xref: /freebsd/sys/vm/vm_radix.c (revision 0cdfe2ae89834a1a4b3468bfac870941ee17f2d5)
1 /*
2  * Copyright (c) 2013 EMC Corp.
3  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
4  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 /*
31  * Path-compressed radix trie implementation.
32  * The following code is not generalized into a general purpose library
33  * because there are way too many parameters embedded that should really
34  * be decided by the library consumers.  At the same time, consumers
35  * of this code must achieve highest possible performance.
36  *
37  * The implementation takes into account the following rationale:
38  * - Size of the nodes should be as small as possible but still big enough
39  *   to avoid a large maximum depth for the trie.  This is a balance
40  *   between the necessity to not wire too much physical memory for the nodes
41  *   and the necessity to avoid too much cache pollution during the trie
42  *   operations.
43  * - There is not a huge bias toward the number of lookup operations over
44  *   the number of insert and remove operations.  This basically implies
45  *   that optimizations supposedly helping one operation but hurting the
46  *   other might be carefully evaluated.
47  * - On average not many nodes are expected to be fully populated, hence
48  *   level compression may just complicate things.
49  */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include "opt_ddb.h"
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/vmmeter.h>
60 
61 #include <vm/uma.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_radix.h>
66 
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70 
71 /*
72  * These widths should allow the pointers to a node's children to fit within
73  * a single cache line.  The extra levels from a narrow width should not be
74  * a problem thanks to path compression.
75  */
76 #ifdef __LP64__
77 #define	VM_RADIX_WIDTH	4
78 #else
79 #define	VM_RADIX_WIDTH	3
80 #endif
81 
82 #define	VM_RADIX_COUNT	(1 << VM_RADIX_WIDTH)
83 #define	VM_RADIX_MASK	(VM_RADIX_COUNT - 1)
84 #define	VM_RADIX_LIMIT							\
85 	(howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1)
86 
87 /* Flag bits stored in node pointers. */
88 #define	VM_RADIX_ISLEAF	0x1
89 #define	VM_RADIX_FLAGS	0x1
90 #define	VM_RADIX_PAD	VM_RADIX_FLAGS
91 
92 /* Returns one unit associated with specified level. */
93 #define	VM_RADIX_UNITLEVEL(lev)						\
94 	((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
95 
96 struct vm_radix_node {
97 	vm_pindex_t	 rn_owner;			/* Owner of record. */
98 	uint16_t	 rn_count;			/* Valid children. */
99 	uint16_t	 rn_clev;			/* Current level. */
100 	void		*rn_child[VM_RADIX_COUNT];	/* Child nodes. */
101 };
102 
103 static uma_zone_t vm_radix_node_zone;
104 
105 /*
106  * Allocate a radix node.
107  */
108 static __inline struct vm_radix_node *
109 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
110 {
111 	struct vm_radix_node *rnode;
112 
113 	rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO);
114 	if (rnode == NULL)
115 		return (NULL);
116 	rnode->rn_owner = owner;
117 	rnode->rn_count = count;
118 	rnode->rn_clev = clevel;
119 	return (rnode);
120 }
121 
122 /*
123  * Free radix node.
124  */
125 static __inline void
126 vm_radix_node_put(struct vm_radix_node *rnode)
127 {
128 
129 	uma_zfree(vm_radix_node_zone, rnode);
130 }
131 
132 /*
133  * Return the position in the array for a given level.
134  */
135 static __inline int
136 vm_radix_slot(vm_pindex_t index, uint16_t level)
137 {
138 
139 	return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
140 }
141 
142 /* Trims the key after the specified level. */
143 static __inline vm_pindex_t
144 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
145 {
146 	vm_pindex_t ret;
147 
148 	ret = index;
149 	if (level > 0) {
150 		ret >>= level * VM_RADIX_WIDTH;
151 		ret <<= level * VM_RADIX_WIDTH;
152 	}
153 	return (ret);
154 }
155 
156 /*
157  * Get the root node for a radix tree.
