xref: /freebsd/sys/vm/vm_radix.c (revision 0772266e638b0b33e816febac50777b942192b7c)
1 /*
2  * Copyright (c) 2013 EMC Corp.
3  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
4  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 /*
31  * Path-compressed radix trie implementation.
32  * The following code is not generalized into a general purpose library
33  * because there are way too many parameters embedded that should really
34  * be decided by the library consumers.  At the same time, consumers
35  * of this code must achieve highest possible performance.
36  *
37  * The implementation takes into account the following rationale:
38  * - Size of the nodes should be as small as possible but still big enough
39  *   to avoid a large maximum depth for the trie.  This is a balance
40  *   between the necessity to not wire too much physical memory for the nodes
41  *   and the necessity to avoid too much cache pollution during the trie
42  *   operations.
43  * - There is not a huge bias toward the number of lookup operations over
44  *   the number of insert and remove operations.  This basically implies
45  *   that optimizations supposedly helping one operation but hurting the
46  *   other might be carefully evaluated.
47  * - On average not many nodes are expected to be fully populated, hence
48  *   level compression may just complicate things.
49  */
50 
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53 
54 #include "opt_ddb.h"
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/vmmeter.h>
60 
61 #include <vm/uma.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_radix.h>
66 
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70 
71 /*
72  * These widths should allow the pointers to a node's children to fit within
73  * a single cache line.  The extra levels from a narrow width should not be
74  * a problem thanks to path compression.
75  */
76 #ifdef __LP64__
77 #define	VM_RADIX_WIDTH	4
78 #else
79 #define	VM_RADIX_WIDTH	3
80 #endif
81 
82 #define	VM_RADIX_COUNT	(1 << VM_RADIX_WIDTH)
83 #define	VM_RADIX_MASK	(VM_RADIX_COUNT - 1)
84 #define	VM_RADIX_LIMIT							\
85 	(howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1)
86 
87 /* Flag bits stored in node pointers. */
88 #define	VM_RADIX_ISLEAF	0x1
89 #define	VM_RADIX_FLAGS	0x1
90 #define	VM_RADIX_PAD	VM_RADIX_FLAGS
91 
92 /* Returns one unit associated with specified level. */
93 #define	VM_RADIX_UNITLEVEL(lev)						\
94 	((vm_pindex_t)1 << ((VM_RADIX_LIMIT - (lev)) * VM_RADIX_WIDTH))
95 
96 struct vm_radix_node {
97 	vm_pindex_t	 rn_owner;			/* Owner of record. */
98 	uint16_t	 rn_count;			/* Valid children. */
99 	uint16_t	 rn_clev;			/* Current level. */
100 	void		*rn_child[VM_RADIX_COUNT];	/* Child nodes. */
101 };
102 
103 static uma_zone_t vm_radix_node_zone;
104 
105 /*
106  * Allocate a radix node.  Pre-allocation should ensure that the request
107  * will always be satisfied.
108  */
109 static __inline struct vm_radix_node *
110 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
111 {
112 	struct vm_radix_node *rnode;
113 
114 	rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT);
115 
116 	/*
117 	 * The required number of nodes should already be pre-allocated
118 	 * by vm_radix_prealloc().  However, UMA can hold a few nodes
119 	 * in per-CPU buckets, which will not be accessible by the
120 	 * current CPU.  Thus, the allocation could return NULL when
121 	 * the pre-allocated pool is close to exhaustion.  Anyway,
122 	 * in practice this should never occur because a new node
123 	 * is not always required for insert.  Thus, the pre-allocated
124 	 * pool should have some extra pages that prevent this from
125 	 * becoming a problem.
126 	 */
127 	if (rnode == NULL)
128 		panic("%s: uma_zalloc() returned NULL for a new node",
129 		    __func__);
130 	rnode->rn_owner = owner;
131 	rnode->rn_count = count;
132 	rnode->rn_clev = clevel;
133 	return (rnode);
134 }
135 
136 /*
137  * Free radix node.
138  */
139 static __inline void
140 vm_radix_node_put(struct vm_radix_node *rnode)
141 {
142 
143 	uma_zfree(vm_radix_node_zone, rnode);
144 }
145 
146 /*
147  * Return the position in the array for a given level.
