insert and remove operations. This basically implies 45 * that optimizations supposedly helping one operation but hurting the 46 * other might be carefully evaluated. 47 * - On average not many nodes are expected to be fully populated, hence 48 * level compression may just complicate things. 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 #include "opt_ddb.h" 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/kernel.h> 59 #include <sys/vmmeter.h> 60 61 #include <vm/uma.h> 62 #include <vm/vm.h> 63 #include <vm/vm_param.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_radix.h> 66 67 #ifdef DDB 68 #include <ddb/ddb.h> 69 #endif 70 71 /* 72 * These widths should allow the pointers to a node's children to fit within 73 * a single cache line. The extra levels from a narrow width should not be 74 * a problem thanks to path compression. 75 */ 76 #ifdef __LP64__ 77 #define VM_RADIX_WIDTH 4 78 #else 79 #define VM_RADIX_WIDTH 3 80 #endif 81 82 #define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH) 83 #define VM_RADIX_MASK (VM_RADIX_COUNT - 1) 84 #define VM_RADIX_LIMIT \ 85 (howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1) 86 87 /* Flag bits stored in node pointers. */ 88 #define VM_RADIX_ISLEAF 0x1 89 #define VM_RADIX_FLAGS 0x1 90 #define VM_RADIX_PAD VM_RADIX_FLAGS 91 92 /* Returns one unit associated with specified level. */ 93 #define VM_RADIX_UNITLEVEL(lev) \ 94 ((vm_pindex_t)1 << ((VM_RADIX_LIMIT - (lev)) * VM_RADIX_WIDTH)) 95 96 struct vm_radix_node { 97 vm_pindex_t rn_owner; /* Owner of record. */ 98 uint16_t rn_count; /* Valid children. */ 99 uint16_t rn_clev; /* Current level. */ 100 void *rn_child[VM_RADIX_COUNT]; /* Child nodes. */ 101 }; 102 103 static uma_zone_t vm_radix_node_zone; 104 105 /* 106 * Allocate a radix node. Pre-allocation should ensure that the request 107 * will always be satisfied. 108 */ 109 static __inline struct vm_radix_node * 110 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel) 111 { 112 struct vm_radix_node *rnode; 113 114 rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT); 115 116 /* 117 * The required number of nodes should already be pre-allocated 118 * by vm_radix_prealloc(). However, UMA can hold a few nodes 119 * in per-CPU buckets, which will not be accessible by the 120 * current CPU. Thus, the allocation could return NULL when 121 * the pre-allocated pool is close to exhaustion. Anyway, 122 * in practice this should never occur because a new node 123 * is not always required for insert. Thus, the pre-allocated 124 * pool should have some extra pages that prevent this from 125 * becoming a problem. 126 */ 127 if (rnode == NULL) 128 panic("%s: uma_zalloc() returned NULL for a new node", 129 __func__); 130 rnode->rn_owner = owner; 131 rnode->rn_count = count; 132 rnode->rn_clev = clevel; 133 return (rnode); 134 } 135 136 /* 137 * Free radix node. 138 */ 139 static __inline void 140 vm_radix_node_put(struct vm_radix_node *rnode) 141 { 142 143 uma_zfree(vm_radix_node_zone, rnode); 144 } 145 146 /* 147 * Return the position in the array for a given level. 