158  */
159 static __inline struct vm_radix_node *
160 vm_radix_getroot(struct vm_radix *rtree)
161 {
162 
163 	return ((struct vm_radix_node *)rtree->rt_root);
164 }
165 
166 /*
167  * Set the root node for a radix tree.
168  */
169 static __inline void
170 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
171 {
172 
173 	rtree->rt_root = (uintptr_t)rnode;
174 }
175 
176 /*
177  * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
178  */
179 static __inline boolean_t
180 vm_radix_isleaf(struct vm_radix_node *rnode)
181 {
182 
183 	return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
184 }
185 
186 /*
187  * Returns the associated page extracted from rnode.
188  */
189 static __inline vm_page_t
190 vm_radix_topage(struct vm_radix_node *rnode)
191 {
192 
193 	return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
194 }
195 
196 /*
197  * Adds the page as a child of the provided node.
198  */
199 static __inline void
200 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
201     vm_page_t page)
202 {
203 	int slot;
204 
205 	slot = vm_radix_slot(index, clev);
206 	rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
207 }
208 
209 /*
210  * Returns the slot where two keys differ.
211  * It cannot accept 2 equal keys.
212  */
213 static __inline uint16_t
214 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
215 {
216 	uint16_t clev;
217 
218 	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
219 	    __func__, (uintmax_t)index1));
220 
221 	index1 ^= index2;
222 	for (clev = VM_RADIX_LIMIT;; clev--)
223 		if (vm_radix_slot(index1, clev) != 0)
224 			return (clev);
225 }
226 
227 /*
228  * Returns TRUE if it can be determined that key does not belong to the
229  * specified rnode.  Otherwise, returns FALSE.
230  */
231 static __inline boolean_t
232 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
233 {
234 
235 	if (rnode->rn_clev < VM_RADIX_LIMIT) {
236 		idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
237 		return (idx != rnode->rn_owner);
238 	}
239 	return (FALSE);
240 }
241 
242 /*
243  * Internal helper for vm_radix_reclaim_allnodes().
244  * This function is recursive.
245  */
246 static void
247 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
248 {
249 	int slot;
250 
251 	KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
252 	    ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
253 	for (slot = 0; rnode->rn_count != 0; slot++) {
254 		if (rnode->rn_child[slot] == NULL)
255 			continue;
256 		if (!vm_radix_isleaf(rnode->rn_child[slot]))
257 			vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
258 		rnode->rn_child[slot] = NULL;
259 		rnode->rn_count--;
260 	}
261 	vm_radix_node_put(rnode);
262 }
263 
264 #ifdef INVARIANTS
265 /*
266  * Radix node zone destructor.
267  */
268 static void
269 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
270 {
271 	struct vm_radix_node *rnode;
272 	int slot;
273 
274 	rnode = mem;
275 	KASSERT(rnode->rn_count == 0,
276 	    ("vm_radix_node_put: rnode %p has %d children", rnode,
277 	    rnode->rn_count));
278 	for (slot = 0; slot < VM_RADIX_COUNT; slot++)
279 		KASSERT(rnode->rn_child[slot] == NULL,
280 		    ("vm_radix_node_put: rnode %p has a child", rnode));
281 }
282 #endif
283 
284 #ifndef UMA_MD_SMALL_ALLOC
285 /*
286  * Reserve the KVA necessary to satisfy the node allocation.
287  * This is mandatory in architectures not supporting direct
288  * mapping as they will need otherwise to carve into the kernel maps for
289  * every node allocation, resulting into deadlocks for consumers already
290  * working with kernel maps.
291  */
292 static void
293 vm_radix_reserve_kva(void *arg __unused)
294 {
295 
296 	/*
297 	 * Calculate the number of reserved nodes, discounting the pages that
298 	 * are needed to store them.
