1 /* 2 * Copyright (c) 2013 EMC Corp. 3 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org> 4 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 */ 29 30 /* 31 * Path-compressed radix trie implementation. 32 * The following code is not generalized into a general purpose library 33 * because there are way too many parameters embedded that should really 34 * be decided by the library consumers. At the same time, consumers 35 * of this code must achieve highest possible performance. 36 * 37 * The implementation takes into account the following rationale: 38 * - Size of the nodes should be as small as possible but still big enough 39 * to avoid a large maximum depth for the trie. This is a balance 40 * between the necessity to not wire too much physical memory for the nodes 41 * and the necessity to avoid too much cache pollution during the trie 42 * operations. 43 * - There is not a huge bias toward the number of lookup operations over 44 * the number of insert and remove operations. This basically implies 45 * that optimizations supposedly helping one operation but hurting the 46 * other might be carefully evaluated. 47 * - On average not many nodes are expected to be fully populated, hence 48 * level compression may just complicate things. 49 */ 50 51 #include <sys/cdefs.h> 52 __FBSDID("$FreeBSD$"); 53 54 #include "opt_ddb.h" 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/kernel.h> 59 #include <sys/vmmeter.h> 60 61 #include <vm/uma.h> 62 #include <vm/vm.h> 63 #include <vm/vm_param.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_radix.h> 66 67 #ifdef DDB 68 #include <ddb/ddb.h> 69 #endif 70 71 /* 72 * These widths should allow the pointers to a node's children to fit within 73 * a single cache line. The extra levels from a narrow width should not be 74 * a problem thanks to path compression. 75 */ 76 #ifdef __LP64__ 77 #define VM_RADIX_WIDTH 4 78 #else 79 #define VM_RADIX_WIDTH 3 80 #endif 81 82 #define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH) 83 #define VM_RADIX_MASK (VM_RADIX_COUNT - 1) 84 #define VM_RADIX_LIMIT \ 85 (howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1) 86 87 /* Flag bits stored in node pointers. */ 88 #define VM_RADIX_ISLEAF 0x1 89 #define VM_RADIX_FLAGS 0x1 90 #define VM_RADIX_PAD VM_RADIX_FLAGS 91 92 /* Returns one unit associated with specified level. */ 93 #define VM_RADIX_UNITLEVEL(lev) \ 94 ((vm_pindex_t)1 << ((VM_RADIX_LIMIT - (lev)) * VM_RADIX_WIDTH)) 95 96 struct vm_radix_node { 97 vm_pindex_t rn_owner; /* Owner of record. */ 98 uint16_t rn_count; /* Valid children. */ 99 uint16_t rn_clev; /* Current level. */ 100 void *rn_child[VM_RADIX_COUNT]; /* Child nodes. */ 101 }; 102 103 static uma_zone_t vm_radix_node_zone; 104 105 /* 106 * Allocate a radix node. Pre-allocation should ensure that the request 107 * will always be satisfied. 108 */ 109 static __inline struct vm_radix_node * 110 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel) 111 { 112 struct vm_radix_node *rnode; 113 114 rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT); 115 116 /* 117 * The required number of nodes should already be pre-allocated 118 * by vm_radix_prealloc(). However, UMA can hold a few nodes 119 * in per-CPU buckets, which will not be accessible by the 120 * current CPU. Thus, the allocation could return NULL when 121 * the pre-allocated pool is close to exhaustion. Anyway, 122 * in practice this should never occur because a new node 123 * is not always required for insert. Thus, the pre-allocated 124 * pool should have some extra pages that prevent this from 125 * becoming a problem. 