148 */ 149 static __inline int 150 vm_radix_slot(vm_pindex_t index, uint16_t level) 151 { 152 153 return ((index >> ((VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH)) & 154 VM_RADIX_MASK); 155 } 156 157 /* Trims the key after the specified level. */ 158 static __inline vm_pindex_t 159 vm_radix_trimkey(vm_pindex_t index, uint16_t level) 160 { 161 vm_pindex_t ret; 162 163 ret = index; 164 if (level < VM_RADIX_LIMIT) { 165 ret >>= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH; 166 ret <<= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH; 167 } 168 return (ret); 169 } 170 171 /* 172 * Get the root node for a radix tree. 173 */ 174 static __inline struct vm_radix_node * 175 vm_radix_getroot(struct vm_radix *rtree) 176 { 177 178 return ((struct vm_radix_node *)rtree->rt_root); 179 } 180 181 /* 182 * Set the root node for a radix tree. 183 */ 184 static __inline void 185 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode) 186 { 187 188 rtree->rt_root = (uintptr_t)rnode; 189 } 190 191 /* 192 * Returns TRUE if the specified radix node is a leaf and FALSE otherwise. 193 */ 194 static __inline boolean_t 195 vm_radix_isleaf(struct vm_radix_node *rnode) 196 { 197 198 return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0); 199 } 200 201 /* 202 * Returns the associated page extracted from rnode. 203 */ 204 static __inline vm_page_t 205 vm_radix_topage(struct vm_radix_node *rnode) 206 { 207 208 return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS)); 209 } 210 211 /* 212 * Adds the page as a child of the provided node. 213 */ 214 static __inline void 215 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev, 216 vm_page_t page) 217 { 218 int slot; 219 220 slot = vm_radix_slot(index, clev); 221 rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF); 222 } 223 224 /* 225 * Returns the slot where two keys differ. 226 * It cannot accept 2 equal keys. 227 */ 228 static __inline uint16_t 229 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2) 230 { 231 uint16_t clev; 232 233 KASSERT(index1 != index2, ("%s: passing the same key value %jx", 234 __func__, (uintmax_t)index1)); 235 236 index1 ^= index2; 237 for (clev = 0; clev <= VM_RADIX_LIMIT ; clev++) 238 if (vm_radix_slot(index1, clev)) 239 return (clev); 240 panic("%s: cannot reach this point", __func__); 241 return (0); 242 } 243 244 /* 245 * Returns TRUE if it can be determined that key does not belong to the 246 * specified rnode. Otherwise, returns FALSE. 247 */ 248 static __inline boolean_t 249 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx) 250 { 251 252 if (rnode->rn_clev > 0) { 253 idx = vm_radix_trimkey(idx, rnode->rn_clev - 1); 254 return (idx != rnode->rn_owner); 255 } 256 return (FALSE); 257 } 258 259 /* 260 * Adjusts the idx key to the first upper level available, based on a valid 261 * initial level and map of available levels. 262 * Returns a value bigger than 0 to signal that there are not valid levels 263 * available. 264 */ 265 static __inline int 266 vm_radix_addlev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev) 267 { 268 vm_pindex_t wrapidx; 269 270 for (; levels[ilev] == FALSE || 271 vm_radix_slot(*idx, ilev) == (VM_RADIX_COUNT - 1); ilev--) 272 if (ilev == 0) 273 return (1); 274 wrapidx = *idx; 275 *idx = vm_radix_trimkey(*idx, ilev); 276 *idx += VM_RADIX_UNITLEVEL(ilev); 277 return (*idx < wrapidx); 278 } 279 280 /* 281 * Adjusts the idx key to the first lower level available, based on a valid 282 * initial level and map of available levels. 283 * Returns a value bigger than 0 to signal that there are not valid levels 284 * available. 