299 	 */
300 	if (!uma_zone_reserve_kva(vm_radix_node_zone,
301 	    ((vm_paddr_t)cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
302 	    sizeof(struct vm_radix_node))))
303 		panic("%s: unable to reserve KVA", __func__);
304 }
305 SYSINIT(vm_radix_reserve_kva, SI_SUB_KMEM, SI_ORDER_SECOND,
306     vm_radix_reserve_kva, NULL);
307 #endif
308 
309 /*
310  * Initialize the UMA slab zone.
311  * Until vm_radix_prealloc() is called, the zone will be served by the
312  * UMA boot-time pre-allocated pool of pages.
313  */
314 void
315 vm_radix_init(void)
316 {
317 
318 	vm_radix_node_zone = uma_zcreate("RADIX NODE",
319 	    sizeof(struct vm_radix_node), NULL,
320 #ifdef INVARIANTS
321 	    vm_radix_node_zone_dtor,
322 #else
323 	    NULL,
324 #endif
325 	    NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
326 }
327 
328 /*
329  * Inserts the key-value pair into the trie.
330  * Panics if the key already exists.
331  */
332 int
333 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
334 {
335 	vm_pindex_t index, newind;
336 	void **parentp;
337 	struct vm_radix_node *rnode, *tmp;
338 	vm_page_t m;
339 	int slot;
340 	uint16_t clev;
341 
342 	index = page->pindex;
343 
344 restart:
345 
346 	/*
347 	 * The owner of record for root is not really important because it
348 	 * will never be used.
349 	 */
350 	rnode = vm_radix_getroot(rtree);
351 	if (rnode == NULL) {
352 		rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
353 		return (0);
354 	}
355 	parentp = (void **)&rtree->rt_root;
356 	for (;;) {
357 		if (vm_radix_isleaf(rnode)) {
358 			m = vm_radix_topage(rnode);
359 			if (m->pindex == index)
360 				panic("%s: key %jx is already present",
361 				    __func__, (uintmax_t)index);
362 			clev = vm_radix_keydiff(m->pindex, index);
363 
364 			/*
365 			 * During node allocation the trie that is being
366 			 * walked can be modified because of recursing radix
367 			 * trie operations.
368 			 * If this is the case, the recursing functions signal
369 			 * such situation and the insert operation must
370 			 * start from scratch again.
371 			 * The freed radix node will then be in the UMA
372 			 * caches very likely to avoid the same situation
373 			 * to happen.
374 			 */
375 			rtree->rt_flags |= RT_INSERT_INPROG;
376 			tmp = vm_radix_node_get(vm_radix_trimkey(index,
377 			    clev + 1), 2, clev);
378 			rtree->rt_flags &= ~RT_INSERT_INPROG;
379 			if (tmp == NULL) {
380 				rtree->rt_flags &= ~RT_TRIE_MODIFIED;
381 				return (ENOMEM);
382 			}
383 			if ((rtree->rt_flags & RT_TRIE_MODIFIED) != 0) {
384 				rtree->rt_flags &= ~RT_TRIE_MODIFIED;
385 				tmp->rn_count = 0;
386 				vm_radix_node_put(tmp);
387 				goto restart;
388 			}
389 			*parentp = tmp;
390 			vm_radix_addpage(tmp, index, clev, page);
391 			vm_radix_addpage(tmp, m->pindex, clev, m);
392 			return (0);
393 		} else if (vm_radix_keybarr(rnode, index))
394 			break;
395 		slot = vm_radix_slot(index, rnode->rn_clev);
396 		if (rnode->rn_child[slot] == NULL) {
397 			rnode->rn_count++;
398 			vm_radix_addpage(rnode, index, rnode->rn_clev, page);
399 			return (0);
400 		}
401 		parentp = &rnode->rn_child[slot];
402 		rnode = rnode->rn_child[slot];
403 	}
404 
405 	/*
406 	 * A new node is needed because the right insertion level is reached.