126 */ 127 if (rnode == NULL) 128 panic("%s: uma_zalloc() returned NULL for a new node", 129 __func__); 130 rnode->rn_owner = owner; 131 rnode->rn_count = count; 132 rnode->rn_clev = clevel; 133 return (rnode); 134 } 135 136 /* 137 * Free radix node. 138 */ 139 static __inline void 140 vm_radix_node_put(struct vm_radix_node *rnode) 141 { 142 143 uma_zfree(vm_radix_node_zone, rnode); 144 } 145 146 /* 147 * Return the position in the array for a given level. 148 */ 149 static __inline int 150 vm_radix_slot(vm_pindex_t index, uint16_t level) 151 { 152 153 return ((index >> ((VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH)) & 154 VM_RADIX_MASK); 155 } 156 157 /* Trims the key after the specified level. */ 158 static __inline vm_pindex_t 159 vm_radix_trimkey(vm_pindex_t index, uint16_t level) 160 { 161 vm_pindex_t ret; 162 163 ret = index; 164 if (level < VM_RADIX_LIMIT) { 165 ret >>= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH; 166 ret <<= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH; 167 } 168 return (ret); 169 } 170 171 /* 172 * Get the root node for a radix tree. 173 */ 174 static __inline struct vm_radix_node * 175 vm_radix_getroot(struct vm_radix *rtree) 176 { 177 178 return ((struct vm_radix_node *)rtree->rt_root); 179 } 180 181 /* 182 * Set the root node for a radix tree. 183 */ 184 static __inline void 185 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode) 186 { 187 188 rtree->rt_root = (uintptr_t)rnode; 189 } 190 191 /* 192 * Returns TRUE if the specified radix node is a leaf and FALSE otherwise. 193 */ 194 static __inline boolean_t 195 vm_radix_isleaf(struct vm_radix_node *rnode) 196 { 197 198 return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0); 199 } 200 201 /* 202 * Returns the associated page extracted from rnode. 203 */ 204 static __inline vm_page_t 205 vm_radix_topage(struct vm_radix_node *rnode) 206 { 207 208 return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS)); 209 } 210 211 /* 212 * Adds the page as a child of the provided node. 213 */ 214 static __inline void 215 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev, 216 vm_page_t page) 217 { 218 int slot; 219 220 slot = vm_radix_slot(index, clev); 221 rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF); 222 } 223 224 /* 225 * Returns the slot where two keys differ. 226 * It cannot accept 2 equal keys. 227 */ 228 static __inline uint16_t 229 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2) 230 { 231 uint16_t clev; 232 233 KASSERT(index1 != index2, ("%s: passing the same key value %jx", 234 __func__, (uintmax_t)index1)); 235 236 index1 ^= index2; 237 for (clev = 0; clev <= VM_RADIX_LIMIT ; clev++) 238 if (vm_radix_slot(index1, clev)) 239 return (clev); 240 panic("%s: cannot reach this point", __func__); 241 return (0); 242 } 243 244 /* 245 * Returns TRUE if it can be determined that key does not belong to the 246 * specified rnode. Otherwise, returns FALSE. 247 */ 248 static __inline boolean_t 249 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx) 250 { 251 252 if (rnode->rn_clev > 0) { 253 idx = vm_radix_trimkey(idx, rnode->rn_clev - 1); 254 return (idx != rnode->rn_owner); 255 } 256 return (FALSE); 257 } 258 259 /* 260 * Adjusts the idx key to the first upper level available, based on a valid 261 * initial level and map of available levels. 262 * Returns a value bigger than 0 to signal that there are not valid levels 263 * available. 