148  */
149 static __inline int
150 vm_radix_slot(vm_pindex_t index, uint16_t level)
151 {
152 
153 	return ((index >> ((VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH)) &
154 	    VM_RADIX_MASK);
155 }
156 
157 /* Trims the key after the specified level. */
158 static __inline vm_pindex_t
159 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
160 {
161 	vm_pindex_t ret;
162 
163 	ret = index;
164 	if (level < VM_RADIX_LIMIT) {
165 		ret >>= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH;
166 		ret <<= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH;
167 	}
168 	return (ret);
169 }
170 
171 /*
172  * Get the root node for a radix tree.
173  */
174 static __inline struct vm_radix_node *
175 vm_radix_getroot(struct vm_radix *rtree)
176 {
177 
178 	return ((struct vm_radix_node *)rtree->rt_root);
179 }
180 
181 /*
182  * Set the root node for a radix tree.
183  */
184 static __inline void
185 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
186 {
187 
188 	rtree->rt_root = (uintptr_t)rnode;
189 }
190 
191 /*
192  * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
193  */
194 static __inline boolean_t
195 vm_radix_isleaf(struct vm_radix_node *rnode)
196 {
197 
198 	return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
199 }
200 
201 /*
202  * Returns the associated page extracted from rnode.
203  */
204 static __inline vm_page_t
205 vm_radix_topage(struct vm_radix_node *rnode)
206 {
207 
208 	return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
209 }
210 
211 /*
212  * Adds the page as a child of the provided node.
213  */
214 static __inline void
215 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
216     vm_page_t page)
217 {
218 	int slot;
219 
220 	slot = vm_radix_slot(index, clev);
221 	rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
222 }
223 
224 /*
225  * Returns the slot where two keys differ.
226  * It cannot accept 2 equal keys.
227  */
228 static __inline uint16_t
229 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
230 {
231 	uint16_t clev;
232 
233 	KASSERT(index1 != index2, ("%s: passing the same key value %jx",
234 	    __func__, (uintmax_t)index1));
235 
236 	index1 ^= index2;
237 	for (clev = 0; clev <= VM_RADIX_LIMIT ; clev++)
238 		if (vm_radix_slot(index1, clev))
239 			return (clev);
240 	panic("%s: cannot reach this point", __func__);
241 	return (0);
242 }
243 
244 /*
245  * Returns TRUE if it can be determined that key does not belong to the
246  * specified rnode.  Otherwise, returns FALSE.
247  */
248 static __inline boolean_t
249 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
250 {
251 
252 	if (rnode->rn_clev > 0) {
253 		idx = vm_radix_trimkey(idx, rnode->rn_clev - 1);
254 		return (idx != rnode->rn_owner);
255 	}
256 	return (FALSE);
257 }
258 
259 /*
260  * Adjusts the idx key to the first upper level available, based on a valid
261  * initial level and map of available levels.
262  * Returns a value bigger than 0 to signal that there are not valid levels
263  * available.
264  */
265 static __inline int
266 vm_radix_addlev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev)
267 {
268 	vm_pindex_t wrapidx;
269 
270 	for (; levels[ilev] == FALSE ||
271 	    vm_radix_slot(*idx, ilev) == (VM_RADIX_COUNT - 1); ilev--)
272 		if (ilev == 0)
273 			return (1);
274 	wrapidx = *idx;
275 	*idx = vm_radix_trimkey(*idx, ilev);
276 	*idx += VM_RADIX_UNITLEVEL(ilev);
277 	return (*idx < wrapidx);
278 }
279 
280 /*
281  * Adjusts the idx key to the first lower level available, based on a valid
282  * initial level and map of available levels.
283  * Returns a value bigger than 0 to signal that there are not valid levels
284  * available.
285  */
286 static __inline int
287 vm_radix_declev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev)
288 {
289 	vm_pindex_t wrapidx;
290 
291 	for (; levels[ilev] == FALSE ||
292 	    vm_radix_slot(*idx, ilev) == 0; ilev--)
293 		if (ilev == 0)
294 			return (1);
295 	wrapidx = *idx;
296 	*idx = vm_radix_trimkey(*idx, ilev);
297 	*idx |= VM_RADIX_UNITLEVEL(ilev) - 1;
298 	*idx -= VM_RADIX_UNITLEVEL(ilev);
299 	return (*idx > wrapidx);
300 }
301 
302 /*
303  * Internal helper for vm_radix_reclaim_allnodes().