407 	 * Setup the new intermediate node and add the 2 children: the
408 	 * new object and the older edge.
409 	 */
410 	newind = rnode->rn_owner;
411 	clev = vm_radix_keydiff(newind, index);
412 
413 	/* See the comments above. */
414 	rtree->rt_flags |= RT_INSERT_INPROG;
415 	tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
416 	rtree->rt_flags &= ~RT_INSERT_INPROG;
417 	if (tmp == NULL) {
418 		rtree->rt_flags &= ~RT_TRIE_MODIFIED;
419 		return (ENOMEM);
420 	}
421 	if ((rtree->rt_flags & RT_TRIE_MODIFIED) != 0) {
422 		rtree->rt_flags &= ~RT_TRIE_MODIFIED;
423 		tmp->rn_count = 0;
424 		vm_radix_node_put(tmp);
425 		goto restart;
426 	}
427 	*parentp = tmp;
428 	vm_radix_addpage(tmp, index, clev, page);
429 	slot = vm_radix_slot(newind, clev);
430 	tmp->rn_child[slot] = rnode;
431 	return (0);
432 }
433 
434 /*
435  * Returns the value stored at the index.  If the index is not present,
436  * NULL is returned.
437  */
438 vm_page_t
439 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
440 {
441 	struct vm_radix_node *rnode;
442 	vm_page_t m;
443 	int slot;
444 
445 	rnode = vm_radix_getroot(rtree);
446 	while (rnode != NULL) {
447 		if (vm_radix_isleaf(rnode)) {
448 			m = vm_radix_topage(rnode);
449 			if (m->pindex == index)
450 				return (m);
451 			else
452 				break;
453 		} else if (vm_radix_keybarr(rnode, index))
454 			break;
455 		slot = vm_radix_slot(index, rnode->rn_clev);
456 		rnode = rnode->rn_child[slot];
457 	}
458 	return (NULL);
459 }
460 
461 /*
462  * Look up the nearest entry at a position bigger than or equal to index.
463  */
464 vm_page_t
465 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
466 {
467 	struct vm_radix_node *stack[VM_RADIX_LIMIT];
468 	vm_pindex_t inc;
469 	vm_page_t m;
470 	struct vm_radix_node *child, *rnode;
471 #ifdef INVARIANTS
472 	int loops = 0;
473 #endif
474 	int slot, tos;
475 
476 	rnode = vm_radix_getroot(rtree);
477 	if (rnode == NULL)
478 		return (NULL);
479 	else if (vm_radix_isleaf(rnode)) {
480 		m = vm_radix_topage(rnode);
481 		if (m->pindex >= index)
482 			return (m);
483 		else
484 			return (NULL);
485 	}
486 	tos = 0;
487 	for (;;) {
488 		/*
489 		 * If the keys differ before the current bisection node,
490 		 * then the search key might rollback to the earliest
491 		 * available bisection node or to the smallest key
492 		 * in the current node (if the owner is bigger than the
493 		 * search key).
494 		 */
495 		if (vm_radix_keybarr(rnode, index)) {
496 			if (index > rnode->rn_owner) {
497 ascend:
498 				KASSERT(++loops < 1000,
499 				    ("vm_radix_lookup_ge: too many loops"));
500 
501 				/*
502 				 * Pop nodes from the stack until either the
503 				 * stack is empty or a node that could have a
504 				 * matching descendant is found.
505 				 */
506 				do {
507 					if (tos == 0)
508 						return (NULL);
509 					rnode = stack[--tos];
510 				} while (vm_radix_slot(index,
511 				    rnode->rn_clev) == (VM_RADIX_COUNT - 1));
512 
513 				/*
514 				 * The following computation cannot overflow
515 				 * because index's slot at the current level
516 				 * is less than VM_RADIX_COUNT - 1.