264 */ 265 static __inline int 266 vm_radix_addlev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev) 267 { 268 vm_pindex_t wrapidx; 269 270 for (; levels[ilev] == FALSE || 271 vm_radix_slot(*idx, ilev) == (VM_RADIX_COUNT - 1); ilev--) 272 if (ilev == 0) 273 return (1); 274 wrapidx = *idx; 275 *idx = vm_radix_trimkey(*idx, ilev); 276 *idx += VM_RADIX_UNITLEVEL(ilev); 277 return (*idx < wrapidx); 278 } 279 280 /* 281 * Adjusts the idx key to the first lower level available, based on a valid 282 * initial level and map of available levels. 283 * Returns a value bigger than 0 to signal that there are not valid levels 284 * available. 285 */ 286 static __inline int 287 vm_radix_declev(vm_pindex_t *idx, boolean_t *levels, uint16_t ilev) 288 { 289 vm_pindex_t wrapidx; 290 291 for (; levels[ilev] == FALSE || 292 vm_radix_slot(*idx, ilev) == 0; ilev--) 293 if (ilev == 0) 294 return (1); 295 wrapidx = *idx; 296 *idx = vm_radix_trimkey(*idx, ilev); 297 *idx |= VM_RADIX_UNITLEVEL(ilev) - 1; 298 *idx -= VM_RADIX_UNITLEVEL(ilev); 299 return (*idx > wrapidx); 300 } 301 302 /* 303 * Internal helper for vm_radix_reclaim_allnodes(). 304 * This function is recursive. 305 */ 306 static void 307 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode) 308 { 309 int slot; 310 311 KASSERT(rnode->rn_count <= VM_RADIX_COUNT, 312 ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode)); 313 for (slot = 0; rnode->rn_count != 0; slot++) { 314 if (rnode->rn_child[slot] == NULL) 315 continue; 316 if (!vm_radix_isleaf(rnode->rn_child[slot])) 317 vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]); 318 rnode->rn_child[slot] = NULL; 319 rnode->rn_count--; 320 } 321 vm_radix_node_put(rnode); 322 } 323 324 #ifdef INVARIANTS 325 /* 326 * Radix node zone destructor. 327 */ 328 static void 329 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused) 330 { 331 struct vm_radix_node *rnode; 332 int slot; 333 334 rnode = mem; 335 KASSERT(rnode->rn_count == 0, 336 ("vm_radix_node_put: rnode %p has %d children", rnode, 337 rnode->rn_count)); 338 for (slot = 0; slot < VM_RADIX_COUNT; slot++) 339 KASSERT(rnode->rn_child[slot] == NULL, 340 ("vm_radix_node_put: rnode %p has a child", rnode)); 341 } 342 #endif 343 344 /* 345 * Radix node zone initializer. 346 */ 347 static int 348 vm_radix_node_zone_init(void *mem, int size __unused, int flags __unused) 349 { 350 struct vm_radix_node *rnode; 351 352 rnode = mem; 353 memset(rnode->rn_child, 0, sizeof(rnode->rn_child)); 354 return (0); 355 } 356 357 /* 358 * Pre-allocate intermediate nodes from the UMA slab zone. 359 */ 360 static void 361 vm_radix_prealloc(void *arg __unused) 362 { 363 364 if (!uma_zone_reserve_kva(vm_radix_node_zone, cnt.v_page_count)) 365 panic("%s: unable to create new zone", __func__); 366 uma_prealloc(vm_radix_node_zone, cnt.v_page_count); 367 } 368 SYSINIT(vm_radix_prealloc, SI_SUB_KMEM, SI_ORDER_SECOND, vm_radix_prealloc, 369 NULL); 370 371 /* 372 * Initialize the UMA slab zone. 373 * Until vm_radix_prealloc() is called, the zone will be served by the 374 * UMA boot-time pre-allocated pool of pages. 375 */ 376 void 377 vm_radix_init(void) 378 { 379 380 vm_radix_node_zone = uma_zcreate("RADIX NODE", 381 sizeof(struct vm_radix_node), NULL, 382 #ifdef INVARIANTS 383 vm_radix_node_zone_dtor, 384 #else 385 NULL, 386 #endif 387 vm_radix_node_zone_init, NULL, VM_RADIX_PAD, UMA_ZONE_VM | 388 UMA_ZONE_NOFREE); 389 } 390 391 /* 392 * Inserts the key-value pair into the trie. 393 * Panics if the key already exists. 