304  * This function is recursive.
305  */
306 static void
307 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
308 {
309 	int slot;
310 
311 	KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
312 	    ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
313 	for (slot = 0; rnode->rn_count != 0; slot++) {
314 		if (rnode->rn_child[slot] == NULL)
315 			continue;
316 		if (!vm_radix_isleaf(rnode->rn_child[slot]))
317 			vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
318 		rnode->rn_child[slot] = NULL;
319 		rnode->rn_count--;
320 	}
321 	vm_radix_node_put(rnode);
322 }
323 
324 #ifdef INVARIANTS
325 /*
326  * Radix node zone destructor.
327  */
328 static void
329 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
330 {
331 	struct vm_radix_node *rnode;
332 	int slot;
333 
334 	rnode = mem;
335 	KASSERT(rnode->rn_count == 0,
336 	    ("vm_radix_node_put: rnode %p has %d children", rnode,
337 	    rnode->rn_count));
338 	for (slot = 0; slot < VM_RADIX_COUNT; slot++)
339 		KASSERT(rnode->rn_child[slot] == NULL,
340 		    ("vm_radix_node_put: rnode %p has a child", rnode));
341 }
342 #endif
343 
344 /*
345  * Radix node zone initializer.
346  */
347 static int
348 vm_radix_node_zone_init(void *mem, int size __unused, int flags __unused)
349 {
350 	struct vm_radix_node *rnode;
351 
352 	rnode = mem;
353 	memset(rnode->rn_child, 0, sizeof(rnode->rn_child));
354 	return (0);
355 }
356 
357 /*
358  * Pre-allocate intermediate nodes from the UMA slab zone.
359  */
360 static void
361 vm_radix_prealloc(void *arg __unused)
362 {
363 
364 	if (!uma_zone_reserve_kva(vm_radix_node_zone, cnt.v_page_count))
365 		panic("%s: unable to create new zone", __func__);
366 	uma_prealloc(vm_radix_node_zone, cnt.v_page_count);
367 }
368 SYSINIT(vm_radix_prealloc, SI_SUB_KMEM, SI_ORDER_SECOND, vm_radix_prealloc,
369     NULL);
370 
371 /*
372  * Initialize the UMA slab zone.
373  * Until vm_radix_prealloc() is called, the zone will be served by the
374  * UMA boot-time pre-allocated pool of pages.
375  */
376 void
377 vm_radix_init(void)
378 {
379 
380 	vm_radix_node_zone = uma_zcreate("RADIX NODE",
381 	    sizeof(struct vm_radix_node), NULL,
382 #ifdef INVARIANTS
383 	    vm_radix_node_zone_dtor,
384 #else
385 	    NULL,
386 #endif
387 	    vm_radix_node_zone_init, NULL, VM_RADIX_PAD, UMA_ZONE_VM |
388 	    UMA_ZONE_NOFREE);
389 }
390 
391 /*
392  * Inserts the key-value pair into the trie.
393  * Panics if the key already exists.
394  */
395 void
396 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
397 {
398 	vm_pindex_t index, newind;
399 	struct vm_radix_node *parent, *rnode, *tmp;
400 	vm_page_t m;
401 	int slot;
402 	uint16_t clev;
403 
404 	index = page->pindex;
405 
406 	/*
407 	 * The owner of record for root is not really important because it
408 	 * will never be used.