517 				 */
518 				index = vm_radix_trimkey(index,
519 				    rnode->rn_clev);
520 				index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
521 			} else
522 				index = rnode->rn_owner;
523 			KASSERT(!vm_radix_keybarr(rnode, index),
524 			    ("vm_radix_lookup_ge: keybarr failed"));
525 		}
526 		slot = vm_radix_slot(index, rnode->rn_clev);
527 		child = rnode->rn_child[slot];
528 		if (vm_radix_isleaf(child)) {
529 			m = vm_radix_topage(child);
530 			if (m->pindex >= index)
531 				return (m);
532 		} else if (child != NULL)
533 			goto descend;
534 
535 		/*
536 		 * Look for an available edge or page within the current
537 		 * bisection node.
538 		 */
539                 if (slot < (VM_RADIX_COUNT - 1)) {
540 			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
541 			index = vm_radix_trimkey(index, rnode->rn_clev);
542 			do {
543 				index += inc;
544 				slot++;
545 				child = rnode->rn_child[slot];
546 				if (vm_radix_isleaf(child)) {
547 					m = vm_radix_topage(child);
548 					if (m->pindex >= index)
549 						return (m);
550 				} else if (child != NULL)
551 					goto descend;
552 			} while (slot < (VM_RADIX_COUNT - 1));
553 		}
554 		KASSERT(child == NULL || vm_radix_isleaf(child),
555 		    ("vm_radix_lookup_ge: child is radix node"));
556 
557 		/*
558 		 * If a page or edge bigger than the search slot is not found
559 		 * in the current node, ascend to the next higher-level node.
560 		 */
561 		goto ascend;
562 descend:
563 		KASSERT(rnode->rn_clev > 0,
564 		    ("vm_radix_lookup_ge: pushing leaf's parent"));
565 		KASSERT(tos < VM_RADIX_LIMIT,
566 		    ("vm_radix_lookup_ge: stack overflow"));
567 		stack[tos++] = rnode;
568 		rnode = child;
569 	}
570 }
571 
572 /*
573  * Look up the nearest entry at a position less than or equal to index.
574  */
575 vm_page_t
576 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
577 {
578 	struct vm_radix_node *stack[VM_RADIX_LIMIT];
579 	vm_pindex_t inc;
580 	vm_page_t m;
581 	struct vm_radix_node *child, *rnode;
582 #ifdef INVARIANTS
583 	int loops = 0;
584 #endif
585 	int slot, tos;
586 
587 	rnode = vm_radix_getroot(rtree);
588 	if (rnode == NULL)
589 		return (NULL);
590 	else if (vm_radix_isleaf(rnode)) {
591 		m = vm_radix_topage(rnode);
592 		if (m->pindex <= index)
593 			return (m);
594 		else
595 			return (NULL);
596 	}
597 	tos = 0;
598 	for (;;) {
599 		/*
600 		 * If the keys differ before the current bisection node,
601 		 * then the search key might rollback to the earliest
602 		 * available bisection node or to the largest key
603 		 * in the current node (if the owner is smaller than the
604 		 * search key).
605 		 */
606 		if (vm_radix_keybarr(rnode, index)) {
607 			if (index > rnode->rn_owner) {
608 				index = rnode->rn_owner + VM_RADIX_COUNT *
609 				    VM_RADIX_UNITLEVEL(rnode->rn_clev);
610 			} else {
611 ascend:
612 				KASSERT(++loops < 1000,
613 				    ("vm_radix_lookup_le: too many loops"));
614 
615 				/*
616 				 * Pop nodes from the stack until either the
617 				 * stack is empty or a node that could have a
618 				 * matching descendant is found.
619 				 */
620 				do {
621 					if (tos == 0)
622 						return (NULL);
623 					rnode = stack[--tos];
624 				} while (vm_radix_slot(index,
625 				    rnode->rn_clev) == 0);
626 
627 				/*
628 				 * The following computation cannot overflow
629 				 * because index's slot at the current level
630 				 * is greater than 0.