394 */ 395 void 396 vm_radix_insert(struct vm_radix *rtree, vm_page_t page) 397 { 398 vm_pindex_t index, newind; 399 struct vm_radix_node *parent, *rnode, *tmp; 400 vm_page_t m; 401 int slot; 402 uint16_t clev; 403 404 index = page->pindex; 405 406 /* 407 * The owner of record for root is not really important because it 408 * will never be used. 409 */ 410 rnode = vm_radix_getroot(rtree); 411 if (rnode == NULL) { 412 rnode = vm_radix_node_get(0, 1, 0); 413 vm_radix_setroot(rtree, rnode); 414 vm_radix_addpage(rnode, index, 0, page); 415 return; 416 } 417 do { 418 slot = vm_radix_slot(index, rnode->rn_clev); 419 if (vm_radix_isleaf(rnode->rn_child[slot])) { 420 m = vm_radix_topage(rnode->rn_child[slot]); 421 if (m->pindex == index) 422 panic("%s: key %jx is already present", 423 __func__, (uintmax_t)index); 424 clev = vm_radix_keydiff(m->pindex, index); 425 tmp = vm_radix_node_get(vm_radix_trimkey(index, 426 clev - 1), 2, clev); 427 rnode->rn_child[slot] = tmp; 428 vm_radix_addpage(tmp, index, clev, page); 429 vm_radix_addpage(tmp, m->pindex, clev, m); 430 return; 431 } 432 if (rnode->rn_child[slot] == NULL) { 433 rnode->rn_count++; 434 vm_radix_addpage(rnode, index, rnode->rn_clev, page); 435 return; 436 } 437 parent = rnode; 438 rnode = rnode->rn_child[slot]; 439 } while (!vm_radix_keybarr(rnode, index)); 440 441 /* 442 * A new node is needed because the right insertion level is reached. 443 * Setup the new intermediate node and add the 2 children: the 444 * new object and the older edge. 445 */ 446 newind = rnode->rn_owner; 447 clev = vm_radix_keydiff(newind, index); 448 tmp = vm_radix_node_get(vm_radix_trimkey(index, clev - 1), 2, 449 clev); 450 parent->rn_child[slot] = tmp; 451 vm_radix_addpage(tmp, index, clev, page); 452 slot = vm_radix_slot(newind, clev); 453 tmp->rn_child[slot] = rnode; 454 } 455 456 /* 457 * Returns the value stored at the index. If the index is not present, 458 * NULL is returned. 459 */ 460 vm_page_t 461 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index) 462 { 463 struct vm_radix_node *rnode; 464 vm_page_t m; 465 int slot; 466 467 rnode = vm_radix_getroot(rtree); 468 while (rnode != NULL) { 469 if (vm_radix_isleaf(rnode)) { 470 m = vm_radix_topage(rnode); 471 if (m->pindex == index) 472 return (m); 473 else 474 break; 475 } else if (vm_radix_keybarr(rnode, index)) 476 break; 477 slot = vm_radix_slot(index, rnode->rn_clev); 478 rnode = rnode->rn_child[slot]; 479 } 480 return (NULL); 481 } 482 483 /* 484 * Look up the nearest entry at a position bigger than or equal to index. 485 */ 486 vm_page_t 487 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index) 488 { 489 vm_pindex_t inc; 490 vm_page_t m; 491 struct vm_radix_node *child, *rnode; 492 int slot; 493 uint16_t difflev; 494 boolean_t maplevels[VM_RADIX_LIMIT + 1]; 495 #ifdef INVARIANTS 496 int loops = 0; 497 #endif 498 499 rnode = vm_radix_getroot(rtree); 500 if (rnode == NULL) 501 return (NULL); 502 else if (vm_radix_isleaf(rnode)) { 503 m = vm_radix_topage(rnode); 504 if (m->pindex >= index) 505 return (m); 506 else 507 return (NULL); 508 } 509 restart: 510 KASSERT(++loops < 1000, ("%s: too many loops", __func__)); 511 for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++) 512 maplevels[difflev] = FALSE; 513 for (;;) { 514 maplevels[rnode->rn_clev] = TRUE; 515 516 /* 517 * If the keys differ before the current bisection node 518 * the search key might rollback to the earliest 519 * available bisection node, or to the smaller value 520 * in the current domain (if the owner is bigger than the 521 * search key). 