409 	 */
410 	rnode = vm_radix_getroot(rtree);
411 	if (rnode == NULL) {
412 		rnode = vm_radix_node_get(0, 1, 0);
413 		vm_radix_setroot(rtree, rnode);
414 		vm_radix_addpage(rnode, index, 0, page);
415 		return;
416 	}
417 	do {
418 		slot = vm_radix_slot(index, rnode->rn_clev);
419 		if (vm_radix_isleaf(rnode->rn_child[slot])) {
420 			m = vm_radix_topage(rnode->rn_child[slot]);
421 			if (m->pindex == index)
422 				panic("%s: key %jx is already present",
423 				    __func__, (uintmax_t)index);
424 			clev = vm_radix_keydiff(m->pindex, index);
425 			tmp = vm_radix_node_get(vm_radix_trimkey(index,
426 			    clev - 1), 2, clev);
427 			rnode->rn_child[slot] = tmp;
428 			vm_radix_addpage(tmp, index, clev, page);
429 			vm_radix_addpage(tmp, m->pindex, clev, m);
430 			return;
431 		}
432 		if (rnode->rn_child[slot] == NULL) {
433 			rnode->rn_count++;
434 			vm_radix_addpage(rnode, index, rnode->rn_clev, page);
435 			return;
436 		}
437 		parent = rnode;
438 		rnode = rnode->rn_child[slot];
439 	} while (!vm_radix_keybarr(rnode, index));
440 
441 	/*
442 	 * A new node is needed because the right insertion level is reached.
443 	 * Setup the new intermediate node and add the 2 children: the
444 	 * new object and the older edge.
445 	 */
446 	newind = rnode->rn_owner;
447 	clev = vm_radix_keydiff(newind, index);
448 	tmp = vm_radix_node_get(vm_radix_trimkey(index, clev - 1), 2,
449 	    clev);
450 	parent->rn_child[slot] = tmp;
451 	vm_radix_addpage(tmp, index, clev, page);
452 	slot = vm_radix_slot(newind, clev);
453 	tmp->rn_child[slot] = rnode;
454 }
455 
456 /*
457  * Returns the value stored at the index.  If the index is not present,
458  * NULL is returned.
459  */
460 vm_page_t
461 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
462 {
463 	struct vm_radix_node *rnode;
464 	vm_page_t m;
465 	int slot;
466 
467 	rnode = vm_radix_getroot(rtree);
468 	while (rnode != NULL) {
469 		if (vm_radix_isleaf(rnode)) {
470 			m = vm_radix_topage(rnode);
471 			if (m->pindex == index)
472 				return (m);
473 			else
474 				break;
475 		} else if (vm_radix_keybarr(rnode, index))
476 			break;
477 		slot = vm_radix_slot(index, rnode->rn_clev);
478 		rnode = rnode->rn_child[slot];
479 	}
480 	return (NULL);
481 }
482 
483 /*
484  * Look up the nearest entry at a position bigger than or equal to index.
485  */
486 vm_page_t
487 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
488 {
489 	vm_pindex_t inc;
490 	vm_page_t m;
491 	struct vm_radix_node *child, *rnode;
492 	int slot;
493 	uint16_t difflev;
494 	boolean_t maplevels[VM_RADIX_LIMIT + 1];
495 #ifdef INVARIANTS
496 	int loops = 0;
497 #endif
498 
499 	rnode = vm_radix_getroot(rtree);
500 	if (rnode == NULL)
501 		return (NULL);
502 	else if (vm_radix_isleaf(rnode)) {
503 		m = vm_radix_topage(rnode);
504 		if (m->pindex >= index)
505 			return (m);
506 		else
507 			return (NULL);
508 	}
509 restart:
510 	KASSERT(++loops < 1000, ("%s: too many loops", __func__));
511 	for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++)
512 		maplevels[difflev] = FALSE;
513 	for (;;) {
514 		maplevels[rnode->rn_clev] = TRUE;
515 
516 		/*
517 		 * If the keys differ before the current bisection node
518 		 * the search key might rollback to the earliest
519 		 * available bisection node, or to the smaller value
520 		 * in the current domain (if the owner is bigger than the
521 		 * search key).
522 		 * The maplevels array records any node has been seen
523 		 * at a given level.  This aids the search for a valid
524 		 * bisection node.
525 		 */
526 		if (vm_radix_keybarr(rnode, index)) {
527 			difflev = vm_radix_keydiff(index, rnode->rn_owner);
528 			if (index > rnode->rn_owner) {
529 				if (vm_radix_addlev(&index, maplevels,
530 				    difflev) > 0)
531 					break;
532 			} else
533 				index = vm_radix_trimkey(rnode->rn_owner,
534 				    difflev);
535 			rnode = vm_radix_getroot(rtree);
536 			goto restart;
537 		}
538 		slot = vm_radix_slot(index, rnode->rn_clev);
539 		child = rnode->rn_child[slot];
540 		if (vm_radix_isleaf(child)) {
541 			m = vm_radix_topage(child);
542 			if (m->pindex >= index)
543 				return (m);
544 		} else if (child != NULL)
545 			goto descend;
546 
547 		/*
548 		 * Look for an available edge or page within the current
549 		 * bisection node.