631 				 */
632 				index = vm_radix_trimkey(index,
633 				    rnode->rn_clev);
634 			}
635 			index--;
636 			KASSERT(!vm_radix_keybarr(rnode, index),
637 			    ("vm_radix_lookup_le: keybarr failed"));
638 		}
639 		slot = vm_radix_slot(index, rnode->rn_clev);
640 		child = rnode->rn_child[slot];
641 		if (vm_radix_isleaf(child)) {
642 			m = vm_radix_topage(child);
643 			if (m->pindex <= index)
644 				return (m);
645 		} else if (child != NULL)
646 			goto descend;
647 
648 		/*
649 		 * Look for an available edge or page within the current
650 		 * bisection node.
651 		 */
652 		if (slot > 0) {
653 			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
654 			index |= inc - 1;
655 			do {
656 				index -= inc;
657 				slot--;
658 				child = rnode->rn_child[slot];
659 				if (vm_radix_isleaf(child)) {
660 					m = vm_radix_topage(child);
661 					if (m->pindex <= index)
662 						return (m);
663 				} else if (child != NULL)
664 					goto descend;
665 			} while (slot > 0);
666 		}
667 		KASSERT(child == NULL || vm_radix_isleaf(child),
668 		    ("vm_radix_lookup_le: child is radix node"));
669 
670 		/*
671 		 * If a page or edge smaller than the search slot is not found
672 		 * in the current node, ascend to the next higher-level node.
673 		 */
674 		goto ascend;
675 descend:
676 		KASSERT(rnode->rn_clev > 0,
677 		    ("vm_radix_lookup_le: pushing leaf's parent"));
678 		KASSERT(tos < VM_RADIX_LIMIT,
679 		    ("vm_radix_lookup_le: stack overflow"));
680 		stack[tos++] = rnode;
681 		rnode = child;
682 	}
683 }
684 
685 /*
686  * Remove the specified index from the tree.
687  * Panics if the key is not present.
688  */
689 void
690 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
691 {
692 	struct vm_radix_node *rnode, *parent;
693 	vm_page_t m;
694 	int i, slot;
695 
696 	/*
697 	 * Detect if a page is going to be removed from a trie which is
698 	 * already undergoing another trie operation.
699 	 * Right now this is only possible for vm_radix_remove() recursing
700 	 * into vm_radix_insert().
701 	 * If this is the case, the caller must be notified about this
702 	 * situation.  It will also takecare to update the RT_TRIE_MODIFIED
703 	 * accordingly.
704 	 * The RT_TRIE_MODIFIED bit is set here because the remove operation
705 	 * will always succeed.
706 	 */
707 	if ((rtree->rt_flags & RT_INSERT_INPROG) != 0)
708 		rtree->rt_flags |= RT_TRIE_MODIFIED;
709 
710 	rnode = vm_radix_getroot(rtree);
711 	if (vm_radix_isleaf(rnode)) {
712 		m = vm_radix_topage(rnode);
713 		if (m->pindex != index)
714 			panic("%s: invalid key found", __func__);
715 		vm_radix_setroot(rtree, NULL);
716 		return;
717 	}
718 	parent = NULL;
719 	for (;;) {
720 		if (rnode == NULL)
721 			panic("vm_radix_remove: impossible to locate the key");
722 		slot = vm_radix_slot(index, rnode->rn_clev);
723 		if (vm_radix_isleaf(rnode->rn_child[slot])) {
724 			m = vm_radix_topage(rnode->rn_child[slot]);
725 			if (m->pindex != index)
726 				panic("%s: invalid key found", __func__);
727 			rnode->rn_child[slot] = NULL;
728 			rnode->rn_count--;
729 			if (rnode->rn_count > 1)
730 				break;
731 			for (i = 0; i < VM_RADIX_COUNT; i++)
732 				if (rnode->rn_child[i] != NULL)
733 					break;
734 			KASSERT(i != VM_RADIX_COUNT,
735 			    ("%s: invalid node configuration", __func__));
736 			if (parent == NULL)
737 				vm_radix_setroot(rtree, rnode->rn_child[i]);
738 			else {
739 				slot = vm_radix_slot(index, parent->rn_clev);
740 				KASSERT(parent->rn_child[slot] == rnode,
741 				    ("%s: invalid child value", __func__));
742 				parent->rn_child[slot] = rnode->rn_child[i];
743 			}
744 			rnode->rn_count--;
745 			rnode->rn_child[i] = NULL;
746 			vm_radix_node_put(rnode);
747 			break;
748 		}
749 		parent = rnode;
750 		rnode = rnode->rn_child[slot];
751 	}
752 }
753 
754 /*
755  * Remove and free all the nodes from the radix tree.