285 */ 286 static __inline int 287 vm_radix_declev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev) 288 { 289 vm_pindex_t wrapidx; 290 291 for (; levels[ilev] == FALSE || 292 vm_radix_slot(*idx, ilev) == 0; ilev--) 293 if (ilev == 0) 294 return (1); 295 wrapidx = *idx; 296 *idx = vm_radix_trimkey(*idx, ilev); 297 *idx |= VM_RADIX_UNITLEVEL(ilev) - 1; 298 *idx -= VM_RADIX_UNITLEVEL(ilev); 299 return (*idx > wrapidx); 300 } 301 302 /* 303 * Internal helper for vm_radix_reclaim_allnodes(). 304 * This function is recursive. 305 */ 306 static void 307 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode) 308 { 309 int slot; 310 311 KASSERT(rnode->rn_count <= VM_RADIX_COUNT, 312 ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode)); 313 for (slot = 0; rnode->rn_count != 0; slot++) { 314 if (rnode->rn_child[slot] == NULL) 315 continue; 316 if (!vm_radix_isleaf(rnode->rn_child[slot])) 317 vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]); 318 rnode->rn_child[slot] = NULL; 319 rnode->rn_count--; 320 } 321 vm_radix_node_put(rnode); 322 } 323 324 #ifdef INVARIANTS 325 /* 326 * Radix node zone destructor. 327 */ 328 static void 329 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused) 330 { 331 struct vm_radix_node *rnode; 332 int slot; 333 334 rnode = mem; 335 KASSERT(rnode->rn_count == 0, 336 ("vm_radix_node_put: rnode %p has %d children", rnode, 337 rnode->rn_count)); 338 for (slot = 0; slot < VM_RADIX_COUNT; slot++) 339 KASSERT(rnode->rn_child[slot] == NULL, 340 ("vm_radix_node_put: rnode %p has a child", rnode)); 341 } 342 #endif 343 344 /* 345 * Radix node zone initializer. 346 */ 347 static int 348 vm_radix_node_zone_init(void *mem, int size __unused, int flags __unused) 349 { 350 struct vm_radix_node *rnode; 351 352 rnode = mem; 353 memset(rnode->rn_child, 0, sizeof(rnode->rn_child)); 354 return (0); 355 } 356 357 /* 358 * Pre-allocate intermediate nodes from the UMA slab zone. 359 */ 360 static void 361 vm_radix_prealloc(void *arg __unused) 362 { 363 364 if (!uma_zone_reserve_kva(vm_radix_node_zone, cnt.v_page_count)) 365 panic("%s: unable to create new zone", __func__); 366 uma_prealloc(vm_radix_node_zone, cnt.v_page_count); 367 } 368 SYSINIT(vm_radix_prealloc, SI_SUB_KMEM, SI_ORDER_SECOND, vm_radix_prealloc, 369 NULL); 370 371 /* 372 * Initialize the UMA slab zone. 373 * Until vm_radix_prealloc() is called, the zone will be served by the 374 * UMA boot-time pre-allocated pool of pages. 375 */ 376 void 377 vm_radix_init(void) 378 { 379 380 vm_radix_node_zone = uma_zcreate("RADIX NODE", 381 sizeof(struct vm_radix_node), NULL, 382 #ifdef INVARIANTS 383 vm_radix_node_zone_dtor, 384 #else 385 NULL, 386 #endif 387 vm_radix_node_zone_init, NULL, VM_RADIX_PAD, UMA_ZONE_VM | 388 UMA_ZONE_NOFREE); 389 } 390 391 /* 392 * Inserts the key-value pair into the trie. 393 * Panics if the key already exists. 394 */ 395 void 396 vm_radix_insert(struct vm_radix *rtree, vm_page_t page) 397 { 398 vm_pindex_t index, newind; 399 void **parentp; 400 struct vm_radix_node *rnode, *tmp; 401 vm_page_t m; 402 int slot; 403 uint16_t clev; 404 405 index = page->pindex; 406 407 /* 408 * The owner of record for root is not really important because it 409 * will never be used. 410 */ 411 rnode = vm_radix_getroot(rtree); 412 if (rnode == NULL) { 413 rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF; 414 return; 415 } 416 parentp = (void **)&rtree->rt_root; 417 for (;;) { 418 if (vm_radix_isleaf(rnode)) { 419 m = vm_radix_topage(rnode); 420 if (m->pindex == index) 