550 		 */
551                 if (slot < (VM_RADIX_COUNT - 1)) {
552 			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
553 			index = vm_radix_trimkey(index, rnode->rn_clev);
554 			do {
555 				index += inc;
556 				slot++;
557 				child = rnode->rn_child[slot];
558 				if (vm_radix_isleaf(child)) {
559 					m = vm_radix_topage(child);
560 					if (m->pindex >= index)
561 						return (m);
562 				} else if (child != NULL)
563 					goto descend;
564 			} while (slot < (VM_RADIX_COUNT - 1));
565 		}
566 		KASSERT(child == NULL || vm_radix_isleaf(child),
567 		    ("vm_radix_lookup_ge: child is radix node"));
568 
569 		/*
570 		 * If a valid page or edge bigger than the search slot is
571 		 * found in the traversal, skip to the next higher-level key.
572 		 */
573 		if (rnode->rn_clev == 0 || vm_radix_addlev(&index, maplevels,
574 		    rnode->rn_clev - 1) > 0)
575 			break;
576 		rnode = vm_radix_getroot(rtree);
577 		goto restart;
578 descend:
579 		rnode = child;
580 	}
581 	return (NULL);
582 }
583 
584 /*
585  * Look up the nearest entry at a position less than or equal to index.
586  */
587 vm_page_t
588 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
589 {
590 	vm_pindex_t inc;
591 	vm_page_t m;
592 	struct vm_radix_node *child, *rnode;
593 	int slot;
594 	uint16_t difflev;
595 	boolean_t maplevels[VM_RADIX_LIMIT + 1];
596 #ifdef INVARIANTS
597 	int loops = 0;
598 #endif
599 
600 	rnode = vm_radix_getroot(rtree);
601 	if (rnode == NULL)
602 		return (NULL);
603 	else if (vm_radix_isleaf(rnode)) {
604 		m = vm_radix_topage(rnode);
605 		if (m->pindex <= index)
606 			return (m);
607 		else
608 			return (NULL);
609 	}
610 restart:
611 	KASSERT(++loops < 1000, ("%s: too many loops", __func__));
612 	for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++)
613 		maplevels[difflev] = FALSE;
614 	for (;;) {
615 		maplevels[rnode->rn_clev] = TRUE;
616 
617 		/*
618 		 * If the keys differ before the current bisection node
619 		 * the search key might rollback to the earliest
620 		 * available bisection node, or to the higher value
621 		 * in the current domain (if the owner is smaller than the
622 		 * search key).
623 		 * The maplevels array records any node has been seen
624 		 * at a given level.  This aids the search for a valid
625 		 * bisection node.
626 		 */
627 		if (vm_radix_keybarr(rnode, index)) {
628 			difflev = vm_radix_keydiff(index, rnode->rn_owner);
629 			if (index > rnode->rn_owner) {
630 				index = vm_radix_trimkey(rnode->rn_owner,
631 				    difflev);
632 				index |= VM_RADIX_UNITLEVEL(difflev) - 1;
633 			} else if (vm_radix_declev(&index, maplevels,
634 			    difflev) > 0)
635 				break;
636 			rnode = vm_radix_getroot(rtree);
637 			goto restart;
638 		}
639 		slot = vm_radix_slot(index, rnode->rn_clev);
640 		child = rnode->rn_child[slot];
641 		if (vm_radix_isleaf(child)) {
642 			m = vm_radix_topage(child);
643 			if (m->pindex <= index)
644 				return (m);
645 		} else if (child != NULL)
646 			goto descend;
647 
648 		/*
649 		 * Look for an available edge or page within the current
650 		 * bisection node.