756  * This function is recursive but there is a tight control on it as the
757  * maximum depth of the tree is fixed.
758  */
759 void
760 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
761 {
762 	struct vm_radix_node *root;
763 
764 	KASSERT((rtree->rt_flags & RT_INSERT_INPROG) == 0,
765 	    ("vm_radix_reclaim_allnodes: unexpected trie recursion"));
766 
767 	root = vm_radix_getroot(rtree);
768 	if (root == NULL)
769 		return;
770 	vm_radix_setroot(rtree, NULL);
771 	if (!vm_radix_isleaf(root))
772 		vm_radix_reclaim_allnodes_int(root);
773 }
774 
775 /*
776  * Replace an existing page into the trie with another one.
777  * Panics if the replacing page is not present or if the new page has an
778  * invalid key.
779  */
780 vm_page_t
781 vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage, vm_pindex_t index)
782 {
783 	struct vm_radix_node *rnode;
784 	vm_page_t m;
785 	int slot;
786 
787 	KASSERT(newpage->pindex == index, ("%s: newpage index invalid",
788 	    __func__));
789 
790 	rnode = vm_radix_getroot(rtree);
791 	if (rnode == NULL)
792 		panic("%s: replacing page on an empty trie", __func__);
793 	if (vm_radix_isleaf(rnode)) {
794 		m = vm_radix_topage(rnode);
795 		if (m->pindex != index)
796 			panic("%s: original replacing root key not found",
797 			    __func__);
798 		rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
799 		return (m);
800 	}
801 	for (;;) {
802 		slot = vm_radix_slot(index, rnode->rn_clev);
803 		if (vm_radix_isleaf(rnode->rn_child[slot])) {
804 			m = vm_radix_topage(rnode->rn_child[slot]);
805 			if (m->pindex == index) {
806 				rnode->rn_child[slot] =
807 				    (void *)((uintptr_t)newpage |
808 				    VM_RADIX_ISLEAF);
809 				return (m);
810 			} else
811 				break;
812 		} else if (rnode->rn_child[slot] == NULL ||
813 		    vm_radix_keybarr(rnode->rn_child[slot], index))
814 			break;
815 		rnode = rnode->rn_child[slot];
816 	}
817 	panic("%s: original replacing page not found", __func__);
818 }
819 
820 #ifdef DDB
821 /*
822  * Show details about the given radix node.
823  */
824 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
825 {
826 	struct vm_radix_node *rnode;
827 	int i;
828 
829         if (!have_addr)
830                 return;
831 	rnode = (struct vm_radix_node *)addr;
832 	db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
833 	    (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
834 	    rnode->rn_clev);
835 	for (i = 0; i < VM_RADIX_COUNT; i++)
836 		if (rnode->rn_child[i] != NULL)
837 			db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
838 			    i, (void *)rnode->rn_child[i],
839 			    vm_radix_isleaf(rnode->rn_child[i]) ?
840 			    vm_radix_topage(rnode->rn_child[i]) : NULL,
841 			    rnode->rn_clev);
842 }
843 #endif /* DDB */
844