421 panic("%s: key %jx is already present", 422 __func__, (uintmax_t)index); 423 clev = vm_radix_keydiff(m->pindex, index); 424 tmp = vm_radix_node_get(vm_radix_trimkey(index, 425 clev - 1), 2, clev); 426 *parentp = tmp; 427 vm_radix_addpage(tmp, index, clev, page); 428 vm_radix_addpage(tmp, m->pindex, clev, m); 429 return; 430 } else if (vm_radix_keybarr(rnode, index)) 431 break; 432 slot = vm_radix_slot(index, rnode->rn_clev); 433 if (rnode->rn_child[slot] == NULL) { 434 rnode->rn_count++; 435 vm_radix_addpage(rnode, index, rnode->rn_clev, page); 436 return; 437 } 438 parentp = &rnode->rn_child[slot]; 439 rnode = rnode->rn_child[slot]; 440 } 441 442 /* 443 * A new node is needed because the right insertion level is reached. 444 * Setup the new intermediate node and add the 2 children: the 445 * new object and the older edge. 446 */ 447 newind = rnode->rn_owner; 448 clev = vm_radix_keydiff(newind, index); 449 tmp = vm_radix_node_get(vm_radix_trimkey(index, clev - 1), 2, 450 clev); 451 *parentp = tmp; 452 vm_radix_addpage(tmp, index, clev, page); 453 slot = vm_radix_slot(newind, clev); 454 tmp->rn_child[slot] = rnode; 455 } 456 457 /* 458 * Returns the value stored at the index. If the index is not present, 459 * NULL is returned. 460 */ 461 vm_page_t 462 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index) 463 { 464 struct vm_radix_node *rnode; 465 vm_page_t m; 466 int slot; 467 468 rnode = vm_radix_getroot(rtree); 469 while (rnode != NULL) { 470 if (vm_radix_isleaf(rnode)) { 471 m = vm_radix_topage(rnode); 472 if (m->pindex == index) 473 return (m); 474 else 475 break; 476 } else if (vm_radix_keybarr(rnode, index)) 477 break; 478 slot = vm_radix_slot(index, rnode->rn_clev); 479 rnode = rnode->rn_child[slot]; 480 } 481 return (NULL); 482 } 483 484 /* 485 * Look up the nearest entry at a position bigger than or equal to index. 486 */ 487 vm_page_t 488 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index) 489 { 490 vm_pindex_t inc; 491 vm_page_t m; 492 struct vm_radix_node *child, *rnode; 493 int slot; 494 uint16_t difflev; 495 boolean_t maplevels[VM_RADIX_LIMIT + 1]; 496 #ifdef INVARIANTS 497 int loops = 0; 498 #endif 499 500 rnode = vm_radix_getroot(rtree); 501 if (rnode == NULL) 502 return (NULL); 503 else if (vm_radix_isleaf(rnode)) { 504 m = vm_radix_topage(rnode); 505 if (m->pindex >= index) 506 return (m); 507 else 508 return (NULL); 509 } 510 restart: 511 KASSERT(++loops < 1000, ("%s: too many loops", __func__)); 512 for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++) 513 maplevels[difflev] = FALSE; 514 for (;;) { 515 maplevels[rnode->rn_clev] = TRUE; 516 517 /* 518 * If the keys differ before the current bisection node 519 * the search key might rollback to the earliest 520 * available bisection node, or to the smaller value 521 * in the current domain (if the owner is bigger than the 522 * search key). 523 * The maplevels array records any node has been seen 524 * at a given level. This aids the search for a valid 525 * bisection node. 526 */ 527 if (vm_radix_keybarr(rnode, index)) { 528 difflev = vm_radix_keydiff(index, rnode->rn_owner); 529 if (index > rnode->rn_owner) { 530 if (vm_radix_addlev(&index, maplevels, 531 difflev) > 0) 532 break; 533 } else 534 index = vm_radix_trimkey(rnode->rn_owner, 535 difflev); 536 rnode = vm_radix_getroot(rtree); 537 goto restart; 538 } 539 slot = vm_radix_slot(index, rnode->rn_clev); 