651 		 */
652 		if (slot > 0) {
653 			inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
654 			index = vm_radix_trimkey(index, rnode->rn_clev);
655 			index |= inc - 1;
656 			do {
657 				index -= inc;
658 				slot--;
659 				child = rnode->rn_child[slot];
660 				if (vm_radix_isleaf(child)) {
661 					m = vm_radix_topage(child);
662 					if (m->pindex <= index)
663 						return (m);
664 				} else if (child != NULL)
665 					goto descend;
666 			} while (slot > 0);
667 		}
668 		KASSERT(child == NULL || vm_radix_isleaf(child),
669 		    ("vm_radix_lookup_le: child is radix node"));
670 
671 		/*
672 		 * If a valid page or edge smaller than the search slot is
673 		 * found in the traversal, skip to the next higher-level key.
674 		 */
675 		if (rnode->rn_clev == 0 || vm_radix_declev(&index, maplevels,
676 		    rnode->rn_clev - 1) > 0)
677 			break;
678 		rnode = vm_radix_getroot(rtree);
679 		goto restart;
680 descend:
681 		rnode = child;
682 	}
683 	return (NULL);
684 }
685 
686 /*
687  * Remove the specified index from the tree.
688  * Panics if the key is not present.
689  */
690 void
691 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
692 {
693 	struct vm_radix_node *rnode, *parent;
694 	vm_page_t m;
695 	int i, slot;
696 
697 	parent = NULL;
698 	rnode = vm_radix_getroot(rtree);
699 	for (;;) {
700 		if (rnode == NULL)
701 			panic("vm_radix_remove: impossible to locate the key");
702 		slot = vm_radix_slot(index, rnode->rn_clev);
703 		if (vm_radix_isleaf(rnode->rn_child[slot])) {
704 			m = vm_radix_topage(rnode->rn_child[slot]);
705 			if (m->pindex != index)
706 				panic("%s: invalid key found", __func__);
707 			rnode->rn_child[slot] = NULL;
708 			rnode->rn_count--;
709 			if (rnode->rn_count > 1)
710 				break;
711 			if (parent == NULL) {
712 				if (rnode->rn_count == 0) {
713 					vm_radix_node_put(rnode);
714 					vm_radix_setroot(rtree, NULL);
715 				}
716 				break;
717 			}
718 			for (i = 0; i < VM_RADIX_COUNT; i++)
719 				if (rnode->rn_child[i] != NULL)
720 					break;
721 			KASSERT(i != VM_RADIX_COUNT,
722 			    ("%s: invalid node configuration", __func__));
723 			slot = vm_radix_slot(index, parent->rn_clev);
724 			KASSERT(parent->rn_child[slot] == rnode,
725 			    ("%s: invalid child value", __func__));
726 			parent->rn_child[slot] = rnode->rn_child[i];
727 			rnode->rn_count--;
728 			rnode->rn_child[i] = NULL;
729 			vm_radix_node_put(rnode);
730 			break;
731 		}
732 		parent = rnode;
733 		rnode = rnode->rn_child[slot];
734 	}
735 }
736 
737 /*
738  * Remove and free all the nodes from the radix tree.
739  * This function is recursive but there is a tight control on it as the
740  * maximum depth of the tree is fixed.
741  */
742 void
743 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
744 {
745 	struct vm_radix_node *root;
746 
747 	root = vm_radix_getroot(rtree);
748 	if (root == NULL)
749 		return;
750 	vm_radix_setroot(rtree, NULL);
751 	vm_radix_reclaim_allnodes_int(root);
752 }
753 
754 #ifdef DDB
755 /*
756  * Show details about the given radix node.
757  */
758 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
759 {
760 	struct vm_radix_node *rnode;
761 	int i;
762 
763         if (!have_addr)
764                 return;
765 	rnode = (struct vm_radix_node *)addr;
766 	db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
767 	    (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
768 	    rnode->rn_clev);
769 	for (i = 0; i < VM_RADIX_COUNT; i++)
770 		if (rnode->rn_child[i] != NULL)
771 			db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
772 			    i, (void *)rnode->rn_child[i],
773 			    vm_radix_isleaf(rnode->rn_child[i]) ?
774 			    vm_radix_topage(rnode->rn_child[i]) : NULL,
775 			    rnode->rn_clev);
776 }
777 #endif /* DDB */
778