522 * The maplevels array records any node has been seen 523 * at a given level. This aids the search for a valid 524 * bisection node. 525 */ 526 if (vm_radix_keybarr(rnode, index)) { 527 difflev = vm_radix_keydiff(index, rnode->rn_owner); 528 if (index > rnode->rn_owner) { 529 if (vm_radix_addlev(&index, maplevels, 530 difflev) > 0) 531 break; 532 } else 533 index = vm_radix_trimkey(rnode->rn_owner, 534 difflev); 535 rnode = vm_radix_getroot(rtree); 536 goto restart; 537 } 538 slot = vm_radix_slot(index, rnode->rn_clev); 539 child = rnode->rn_child[slot]; 540 if (vm_radix_isleaf(child)) { 541 m = vm_radix_topage(child); 542 if (m->pindex >= index) 543 return (m); 544 } else if (child != NULL) 545 goto descend; 546 547 /* 548 * Look for an available edge or page within the current 549 * bisection node. 550 */ 551 if (slot < (VM_RADIX_COUNT - 1)) { 552 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev); 553 index = vm_radix_trimkey(index, rnode->rn_clev); 554 do { 555 index += inc; 556 slot++; 557 child = rnode->rn_child[slot]; 558 if (vm_radix_isleaf(child)) { 559 m = vm_radix_topage(child); 560 if (m->pindex >= index) 561 return (m); 562 } else if (child != NULL) 563 goto descend; 564 } while (slot < (VM_RADIX_COUNT - 1)); 565 } 566 KASSERT(child == NULL || vm_radix_isleaf(child), 567 ("vm_radix_lookup_ge: child is radix node")); 568 569 /* 570 * If a valid page or edge bigger than the search slot is 571 * found in the traversal, skip to the next higher-level key. 572 */ 573 if (rnode->rn_clev == 0 || vm_radix_addlev(&index, maplevels, 574 rnode->rn_clev - 1) > 0) 575 break; 576 rnode = vm_radix_getroot(rtree); 577 goto restart; 578 descend: 579 rnode = child; 580 } 581 return (NULL); 582 } 583 584 /* 585 * Look up the nearest entry at a position less than or equal to index. 586 */ 587 vm_page_t 588 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index) 589 { 590 vm_pindex_t inc; 591 vm_page_t m; 592 struct vm_radix_node *child, *rnode; 593 int slot; 594 uint16_t difflev; 595 boolean_t maplevels[VM_RADIX_LIMIT + 1]; 596 #ifdef INVARIANTS 597 int loops = 0; 598 #endif 599 600 rnode = vm_radix_getroot(rtree); 601 if (rnode == NULL) 602 return (NULL); 603 else if (vm_radix_isleaf(rnode)) { 604 m = vm_radix_topage(rnode); 605 if (m->pindex <= index) 606 return (m); 607 else 608 return (NULL); 609 } 610 restart: 611 KASSERT(++loops < 1000, ("%s: too many loops", __func__)); 612 for (difflev = 0; difflev < (VM_RADIX_LIMIT + 1); difflev++) 613 maplevels[difflev] = FALSE; 614 for (;;) { 615 maplevels[rnode->rn_clev] = TRUE; 616 617 /* 618 * If the keys differ before the current bisection node 619 * the search key might rollback to the earliest 620 * available bisection node, or to the higher value 621 * in the current domain (if the owner is smaller than the 622 * search key). 623 * The maplevels array records any node has been seen 624 * at a given level. This aids the search for a valid 625 * bisection node. 626 */ 627 if (vm_radix_keybarr(rnode, index)) { 628 difflev = vm_radix_keydiff(index, rnode->rn_owner); 629 if (index > rnode->rn_owner) { 630 index = vm_radix_trimkey(rnode->rn_owner, 631 difflev); 632 index |= VM_RADIX_UNITLEVEL(difflev) - 1; 633 } else if (vm_radix_declev(&index, maplevels, 634 difflev) > 0) 635 break; 636 rnode = vm_radix_getroot(rtree); 637 goto restart; 638 } 639 slot = vm_radix_slot(index, rnode->rn_clev); 640 child = rnode->rn_child[slot]; 641 if (vm_radix_isleaf(child)) { 642 m = vm_radix_topage(child); 643 if (m->pindex <= index) 644 return (m); 645 } else if (child != NULL) 646 goto descend; 647 648 /* 649 * Look for an available edge or page within the current 650 * bisection node. 651 */ 652 if (slot > 0) { 653 inc = VM_RADIX_UNITLEVEL(rnode->rn_clev); 654 index = vm_radix_trimkey(index, rnode->rn_clev); 655 index |= inc - 1; 656 do { 657 index -= inc; 658 slot--; 659 child = rnode->rn_child[slot]; 660 if (vm_radix_isleaf(child)) { 661 m = vm_radix_topage(child); 662 if (m->pindex <= index) 663 return (m); 664 } else if (child != NULL) 665 goto descend; 666 } while (slot > 0); 667 } 668 KASSERT(child == NULL || vm_radix_isleaf(child), 669 ("vm_radix_lookup_le: child is radix node")); 670 671 /* 672 * If a valid page or edge smaller than the search slot is 673 * found in the traversal, skip to the next higher-level key. 674 */ 675 if (rnode->rn_clev == 0 || vm_radix_declev(&index, maplevels, 676 rnode->rn_clev - 1) > 0) 677 break; 678 rnode = vm_radix_getroot(rtree); 679 goto restart; 680 descend: 681 rnode = child; 682 } 683 return (NULL); 684 } 685 686 /* 687 * Remove the specified index from the tree. 688 * Panics if the key is not present. 689 */ 690 void 691 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index) 692 { 693 struct vm_radix_node *rnode, *parent; 694 vm_page_t m; 695 int i, slot; 696 697 parent = NULL; 698 rnode = vm_radix_getroot(rtree); 699 for (;;) { 700 if (rnode == NULL) 701 panic("vm_radix_remove: impossible to locate the key"); 702 slot = vm_radix_slot(index, rnode->rn_clev); 703 if (vm_radix_isleaf(rnode->rn_child[slot])) { 704 m = vm_radix_topage(rnode->rn_child[slot]); 705 if (m->pindex != index) 706 panic("%s: invalid key found", __func__); 707 rnode->rn_child[slot] = NULL; 708 rnode->rn_count--; 709 if (rnode->rn_count > 1) 710 break; 711 if (parent == NULL) { 712 if (rnode->rn_count == 0) { 713 vm_radix_node_put(rnode); 714 vm_radix_setroot(rtree, NULL); 715 } 716 break; 717 } 718 for (i = 0; i < VM_RADIX_COUNT; i++) 719 if (rnode->rn_child[i] != NULL) 720 break; 721 KASSERT(i != VM_RADIX_COUNT, 722 ("%s: invalid node configuration", __func__)); 723 slot = vm_radix_slot(index, parent->rn_clev); 724 KASSERT(parent->rn_child[slot] == rnode, 725 ("%s: invalid child value", __func__)); 726 parent->rn_child[slot] = rnode->rn_child[i]; 727 rnode->rn_count--; 728 rnode->rn_child[i] = NULL; 729 vm_radix_node_put(rnode); 730 break; 731 } 732 parent = rnode; 733 rnode = rnode->rn_child[slot]; 734 } 735 } 736 737 /* 738 * Remove and free all the nodes from the radix tree. 739 * This function is recursive but there is a tight control on it as the 740 * maximum depth of the tree is fixed. 741 */ 742 void 743 vm_radix_reclaim_allnodes(struct vm_radix *rtree) 744 { 745 struct vm_radix_node *root; 746 747 root = vm_radix_getroot(rtree); 748 if (root == NULL) 749 return; 750 vm_radix_setroot(rtree, NULL); 751 vm_radix_reclaim_allnodes_int(root); 752 } 753 754 #ifdef DDB 755 /* 756 * Show details about the given radix node. 757 */ 758 DB_SHOW_COMMAND(radixnode, db_show_radixnode) 759 { 760 struct vm_radix_node *rnode; 761 int i; 762 763 if (!have_addr) 764 return; 765 rnode = (struct vm_radix_node *)addr; 766 db_printf("radixnode %p, owner %jx, children count %u, level %u:\n", 767 (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count, 768 rnode->rn_clev); 769 for (i = 0; i < VM_RADIX_COUNT; i++) 770 if (rnode->rn_child[i] != NULL) 771 db_printf("slot: %d, val: %p, page: %p, clev: %d\n", 772 i, (void *)rnode->rn_child[i], 773 vm_radix_isleaf(rnode->rn_child[i]) ? 774 vm_radix_topage(rnode->rn_child[i]) : NULL, 775 rnode->rn_clev); 776 } 777 #endif /* DDB */ 778