540 child = rnode->rn_child[slot]; 541 if (vm_radix_isleaf(child)) { 542 m = vm_radix_topage(child); 543 if (m->pindex >= index) 544 return (m); 545 } else if (child != NULL) 546 goto descend; 547 548 /* 549 * Look for an available edge or page within the current 550 * bisection node. 551 */ 552 if (slot < (VM_RADIX_COUNT - 1)) { 553 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev); 554 index = vm_radix_trimkey(index, rnode->rn_clev); 555 do { 556 index += inc; 557 slot++; 558 child = rnode->rn_child[slot]; 559 if (vm_radix_isleaf(child)) { 560 m = vm_radix_topage(child); 561 if (m->pindex >= index) 562 return (m); 563 } else if (child != NULL) 564 goto descend; 565 } while (slot < (VM_RADIX_COUNT - 1)); 566 } 567 KASSERT(child == NULL || vm_radix_isleaf(child), 568 ("vm_radix_lookup_ge: child is radix node")); 569 570 /* 571 * If a valid page or edge bigger than the search slot is 572 * found in the traversal, skip to the next higher-level key. 573 */ 574 if (rnode->rn_clev == 0 || vm_radix_addlev(&index, maplevels, 575 rnode->rn_clev - 1) > 0) 576 break; 577 rnode = vm_radix_getroot(rtree); 578 goto restart; 579 descend: 580 rnode = child; 581 } 582 return (NULL); 583 } 584 585 /* 586 * Look up the nearest entry at a position less than or equal to index. 587 */ 588 vm_page_t 589 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index) 590 { 591 vm_pindex_t inc; 592 vm_page_t m; 593 struct vm_radix_node *child, *rnode; 594 int slot; 595 uint16_t difflev; 596 boolean_t maplevels[VM_RADIX_LIMIT + 1]; 597 #ifdef INVARIANTS 598 int loops = 0; 599 #endif 600 601 rnode = vm_radix_getroot(rtree); 602 if (rnode == NULL) 603 return (NULL); 604 else if (vm_radix_isleaf(rnode)) { 605 m = vm_radix_topage(rnode); 606 if (m->pindex <= index) 607 return (m); 608 else 609 return (NULL); 610 } 611 restart: 612 KASSERT(++loops < 1000, ("%s: too many loops", __func__)); 613 for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++) 614 maplevels[difflev] = FALSE; 615 for (;;) { 616 maplevels[rnode->rn_clev] = TRUE; 617 618 /* 619 * If the keys differ before the current bisection node 620 * the search key might rollback to the earliest 621 * available bisection node, or to the higher value 622 * in the current domain (if the owner is smaller than the 623 * search key). 624 * The maplevels array records any node has been seen 625 * at a given level. This aids the search for a valid 626 * bisection node. 627 */ 628 if (vm_radix_keybarr(rnode, index)) { 629 difflev = vm_radix_keydiff(index, rnode->rn_owner); 630 if (index > rnode->rn_owner) { 631 index = vm_radix_trimkey(rnode->rn_owner, 632 difflev); 633 index |= VM_RADIX_UNITLEVEL(difflev) - 1; 634 } else if (vm_radix_declev(&index, maplevels, 635 difflev) > 0) 636 break; 637 rnode = vm_radix_getroot(rtree); 638 goto restart; 639 } 640 slot = vm_radix_slot(index, rnode->rn_clev); 641 child = rnode->rn_child[slot]; 642 if (vm_radix_isleaf(child)) { 643 m = vm_radix_topage(child); 644 if (m->pindex <= index) 645 return (m); 646 } else if (child != NULL) 647 goto descend; 648 649 /* 650 * Look for an available edge or page within the current 651 * bisection node. 652 */ 653 if (slot > 0) { 654 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev); 655 index = vm_radix_trimkey(index, rnode->rn_clev); 656 index |= inc - 1; 657 do { 658 index -= inc; 659 slot--; 660 child = rnode->rn_child[slot]; 661 if (vm_radix_isleaf(child)) { 662 m = vm_radix_topage(child); 663 if (m->pindex <= index) 664 return (m); 665 } else if (child != NULL) 666 goto descend; 667 } while (slot > 0); 668 } 669 KASSERT(child == NULL || vm_radix_isleaf(child), 670 ("vm_radix_lookup_le: child is radix node")); 671 672 /* 673 * If a valid page or edge smaller than the search slot is 674 * found in the traversal, skip to the next higher-level key. 675 */ 676 if (rnode->rn_clev == 0 || vm_radix_declev(&index, maplevels, 677 rnode->rn_clev - 1) > 0) 678 break; 679 rnode = vm_radix_getroot(rtree); 680 goto restart; 681 descend: 682 rnode = child; 683 } 684 return (NULL); 685 } 686 687 /* 688 * Remove the specified index from the tree. 689 * Panics if the key is not present. 690 */ 691 void 692 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index) 693 { 694 struct vm_radix_node *rnode, *parent; 695 vm_page_t m; 696 int i, slot; 697 698 rnode = vm_radix_getroot(rtree); 699 if (vm_radix_isleaf(rnode)) { 700 m = vm_radix_topage(rnode); 701 if (m->pindex != index) 702 panic("%s: invalid key found", __func__); 703 vm_radix_setroot(rtree, NULL); 704 return; 705 } 706 parent = NULL; 707 for (;;) { 708 if (rnode == NULL) 709 panic("vm_radix_remove: impossible to locate the key"); 710 slot = vm_radix_slot(index, rnode->rn_clev); 711 if (vm_radix_isleaf(rnode->rn_child[slot])) { 712 m = vm_radix_topage(rnode->rn_child[slot]); 713 if (m->pindex != index) 714 panic("%s: invalid key found", __func__); 715 rnode->rn_child[slot] = NULL; 716 rnode->rn_count--; 717 if (rnode->rn_count > 1) 718 break; 719 for (i = 0; i < VM_RADIX_COUNT; i++) 720 if (rnode->rn_child[i] != NULL) 721 break; 722 KASSERT(i != VM_RADIX_COUNT, 723 ("%s: invalid node configuration", __func__)); 724 if (parent == NULL) 725 vm_radix_setroot(rtree, rnode->rn_child[i]); 726 else { 727 slot = vm_radix_slot(index, parent->rn_clev); 728 KASSERT(parent->rn_child[slot] == rnode, 729 ("%s: invalid child value", __func__)); 730 parent->rn_child[slot] = rnode->rn_child[i]; 731 } 732 rnode->rn_count--; 733 rnode->rn_child[i] = NULL; 734 vm_radix_node_put(rnode); 735 break; 736 } 737 parent = rnode; 738 rnode = rnode->rn_child[slot]; 739 } 740 } 741 742 /* 743 * Remove and free all the nodes from the radix tree. 744 * This function is recursive but there is a tight control on it as the 745 * maximum depth of the tree is fixed. 746 */ 747 void 748 vm_radix_reclaim_allnodes(struct vm_radix *rtree) 749 { 750 struct vm_radix_node *root; 751 752 root = vm_radix_getroot(rtree); 753 if (root == NULL) 754 return; 755 vm_radix_setroot(rtree, NULL); 756 if (!vm_radix_isleaf(root)) 757 vm_radix_reclaim_allnodes_int(root); 758 } 759 760 #ifdef DDB 761 /* 762 * Show details about the given radix node. 763 */ 764 DB_SHOW_COMMAND(radixnode, db_show_radixnode) 765 { 766 struct vm_radix_node *rnode; 767 int i; 768 769 if (!have_addr) 770 return; 771 rnode = (struct vm_radix_node *)addr; 772 db_printf("radixnode %p, owner %jx, children count %u, level %u:\n", 773 (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count, 774 rnode->rn_clev); 775 for (i = 0; i < VM_RADIX_COUNT; i++) 776 if (rnode->rn_child[i] != NULL) 777 db_printf("slot: %d, val: %p, page: %p, clev: %d\n", 778 i, (void *)rnode->rn_child[i], 779 vm_radix_isleaf(rnode->rn_child[i]) ? 780 vm_radix_topage(rnode->rn_child[i]) : NULL, 781 rnode->rn_clev); 782 } 783 #endif /* DDB */ 784